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Abstract - Rammed Earth (RE) is recognized as a sustainable construction material with minimal environmental impact, yet 

its structural reliability under lateral wind forces remains underexplored. This study evaluates the reliability of Unstabilized 

Rammed Earth (URE) structures using Monte Carlo Simulation (MCS) and Artificial Neural Networks (ANN)-a combination 

applied for the first time in RE literature. MCS was performed with 500,000 iterations to assess the structural reliability of 

URE and generate a dataset for ANN-based prediction of the reliability index. The analysis incorporated random variables, 

including compressive strength, density, roof weight and wind speed. To enhance the robustness of the MCS analysis, 95% 

confidence intervals for each estimated probability of failure were also computed using the Wilson score method, revealing 

consistently narrow bounds, which underscore the statistical stability of the simulation outcomes. The results of the MCS 

indicate that a wall thickness of 0.35 m satisfies the reliability requirements for the evaluated compressive strengths, whereas 

a thickness of 0.2 m is inadequate. The ANN model, trained on the MCS-derived dataset, achieved a strong performance with 

a mean squared error (MSE) of 0.023 and a coefficient of determination (R²) of 0.853, further confirmed through 10-fold cross-

validation.  

Keywords - Unstabilized Rammed Earth, Structural Reliability, Monte Carlo Simulation, Artificial Neural Networks, Lateral 

wind forces.

1. Introduction  
Accounting for 36% of the world’s energy consumption, 

the construction industry is a major contributor to 

environmental degradation-making adopting sustainable 

practices a pressing necessity across developed and 

developing nations [1,2]. As a result, there is a growing 

resurgence in building approaches that minimize 

environmental damage by relying on local resources such as 

the earth and limiting dependence on industrial production  

[3]. 

Among earth construction techniques, known 

historically for their efficiency, availability, and thermal and 

mechanical properties [3], RE stands out due to its superior 

mechanical strength [4], along with remarkable 

environmental benefits [5], making it an excellent candidate 

in the context of sustainable building. Historically, RE and 

other earth construction techniques developed through 

empirical optimization and understanding of the local 

materials [6]. In recent decades, a resurgence of interest in 

earth construction, including RE, has led to the development 

of building standards, normative documents, and guidelines 

[7].  

Nevertheless, many critical material properties of RE 

remain unexplored or insufficiently investigated compared to 

other conventional construction techniques. They should be 

rigorously analyzed to achieve the same level of reliability 

and standardization as other construction materials like 

concrete and steel [3]. 

Earth-based construction techniques represent the 

earliest known building form, with Costa et al. [8] noting that 

examples of earth brick usage date back to approximately 

10,000 BC in Mesopotamia. The RE method, in particular, is 

believed to have originated during the Three Kingdoms 

period in China (221–581 AD) and has since seen widespread 

application across many cultures and eras [9]. 

RE construction involves extracting soil compacted in 

successive layers within temporary molds or formwork. After 

each layer is firmly compressed, the formwork is 
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repositioned-either along the wall's length or upward-

allowing the structure to rise incrementally, layer upon layer 

[9]. RE exhibits two defining material features: it is typically 

compacted at or near the optimum moisture content, and its 

composition is poorly sorted, containing a broad range of 

particle sizes-from fine clay to coarse gravel-sometimes 

across as many as 64 distinct fractions [3, 10]. 

RE is generally categorized into stabilized and 

unstabilized forms. While Stabilized Rammed Earth (SRE) 

incorporates additives such as cement or lime, Unstabilized 

Rammed Earth (URE) relies solely on clay as a binding agent. 

Many studies have explored both forms, primarily through 

experimental methods, focusing on mechanical properties, 

durability, and structural performance under various loading 

conditions. For example, El Bourki et al. [11] experimentally 

evaluated the mechanical behavior of RE reinforced with 

varying contents of date palm fibers, using Proctor 

compaction, uniaxial compression, splitting tensile, and 

cyclic loading tests. Baibordy et al. [12] combined 

experimental testing with fuzzy logic modeling to assess the 

mechanical properties of cement- and lime-stabilized RE 

reinforced with straw. Xu et al. [13] examined hydrothermal 

migration and interface cracking in reinforced RE affected by 

root erosion, focusing on moisture-induced shrinkage during 

desiccation. Umubyeyi et al. [14] conducted a 16-year 

experimental assessment of the erosion and durability of 

URE exposed to temperate climatic conditions. Zhou et al. 

[15] investigated SRE’s interlayer and intralayer shear 

properties using direct shear tests, particularly failure 

mechanisms and interface strength.  

Other works have employed numerical modeling to 

assess the structural behavior of RE. For instance, Pei et al. 

[16] used finite element analysis to study the impact of weak 

interlayer interfaces on the structural performance of multi-

layer discontinuous RE walls. Healy et al. [17] applied finite 

element modeling based on the Mohr-Coulomb failure 

criterion to simulate the behavior of URE, validating the 

model against experimental shear and compression test 

results. However, structural applications under lateral wind 

loads remain significantly underexplored. Notable exceptions 

include the study by Ciancio and Augarde [18], which 

compares elastic and ultimate strength analysis methods for 

evaluating lateral load capacity of unreinforced cement-

stabilized RE walls, proposing a revised approach 

incorporating fracture energy. Additionally, Luo et al. [19] 

studied the deterioration of historic RE structures under 

wind-driven rain, aiming to correlate erosion with material 

properties and rain conditions through laboratory 

simulations. 

In recent years, data-driven and probabilistic methods 

have complemented traditional approaches in predicting RE 

performance. These include machine learning, ANN, and 

reliability analysis techniques like the SORM (Second-Order 

Reliability Method) and the FORM (First-Order Reliability 

Method). In the context of RE, Kianfar and Toufigh [20] 

employed the FORM to evaluate the structural reliability of 

unstabilized and cement-treated RE systems under diverse 

loading conditions -including dead, live, and environmental 

loads- making it the first study that tackled the aspect of 

structural reliability of RE walls using reliability-based 

methods.  

Although ANNs have been applied in RE research, these 

studies predominantly focus on SRE and compressive 

strength. For instance, Ansyz and Narloch [21] developed an 

ANN-based algorithm to design the composition of cement-

stabilized RE in order to predict the correct moisture, cement, 

and soil composition needed to achieve target compressive 

strength levels. Another notable study by Mustafa et al. [22] 

investigated the unconfined compressive strength of various 

URE and SRE  based on grain size distribution, moisture 

content, and stabilizer type and dosage, demonstrating 

ANN’s superior accuracy over Multiple Linear Regression 

(MLR).  Similarly, Ansyz et al. [23] applied ANNs, decision 

trees and random forests to predict the compressive strength 

of cement-stabilized RE, integrating explainable artificial 

intelligence to determine the influence of components like 

cement, sand, and clay. Further, Narloch et al. [24] utilized 

Deep Convolutional Neural Network (DCNN)-a specialized 

form of ANN that excels in image recognition tasks [25]-to 

analyze SEM (Scanning Electron Microscope) images of 

cement-stabilized RE, correlating microstructural features 

with compressive strength to reduce reliance on physical 

testing. 

Despite these advances, no study to date has combined 

MCS and ANN to assess the structural reliability of RE, nor 

has any work explicitly focused on URE under lateral wind-

induced out-of-plane loading. 

To address these critical gaps, the present study offers 

the first integration of MCS and ANN to evaluate the 

structural reliability of URE walls under lateral wind loads. 

Compressive strength, wind speed, material density, and roof 

weight are modeled as random variables, while wall 

dimensions are treated as deterministic inputs to simulate 

realistic behavior. MCS is used to evaluate the structural 

reliability of URE walls by analyzing the interaction between 

compressive strength and wall thickness and to generate a 

synthetic dataset. This dataset is then used to train an ANN, 

enabling efficient prediction of the reliability index based on 

key parameters. 

This study focuses on URE, rather than SRE, for several 

key reasons. By concentrating on URE, this research aims to 

examine the material in its pure, unaltered state, enabling a 

more accurate understanding of its intrinsic mechanical and 

physical behavior. First, as previously discussed, RE remains 

an under-researched construction technique, and establishing 
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clear baseline knowledge for URE is essential for future 

comparative studies involving stabilized forms of RE. 

Second, URE holds significant traditional and local 

relevance, reflecting vernacular construction practices in 

many regions [26-29]. Studying it in its original, historical 

form contributes to preserving traditional knowledge and 

informs appropriate strategies for rehabilitating and 

maintaining heritage buildings constructed using this 

technique. Finally, there are practical and economic 

motivations for focusing on URE. Using stabilizers increases 

construction costs and depends on the availability of 

additives, which may be limited or require importation in 

remote or resource-constrained areas [6]. Therefore, URE 

offers a more accessible and sustainable alternative in many 

contexts. 

Lateral loading-including wind and seismic forces-is a 

critical design consideration for structures in general, 

including RE structures [30]. It is accounted for in most 

existing guidelines and building standards, such as the 

RPCTerre [30]. However, the non-engineered nature of many 

earthen structures often makes them particularly vulnerable 

to lateral loads, especially in regions exposed to high winds 

[31]. Without proper reinforcement-such as continuous wall 

plates, bond beams, or collar beams, which enhance the 

lateral stability of RE walls [32]-URE constructions face a 

heightened risk of collapse during wind events. These 

vulnerabilities are especially pressing in rural, low-income, 

and hazard-prone areas, where URE is commonly used due 

to the availability and affordability of local materials [31]. In 

such contexts, failure of URE walls under wind loading can 

have severe consequences, including housing collapse, 

injury, displacement, and economic loss. Moreover, this 

structural inadequacy contributes to the perception of earthen 

construction as substandard, hindering its broader adoption 

[31]-even when it offers significant environmental and social 

benefits. Understanding and addressing the wind-induced 

failure mechanisms of URE walls is essential for improving 

structural resilience and enabling local communities to safely 

implement sustainable and affordable construction methods 

that meet modern safety standards and cultural needs [31].  

Ultimately, this study presents a novel methodological 

framework that, for the first time in RE literature, combines 

MCS and ANN) to evaluate the structural reliability of URE 

walls subjected to wind-induced lateral loads. As previously 

discussed, while various studies have explored the 

mechanical behavior of stabilized and unstabilized RE under 

diverse loading conditions, structural applications under 

lateral wind loads remain significantly underexplored-

particularly for URE. Building on prior work that employed 

probabilistic methods like FORM and data-driven models 

like ANNs, this research uniquely integrates the two 

approaches to address a critical gap. By modeling key 

parameters-such as compressive strength, wind speed, 

material density, and roof weight-as random variables and 

using MCS-generated data to train an ANN, the study 

provides a reliable and computationally efficient tool for 

predicting failure risk. Compared to FORM-based 

approaches, the MCS-ANN model demonstrates superior 

flexibility in handling nonlinear interactions between 

variables. In doing so, it advances the methodological 

landscape of RE analysis. It contributes to the broader goals 

of sustainable construction by supporting the safe 

implementation of affordable, low-carbon building systems 

in wind-exposed and resource-constrained settings. 

2. Methods  
This research adopts a two-phase methodology to assess 

the structural reliability of URE under lateral wind loads. The 

first phase involves an MCS for probabilistic analysis, while 

the second phase applies ANN to predict the reliability index 

based on the simulation outcomes. 

The first part consists of conducting MCS on 500,000 

iterations using Python in the PyCharm environment based 

on input data compiled from technical documents and 

literature. The primary objective of the MCS was twofold: 

first, to generate a robust dataset for training the ANN, and 

second, to explore the interaction between compressive 

strength and wall thickness in the context of structural 

reliability. This interaction analysis allows for deriving 

practical design recommendations regarding the minimum 

compressive strength required for each wall thickness 

assessed. The simulation is based on data compiled from 

existing technical documents and standards. The limit state 

function is established based on the principles of elastic 

analysis as outlined in the work of Ciancio and Augarde [18] 

and the French Snow and Wind Load Regulations (NV65) 

[33]. The results from the simulation were exported to 

Microsoft Excel for readability and further processing. 

Additionally, 95% confidence intervals for the estimated 

probabilities of failure were computed using the Wilson score 

method to assess the statistical reliability of the simulation 

results. 

The simulation includes both random and deterministic 

input parameters. In contrast to deterministic analysis-which 

typically relies on fixed worst-case values-reliability analysis 

incorporates variability and uncertainty in both material 

properties and applied loads [20]. In this context, random 

variables were selected to reflect real-world variability. The 

selected random variables-compressive strength, wind speed, 

roof weight, and material density-were chosen based on their 

known practice variability and significant influence on 

structural reliability, as commonly reported in the literature 

[20]. The deterministic variables-the wall dimensions-were 

fixed to maintain a focused study scope. However, 

investigating the effect of their uncertainty would be a 

valuable direction for future research.  
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The roof weight is modeled with a normal distribution, 

having a mean of 1.5 × 10⁻³ MN/m² and a Coefficient Of 

Variation (COV) of 7%. The compressive strength is 

modeled as a lognormal distribution with a COV of 35% and 

evaluated at several values: 0.4, 0.5, 0.6, 1.0, 1.5, 2.0, and 2.5 

MPa. A Gumbel distribution represents wind speed, 

considering a peak value of 36.11 m/s and a COV of 50%. 

The density is assumed to follow a normal distribution, with 

a mean value of 1900 kg/m³ and a COV of 7%. Wall thickness 

was treated as a deterministic parameter in the analysis 

(assessed at 0.2, 0.225, 0.25, 0.3, 0.4, 0.45, and 0.5 meters), 

wall height (3 meters), wall length (4 meters), and the span 

between load-bearing walls (6 meters). 

The second phase of the methodology involves 

developing a predictive model using ANN. A dataset derived 

from the MCS results is selected, normalized, and used to 

train the network. The ANN is implemented using 

MATLAB’s Neural Network Toolbox, applying a 

feedforward architecture with a Levenberg-Marquardt 

backpropagation algorithm. An 80-10-10 split is applied to 

the dataset for training, validation, and testing. The model 

utilized the Rectified Linear Unit (ReLU) as its activation 

function, with a learning rate of 0.001 and a regularization 

parameter of 0.01. To prevent overfitting, early stopping is 

applied with patience of 6 epochs.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Methodology flowchart illustrating the three-phase process: initial setup, monte carlo simulation, and artificial neural network-based 

prediction with cross-validation 
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Several network configurations are evaluated. 

Architectures with two and three hidden layers were tested, 

with the number of neurons per layer ranging from 1 to 12 for 

the two-layer models and 1 to 15 for the three-layer models. 

Model performance is assessed based on Mean Squared Error 

(MSE) and the coefficient of determination (R²). After 

identifying the best-performing configuration, k-fold cross-

validation is conducted to ensure the robustness and 

generalization capability of the trained network. This two-

phase methodology allows the probabilistic assessment of 

structural performance and the efficient prediction of 

reliability based on input parameters. Figure 1 provides a 

visual overview of the methodological process through a 

detailed flowchart. 

3. Results  
3.1. Literature Review 

3.1.1. Structural Reliability Analysis 

Structural Reliability Analysis (SRA) involves a 

structured approach to evaluating uncertainties and 

probabilistic variables that influence structural design, 

maintenance strategies, inspections, and engineering decisions 

[34]. The main purpose of SRA is to evaluate and ensure 

structural safety by incorporating all sources of variations in 

load and resistance parameters and assessing their influence 

on the structure’s performance.  

 

 [35, 36]. This places SRA as a prominent component of 

Structural design and optimization [37], particularly in civil 

engineering, a discipline characterized by expert judgement, 

partial knowledge, and uncertain factors inherent in the 

manufacturing process and the life cycle of structures [38, 39]. 

This is particularly relevant to RE structures, making SRA a 

crucial aspect to incorporate into their analysis, especially 

given the limited research in this area. The steps of the SRA 

process are illustrated in Figure 2 based on the procedure 

presented in the study by Song and Zhang [37]. 

 

Practically, SRA aims to determine the failure probability 

[39]. However, except for certain cases, the integral for failure 

probability (defined in Equation 1) is usually analytically 

intractable, owing to the complexity embedded within the 

limit state function [40]. Consequently, developing efficient 

numerical methods for generating approximate solutions 

remains a key focus for researchers, as demonstrated in 

various studies, including those by Bucher and Bourgund [41], 

H. Xu and Rahman [42], and J. Xu and Zhu [43].  
 

𝑃𝑓 = ∫ 𝐼(𝑔(𝑥)𝑓𝑋(𝑥)𝑑𝑥
𝑥

        (1) 

Where 

 𝑋 =  [𝑋1, 𝑋2, … , 𝑋𝑑]𝑇 ∈ 𝜒 ⊂ ℝ𝑑 represent a group of 

fundamental random variables governed by a known joint 

probability density function (PDF) 𝑓𝑋(𝑥); 

 𝑥 =  [𝑥1, 𝑥2, … , 𝑥𝑑]𝑇 denotes a specific realization of X; 

 𝑔(. ) is the limit state function, commonly known as the 

performance function, defining the boundary between 

states of safety and failure and taking a value less than 

zero to indicate failure; 

 𝐼(. ) represents the failure indicator function, defined as 

𝐼(𝑔(𝑥)) = 1 if 𝑔(𝑥) < 0 (indicating failure) and 

𝐼(𝑔(𝑥)) = 0 otherwise. 

Numerical methods existing in literature are generally 

classified into five categories [44]: stochastic simulations, 

asymptotic approximations, moment-based approaches, 

probability-conservation methods and surrogate model-

assisted strategies. Stochastic simulation methods, for 

instance, include techniques such as MCS and its variants, 

while asymptotic approximation methods encompass 

approaches like the FORM and the SORM [45].  

 

On the other hand, methods of moments include, among 

others, second-moment methods, which encompass 

techniques such as the First-Order Second-Moment method 

(FOSM) and the Hasofer-Lind method [46]. Furthermore, 

probability-conservation methods feature techniques with two 

common examples: the probability density evolution method 

and the direct probability integral method [40]. Lastly, 

surrogate-assisted methods, which in the context of reliability 

analysis represent metamodels, include a variety of techniques 

and their variants, like Kriging, ANN and Support Vector 

Machines (SVM) [47]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 2 Flowchart of structural reliability analysis steps adapted from the 

study by Song and Zhang [37] 
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3.1.2. Monte Carlo Simulation 

In the present work, we direct our attention solely to the 

MCS. Initially proposed in 1949 by Metropolis and Ulam [48], 

the MCS, regardless of being recognized as a method with 

high computational cost [49], is regarded as the earliest, most 

broadly adopted, and trusted simulation technique for 

assessing the failure probability, employing random sampling 

drawn from each variable’s PDF [50].  

MCS is widely used in various disciplines, including 

environmental science [51-53], physics and astronomy [54, 

55], medicine and dentistry [56, 57] and engineering [58-60]. 

In the realm of civil engineering, MCS is employed in several 

contexts. For instance, Smakosz et al. [61] used a Monte Carlo 

simulation-based material model to analyze the fracture 

resistance of asphalt pavement layer, focusing on the 

probabilistic nature of cracking in pavement overlays. 

Similarly, Chen et al. [62] developed an efficient algorithm 

using MCS to assess the elastic buckling of corroded I-section 

steel members, addressing computational challenges in 

traditional finite element analysis. Additionally, Löfman and 

Korkiala-Tanttu [63] investigated how clay compressibility 

and over-consolidation uncertainty impact settlement 

predictions for transportation infrastructure, using both FOSM 

and MCS, ultimately concluding that MCS offers greater 

precision.  

3.1.3. Artificial Neural Networks 

ANNs are algorithmic frameworks that mimic the 

mechanisms of biological systems [64]. The foundational 

work in this field occurred in the late 19th and early 20th 

centuries [64]. Significantly, McCulloch and Pitts (1943) 

introduced the first mathematical mode of neurons to elucidate 

nerve activity, while Rosenblatt [66] presented the first actual 

ANN [22]. 

ANNs are widely applied to advance applications in both 

business and scientific domains [67]. In scientific domains, 

ANNs have found applications across various sectors, from 

aerospace and electronics to telecommunications, 

transportation, and the environment [64]. ANN-based models 

are widely used in engineering disciplines, particularly civil 

and structural engineering [68]. There have been contributions 

in different aspects, according to the study by Lagaros [68], 

such as earthquake engineering and design codes [69-71], 

structural optimization and decision making [72-74], material 

properties and performance [75-77] as well as geotechnical 

engineering [78-80]. 

3.2. Case Study 

3.2.1. Development of the Limit State Function 

Mathematical Development of the Limit State Function 

Ciancio and Augarde [18] examined two analytical 

approaches for estimating the load-bearing capacity of RE 

walls subjected to lateral wind forces, with particular 

emphasis on unreinforced cement-stabilized RE. The initial 

method relies on elastic analysis, whereas the second utilizes 

ultimate strength principles. The results suggest that elastic 

analysis can effectively estimate both the maximum wind 

pressure a rammed earth wall can endure and the point at 

which cracking is likely to begin during failure. In contrast, 

the ultimate strength analysis considerably underestimates the 

wall’s capacity to resist wind load prior to failure. 

Consequently, given the context of this study, the 

maximum wind pressure that the wall can resist, as proposed 

in their elastic analysis, is adopted to develop the limit state 

function. The former is expressed such as [18]: 

 𝑤
5𝑃𝑡+2𝑑𝑡²(𝑓𝑡+2ℎ𝛾)+2𝑡√(𝑃+𝑑𝑡𝑓𝑡)(4𝑃+𝑑𝑡(𝑓𝑡+4ℎ𝛾)

3𝑑ℎ² 𝑓𝑚𝑎𝑥

 (2) 

Where h, t and d are the height, thickness and length of 

the wall, P is the weight of the roof, 𝑓𝑡 is the tensile strength, 

and 𝛾 is the unit weight of the material. 

Consequently, the limit state function can be defined as 

follows: 

 𝑔(𝑋) = 𝑤𝑓 − 𝑤𝑓𝑚𝑎𝑥
 (3) 

Where 𝑤𝑓 denotes the applied wind pressure, and X 

represents the vector of random variables. The performance 

function 𝑔(𝑋) characterizes the system state, where 𝑔(𝑋) < 0 

indicates a safe state, 𝑔(𝑋) = 0 defines the limit state (on the 

set of failures), and      𝑔(𝑋) > 0 corresponds to failure. 

Analytical Transformation of the Limit State Function 

Tensile Strength ft: Despite the tensile strength being one 

of the most pertinent mechanical parameters in the analysis of 

rammed earth, it is often disregarded and overlooked in the 

existing literature [3]. Studies exploring the tensile strength 

concluded that it can be considered approximately 10% of its 

compressive strength [3]. This is according to the guidelines 

of the RPCTerre [30], which proposes that the tensile strength 

in the absence of experimental data is 0.1 of the compressive 

strength. Consequently, we express in this study the tensile 

strength as: 

 𝑓𝑡 = 0.1𝑓𝑐 (4) 

 

Unit Weight of Rammed Earth γ : The unit weight of 

materials is expressed in Equation 5 such as: 

 𝛾 = 𝜌 × 𝑔 (5) 
 

Where 𝜌 is the density of the material and g is the 

acceleration due to gravity (9.81 m/s²). 
 

Applied Wind Pressure wf: According to the French 

Snow and Wind Load Regulations (NV65) [33], the wind 

pressure on one of the faces of the wall is given by the 

expression in Equation 6: 
 

 𝑤𝑓 = 𝑐𝑞 (6) 
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Where q corresponds to the dynamic pressure, c 

represents the pressure coefficient. 

Building geometry, façade detailing, wind speed and 

direction, among other parameters, affect the wind pressure 

[81]. According to Ciancio and Augarde [18], the wind is 

assumed to be uniformly distributed along the height of the 

wall, overlooking both the internal negative pressure and the 

uplifting force generated by the wind. A schematic inspired by 

their study, illustrating the loading, limit conditions, and the 

expected elastic deformation pattern considered in their 

analysis, is presented in Figure 3. 

Since this study is focused on assessing the performance 

of URE under lateral wind pressure in a generalized 

framework rather than a detailed examination of a specific 

structure, the parameters influencing the pressure coefficient 

are not critical for our purposes. Consequently, this paper does 

not consider the pressure coefficient to simplify the limit state 

function. Therefore, the dynamic pressure is taken to be equal 

to the wind pressure, as defined as suggested by the NV65 [33] 

in Equation 7: 

 𝑤𝑓 = 𝑞 =
𝑤𝑠²

16.3
𝑑𝑎𝑁/𝑚² (7) 

Where  𝑤𝑠 represents the wind speed. 

 

Complete Expression of the Limit State Function 

Taking the above into account, and after verifying unit 

consistency, the limit state function is defined as follows (to 

enhance clarity and presentation, the limit state function is 

split across two lines, given the complexity of the expression): 

 

-5 -6

s c

-6

c c

w ²×10 15dPt+ 2dt ²(f + 2×10 hrg)
g(X) = -

16.3 3dh ²

2 t (3dP+ 0.1f dt)(12dP+ dt(0.1f + 4×10 hrg))
-

3dh ²

 (8) 

3.2.2. Characterization of Random Variables 

Compressive strength 𝑓𝑐 

 

 
Fig. 3 Illustration of the Elastic Analysis Setup, Indicating the 

Boundary Conditions (Left) and the Expected Elastic Deformation 

Pattern (Center), Based on the Study by Ciancio and Augarde [18] 

Compressive strength is defined as the maximum 

compression load specimens can withstand before their 

rupture, divided by the specimens’ cross-sectional area [82]. 

This mechanical property is fundamental for structural 

materials [83]. It represents the most essential and required 

mechanical characteristic for several materials, such as 

ceramic materials [84], concrete and mortar [85], as well as 

for brittle materials, including RE [3]. 

Based on the reviewed standards, normative documents, 

and building codes, the specified values for compressive 

strength of URE range from 0.4 to 2.07 MPa, as summarized 

in Table 1. For instance, the RPCTerre [30] recommends a 

minimum characteristic compressive strength of 0.5 MPa, also 

adopted by the New Zealand standard NZS 4297:1998 [86]. 

The Zimbabwean Code of Practice for RE Structures (TH03) 

[87] sets a minimum average compressive strength of 1.5 MPa 

for general cases, increasing to 2 MPa for walls with heights 

between 3 and 6 meters. Similarly, Kianfar and Toufigh [20] 

specify a minimum compressive strength of 2 MPa for URE 

with a COV of 35%. The Australian normative documents, 

Bulletin 5 [88], and HB 195-2002 [89] recommend a design 

value for characteristic compressive strength of 0.7 MPa and 

0.4-0.6 MPa, respectively. The American building code 14.7.4 

NMAC [90] sets a minimum of approximately 2.07 MPa (300 

psi) for the ultimate compressive strength of RE structures.  

To model the compressive strength of URE, the 

lognormal distribution has been identified as the most 

appropriate probabilistic representation [91]. Accordingly, 

this study will assess a range of mean compressive strengths-

0.4 MPa, 0.5 MPa, 0.6 MPa, 1 MPa, 1.5 MPa, 2 MPa and 2.5 

MPa-using a lognormal distribution to reflect the variability 

observed in practice, characterized by a COV of 35%. 

Wind Speed 𝑤𝑠 

In the study by Kianfar and Toufigh [20], wind speed is 

treated as a random variable with a maximum value of            

130 km/h and a COV of 50%. A Gumbel distribution was 

adopted to model its variability.  Costa and Beck [92] explain 

that in EN 1990:2002 (Eurocode- Basis of Structural Design) 

[93], characteristic values for climatic actions, including wind 

and snow, are defined based on a 2% annual probability of 

exceedance, which corresponds to a mean return period of 50 

years.  

In the Moroccan context, studies providing data on 

maximum wind speed are limited. One notable study by 

Nfaoui et al. [94] reported average wind speeds across various 

regions, highlighting that the Taza region and parts of the far 

south and north of Morocco experience the highest wind 

speeds. Among the regions studied, the highest wind speed 

was recorded in Dakhla, with a speed of 11.2 m/s (40.32 

km/h). Another series of studies examined wind speed patterns 

in Morocco by providing model projections. The first, 

conducted by Khokhlov and El Hadri [95], covers 2020 and 
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2050 and estimates a future maximum daily wind speed of 

11.8 m/s (42.48 km/h) near Dakhla on the Atlantic coast. The 

second study [96], focused on the Tangier region between 

2021 and 2050, projects a peak wind speed of 11 m/s (39.6 

km/h) at the Koudia El Baida station near Tetouan. 

Beyond academic studies, limited sources provide data on 

maximum wind speeds in Morocco. However, according to 

press reports, the General Directorate of Meteorology 

recorded an extreme wind speed of 115 km/h in Oujda on 

March 24th, 202. 

In aligning with the Moroccan context, this study adopts 

a maximum value of 115 km/h (31.94 m/s), assuming a 2% 

probability of exceedance and a mean return period of 50 

years. The Gumbel distribution is employed to model this 

extreme value, assuming a COV of 50%. 

The Weight of the Roof P 

For the roof dead loads, Kianfar and Toufigh [20] 

recommend a mean value of 1.5 kN/m², a COV of 7% and a 

normal distribution based on the guidelines of the Chinese 

uniform standard for building structures GJB 68-84.  Although 

studies such as Baglioni et al. [97] have explored building 

materials and multilayered RE roof systems, specific data 

regarding the density and thickness of roof layers-as well as 

the density of earth used in RE walls- remain scarce within the 

Moroccan context. This lack of localized data complicates the 

region’s accurate estimation of roof weight. Consequently, 

this study adopts the values recommended by Kianfar and 

Toufigh [20]. 

Table 1. Compressive Strength Recommendations for Rammed Earth 

as Provided in Various Technical Documents 

Country Ref. Id Type 

Compressive 

strength 

(MPa) 

Morocco  [30] RPCTerre 
Building 

code 
0.5 

Zimbabwe  [87] 

Rammed 

Earth 

Structures 

(code for 

practice 

TH03) 

Standard 1.5-2 

Australia  [88] Bulletin 5 
Normative 

document 
0.7 

Australia  [89] 
HB 195-

2002 

Normative 

document 
0.4-0.6 

New Zealand  [86] 
NZS 

4297:1998 
Standard 0.5 

USA  [90] 
14.7.4 

NMAC 

Building 

code 
2.07 

Iran  [20] - Paper 2 

 

Density ρ 

The literature reports a wide range of density values for 

URE, typically between 1750 kg/m³ to 2200 kg/m³ [3]. Based 

on the synthesis of available research, Kianfar and Toufigh 

[20] have a mean of 1900 kg/m³ and a COV of 7% and-values 

consistent with those reported in the existing literature. 

Accordingly, this study adopts the values recommended by 

[20] for modeling purposes. 

Table 2 summarises the random variables used in the 

analysis, including their probability distributions and 

corresponding statistical parameters. 

3.2.3. Specification of Other Parameters 

Thickness t 

In the case of RE structures, wall thickness is a 

fundamental factor investigated in existing technical 

documents, including standards and academic papers. The 

minimum wall thickness plays a critical role in determining 

the performance of RE walls [20].  

The study by Baglioni et al. [97] conducted a study on 

traditional buildings utilizing RE in Morocco, focusing on the 

RE buildings in the Drâa Valley. They reported that rammed 

earth buildings typically have a 45-50 cm thickness. In France, 

as reported by Bui et al. [98], a typical thickness of 50 cm is 

standard for both traditional and contemporary RE 

constructions. Reyes et al. [29],  Their study, which was 

conducted on typical earthen houses in Colombia, including 

RE, reported variations in wall thickness, ranging from 40 to 

100 cm, with a typical value of 60 cm.  In the Moroccan 

context, the RPCTerre [30] recommend a minimum thickness 

of 40 cm for bearing rammed earth walls. 

According to the several technical documents we 

reviewed, the minimum wall thickness recommended varies 

between 0.2 m and 0.457 m. The Australian standard HB 195-

2002 [89] and the study by Kianfar and Toufigh [20] provide 

a minimal wall thickness recommendation for external and 

internal RE walls. However, in this study, we will focus 

specifically on external load-bearing RE walls. The values 

specified in the technical document reviewed are presented in 

Table 3. 

Based on these considerations, this study evaluates the 

following wall thicknesses: t=0.2 m, 0.225 m, 0.25 m, 0.3 m, 

0.35m, 0.4 m, 0.45 m and 0.5 m. 

Geometric Parameters: Height h, Length d, and Wall Span 

Technical documents often link recommendations for 

maximum wall height to wall thickness. For instance, 

Thompson et al. [7] suggest a wall height of 2.4m, based on a 

commonly applied ratio of wall height to thickness 8:1, 

assuming a thickness is 0.3m. Similarly, the American 

building code 14.7.4 NMAC [90] bases its height 

recommendations on wall thickness and spectral response 

acceleration at short periods, resulting in allowable heights 
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ranging from 3 m to 3.6 m.  Other technical documents offer 

specific limits. According to NZS 4297 [86], the total height 

of an earthen wall, including the gable end, should not exceed 

6.5 m. The NBC 204:2015 [99] specifies that the floor-to-floor 

height for earthen buildings should range from 1.8 m to 2.5 m. 

In the Moroccan context, the RPCTerre [30] recommends a 

maximum height of 4 m for single-storey earthen structures. 

Baglioni et al. [97] note that traditional RE buildings in 

Morocco have floor heights varying from 2.5 m to 5 m. In 

France, El-Nabouch et al. [100] report that story heights 

average around 3 m, a value also used by Bui et al. [101] in 

their study.  

In contrast, recommendations for the length of walls are 

less common in technical documents. Among the ones 

reviewed, only a few explicitly address this dimension. HB 

195-2002 [89] and NBC 204:2015 [99] recommend maximum 

wall lengths of fifteen and ten times the wall thickness for 

unsupported walls, respectively. For supported walls, Arya 

[102] and IS 13837 [103] suggest a limit of 10 times the 

thickness, while NZS 4297 [86] allows up to 12 meters. The 

Nigerian building code NBC 10.23 [104] specifies a 

maximum unsupported wall length of 3.65 m. In France, El-

Nabouch et al. [100] RE walls typically range between 3 to 4.5 

m in length, and Bui et al. [101] modeled walls with a length 

of 3 m in their analysis.

Table 2. Selected random variables with their probability distributions and statistical parameters used in the monte carlo simulation 

Random Variable Distribution Mean value 
Maximum 

value 

Coefficient of 

variation (%) 

Standard 

deviation 

P 

(MN/m²) 
Roof Weight Normal 1.5 × 10−3 - 7 1.05 × 10−4 

𝒇𝒄 (MPa) 
Compressive 

strength 
Lognormal 

0.4 

- 35 - 

0.5 

0.6 

1 

1.5 

2 

2.5 

𝒘𝒔 (m/s) Wind speed Gumbel - 36.11 50 - 

𝝆 (kg/m3) Density Normal 1900 - 7 133 

Table 3. Summary of wall thickness recommendations in reviewed technical documents for rammed earth construction 

Country Ref. Id Type t (m) 

Morocco  [30] RPCTerre Building code 0.4 

Afghanistan  [102] GERDCRBA Normative document 0.3 

Australia  [89] HB 195-2002 Normative document 0.2 

India  [103] IS 13837:1993 Standard 0.3 

Nepal  [99] NBC 204:2015 Building code 0.4-0.45 

New Zealand  [86] NZS 4297 Standard 0.25-0.35 

USA  [90] 14.7.4 NMAC Building code 0.457 

Nigeria  [104] NBC 10.23 Building code 0.225 

Zimbabwe  [87] 
Rammed Earth 

Structures (code for 

practice TH03) 

Standard 0.3 

Iran  [20] - Paper 0.25-0.3 

Ireland/UK  [7] - Paper 0.3 

Specifications concerning the span between load-bearing 

walls are also limited across existing technical documents. 

NBC 10.23 [104] states that unsupported spans-i.e., without 

columns, beams, or intermediate supports-should not exceed 

7m. The RPCTerre [30] specifies that the span between two 

load-bearing walls must not exceed either ten times the wall’s 

thickness or the value given by 64t²/h. Several studies on RE 

structures have adopted a typical load-bearing span of 6 m 

[100, 105]. Table 4 summarizes the recommendations from 

existing technical documents for wall height, length, and span 
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between load-bearing walls, providing a clear overview of 

these specifications. Since this study focuses on evaluating the 

reliability and structural integrity of RE buildings under lateral 

wind pressure within a generalized context, recommendations 

conditional on other geometric parameters (such as height, 

span, or thickness) are not directly applicable. Therefore, a 

representative configuration is adopted to ensure the study 

remains applicable to various design scenarios while 

remaining consistent with standard practice in conventional 

residential construction and maintaining good living 

conditions.  

Accordingly, a wall height of 3 m, a length of 4 m, and a 

span of 6 m between load-bearing walls are used for the 

analysis. Table 5 regroups the final values assessed in the 

study for wall height, length, and span between load-bearing 

walls. The study also considers random variables, with 

specifications based on existing technical documents. These 

recommended ranges from the literature are used to conduct 

simulations, which are then reevaluated through a reliability-

based approach. This ensures that the dataset generated 

reflects actual, literature-supported ranges and can be used to 

train an ANN for further analysis. 

3.2.4. Target Reliability Index 

The probability of failure (𝑃𝑓) is linked to the reliability 

index (𝛽) via the Cumulative Distribution Function (CDF) of 

the standard normal distribution, such that 𝑃𝑓 = Φ(−β), 

where Φ denotes the standard normal CDF [106]. In SRA, the 

primary objective is to verify that the probability of failure 

does not exceed an acceptable limit or that the reliability index 

exceeds a specified target value [20].  

 

There are no specific recommendations in the literature 

regarding target reliability indices for RE. As a result, this 

study adopts a target reliability index of 3.8, following 

guidance provided for unreinforced masonry structures [107]. 

Additionally, in scenarios where the computed probability of 

failure is zero, a nominal value of 10−6-corresponding to a 

reliability index of approximately 5.61-is assigned to enable 

consistent graphical representation and interpretation of 

results.  
 

3.3. Application 

3.3.1. Monte Carlo Simulation 

Code Validation Process 

To validate the MCS code-developed in Python and 

executed in the PyCharm environment with 500,000 iterations 

for each combination of thickness (t) and compressive strength 

(𝑓𝑐)-Python's unit test module implements a structured three-

phase validation process. The choice of 500,000 iterations 

ensures high accuracy in the estimated results, as the literature 

suggests that simulation runs within the range of 100,000 to 

500,000 are generally sufficient to produce reliable estimates 

[108]. The validation consisted of the following steps: 

 

Phase 1: Validation of Random Variable Generators: At 

this stage, the generated values were checked to ensure they 

accurately reflected the intended statistical properties, 

aligning with the characteristics of Gumbel, normal, and 

lognormal distributions. 

 

Phase 2: Integration Testing: The complete script was 

tested by executing simulations across all combinations of 

wall thickness (t) and compressive strength (𝑓𝑐) using 1,000 

iterations to reduce computational time. The output was 

verified to confirm that the computed failure probabilities 

consistently fell within the valid range [0, 1]. 

 

Phase 3: Accuracy Testing: This phase involved 

validating the precision of the limit state function outputs by 

comparing computed results against expected analytical 

values derived directly from the limit state function. 

 

All three phases were completed, confirming the 

correctness and reliability of the code implementation. 

Results of the Simulation 

The raw results of the MCS are presented in Table 6 and 

Table 7, which report the computed values of the reliability 

index and the probability of failure, respectively, for one-

storey URE walls across varying wall thicknesses and 

compressive strengths. The reliability index results are also 

graphically represented in Figure 4 to enhance interpretation. 

 

Confidence Intervals 

In statistics, a confidence interval defines a range within 

which the actual value of an estimated parameter is likely to 

fall with a specified level of confidence [109]. In this study, 

the probability of failure is treated as a binomial proportion, 

resulting from a fixed number of independent Bernoulli trials-

each representing either failure or survival of the structure 

[110].  

 

The confidence intervals for the estimated failure 

probabilities were computed using the Wilson score interval 

method, which improves accuracy over the traditional Wald 

method-especially for rare events or small failure probabilities 

[110]. The formula used is as follows in Equation 9: 

 𝐶𝐼 =
(2𝑛𝑃𝑓+𝑧²)±𝑧√𝑧²+4𝑛𝑃𝑓(1−𝑃𝑓)

2(𝑛+𝑧²)
 (9) 

 

Where n is the number of samples (in this case, 500,000), 

Pf is the estimated probability of failure, and z denotes the z-

score associated with the selected confidence level. This study 

adopts a 95% confidence level, as it is commonly used in 

engineering applications [109]. This level implies a 5% 

chance that the actual probability of failure lies outside the 

computed interval [109]. Table 7 includes the 95% confidence 

intervals related to the probability of failure for each case. 
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Table 4. Geometric specifications-wall height, wall length, and span between load-bearing walls-from existing rammed earth technical documents 

 ID Reference Specified values 

W
a

ll
 H

ei
g

h
t 

-  [7] 2.4 

14.7.4 NMAC  [90] 3 – 3.6 

NZS 4297  [86] 6.5a) 

NBC 204:2015  [99] 2.5 

RPCTerre  [30] 4a) 

-  [97] 2.5 - 5 

-  [100] 3 

-  [101] 3 

W
a

ll
 L

en
g

th
 

HB 195-2002  [89] ≤15 t 

NBC 204:2015  [99] ≤10 t 

Arya   [102] ≤10 t 

IS 13837  [103] ≤10 t 

NZS 4297  [86] 12 

NBC 10.23  [104] 3.65 

-  [100] 3 – 4.5 

-  [101] 3 

S
p

a
n

 b
et

w
ee

n
 l

o
a

d
-

b
ea

ri
n

g
 w

a
ll

s 

NBC 10.23  [104] 7 

RPCTerre  [30] {
≤ 10 𝑡

≤ 64𝑡2/ℎ
 

-  [100] 6 

a) Represent maximum recommended limits, while the remaining values are standard recommendations provided in the respective technical documents  

Table 5. Representative wall dimensions-height, length, span, and thickness-used in the reliability analysis  

Parameters Thickness t (m) Height h (m) Length d (m) Wall Span (m) 

Assessed Values 

0.2 

3 4 6 

0.225 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 
 

Table 6. Monte carlo simulation results: reliability index values for each combination of wall thickness and compressive strength  

  Thickness t (m) 

   0.2 0.225 0.25 0.3 0.35 0.4 0.45 0.5 

C
o

m
p

re
ss

iv
e 

st
re

n
g

th
 𝒇

𝒄
 

(M
P

a
) 

0.4  2.679 2.933 3.171 3.622 3.933 4.465 5.612 5.612 

0.5  2.74 2.995 3.253 3.746 4.065 4.611 5.612 5.612 

0.6  2.818 3.069 3.337 3.781 4.132 5.612 5.612 5.612 

1  3.058 3.363 3.54 4.046 4.465 5.612 5.612 5.612 

1.5  3.287 3.568 3.757 4.224 5.612 5.612 5.612 5.612 

2  3.435 3.769 4.013 5.612 5.612 5.612 5.612 5.612 

2.5  3.626 3.921 4.107 5.612 5.612 5.612 5.612 5.612 
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Table 7. Probability of failure and 95% confidence intervals from monte carlo simulation for the wall thickness and compressive strength 

combinations assessed  

   Thickness t (m) 

   0.2 0.225 0.25 0.3 0.35 0.4 0.45 0.5 

C
o

m
p

re
ss

iv
e 

st
re

n
g

th
 𝒇

𝒄
 (

M
P

a
) 

0
.4

 

P
f 

0.3694 0.168 0.076 0.0146 0.0042 0.0004 10-6 10-6 

C
I*

  

[0.3681, 

0.3707] 

 

[0.1670, 

0.169] 

 

[0.0753, 

0.0767] 

 [0.0143, 

0.0149] 

 [0.004, 

0.0044] 

 

[0.0003483, 

0.0004594] 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 

0
.5

 

P
f 

0.3072 0.1372 0.057 0.009 0.0024 0.0002 10-6 10-6 

C
I 

 

[0.3059, 

0.3085] 

 

[0.1362, 

0.1382] 

 

[0.0564, 

0.0576] 

 [0.0087, 

0.0093] 

 [0.0023, 

0.0025] 

 

[0.0001645, 

0.0002432] 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 

0
.6

 

P
f 

0.2416 0.1074 0.0424 0.0078 0.0018 10-6 10-6 10-6 

C
I 

 

[0.2404, 

0.2428] 

 

[0.1065, 

0.1083] 

 

[0.0418, 

0.043] 

 [0.0076, 

0.008] 

 [0.0017, 

0.0019 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 

1
 

P
f 

0.1114 0.0386 0.02 0.0026 0.0004 10-6 10-6 10-6 

C
I 

 

[0.1105, 

0.1123] 

 

[0.0381, 

0.0391] 

 

[0.0196, 

0.0204] 

 [0.0025, 

0.0027] 

 

[0.0003483, 

0.0004594] 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 

1
.5

 

P
f 

0.0506 0.018 0.0086 0.0012 10-6 10-6 10-6 10-6 

C
I  [0.05, 

0.0512] 

 

[0.0176, 

0.0184] 

 

[0.0083, 

0.0089] 

 [0.0011, 

0.0013] 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 

2
 

P
f 

0.0296 0.0082 0.003 10-6 10-6 10-6 10-6 10-6 

C
I 

 

[0.0291, 

0.0301] 

 [0.008, 

0.0085] 

 

[0.0029, 

0.0032] 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 

2
.5

 

P
f 

0.0144 0.0044 0.002 10-6 10-6 10-6 10-6 10-6 

C
I 

 

[0.0141, 

0.0147] 

 

[0.0042, 

0.0046] 

 

[0.0019, 

0.0021] 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 

 [1.044×10-

7, 

9.579×10-6] 
   *Note: CI=Confidence Interval 
 

3.3.2. Artificial Neural Networks 

Rationale for Dataset Selection 

In this paper, instead of just considering random variables 

and conducting MCS, a range of values for both thickness (t) 

and compressive strength (𝑓𝑐) was considered, and several 

scenarios were given for every thickness and compressive 

strength combination. Each (t, 𝑓𝑐) pair was analyzed through 

MCS to determine its corresponding reliability index. This 

approach captures the combined effect of both parameters on 

structural reliability, enabling the ANN to learn complex 

nonlinear interactions. Given that MCS was performed for 

multiple (t, 𝑓𝑐) combinations, it was impractical to include all 

generated data points in ANN training (each MCS for (t, 𝑓𝑐) 

was 500,000 data points). Instead, a subset of scenarios was 

selected based on the following considerations: Only a few 

representative points were taken for failure cases to avoid 

redundancy while ensuring that the ANN was adequately 

trained to recognize failure conditions. In scenarios where all 

values in a given category failed (example: t=0.2 m), it was 

unnecessary to include every single case, as they all conveyed 

the same outcome. Instead, a subset of representative failure 

cases was selected to cover a range of failure conditions 

without overwhelming the dataset with repetitive information. 

The selection considered different levels of failure severity, 

ensuring the ANN could distinguish between cases far from 

meeting the reliability target and those near the transition 

zone. For transition cases, values were chosen to ensure 

coverage of intermediate reliability states. These cases are 

characterized by reliability indices that are either just below or 

slightly above the target value. By including scenarios that 

marginally fail to meet the reliability requirement and those 

that barely surpass it, the ANN gains exposure to cases where 

structural performance is uncertain or borderline. This is 

particularly important for capturing the sensitivity of the 

reliability index to changes in thickness and compressive 

strength, allowing the model to better distinguish between 

cases that are the threshold of failure and those that are 

marginally safe. 
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Fig. 4 Reliability index as a function of wall thickness for various assessed compressive strength. The plot illustrates how reliability changes with wall 

thickness, grouped by compressive strength values (TRI denotes the Target Reliability Index) 
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For success cases, two distinct categories were 

considered: 

 Partial success cases, where the reliability index surpasses 

the target value but the probability of failure is not zero 

(𝑇𝑅𝐼 = 3.8 < 𝛽 < 5.61). These cases represent 

structures that, while meeting the minimum reliability 

requirement, still carry a small probability of failure. 

 Full success cases, where the probability of failure is 

effectively 0% (𝛽 = 5.61). These cases ensure that the 

ANN learns to recognize configurations that provide 

complete structural safety. 

 

To maintain computational efficiency, rather than 

including all 500,000 iterations per scenario, a subset of 1639 

data points was extracted from each selected scenario. This 

number provides sufficient training samples from each 

scenario while avoiding excessive computational costs. The 

selection of data for training the ANN was carefully designed 

to ensure that the model effectively learns the relationship 

between the key parameters and the reliability of rammed 

earth under wind pressure. Moreover, while the selection 

process was not based on a strict mathematical formula, care 

was taken to ensure a balanced dataset that prevents the ANN 

from being biased toward a particular reliability outcome. The 

ANN is expected to learn robust decision boundaries for 

predicting reliability indices across different structural 

configurations by including a well-distributed mix of failure, 

transition, and success cases.   

Table 8 presents the input scenarios used for the ANN 

dataset, showing the wall thickness, compressive strength, and 

the associated reliability outcome (Failure or Success). 

Data Preprocessing 

Data preprocessing plays a crucial role in preparing the 

ANN model, particularly due to the differing scales of the 

input features [111]. In this case, using feature normalization 

and standardization helps ensure that machine learning models 

perform correctly while also improving the model’s training 

efficiency and accuracy [111]. Normalization and 

standardisation are critical techniques when dealing with 

algorithms sensitive to input value ranges, such as SVMs and 

neural networks. Min-max normalization and z-score 

standardization are the most widely used [112]. 

Thus, to ensure consistent scaling of input features, min-

max normalization was applied, transforming all variables to 

a range between 0 and 1 based on Equation 10 [113]: 

 𝑋𝑁 =
𝑋𝑖−𝑋𝑚𝑖𝑛

𝑋𝑚𝑖𝑛𝑚𝑎𝑥
 (10) 

Where 𝑋𝑖 is the original value of the data point before 

normalization, 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥  Are the minimum and 

maximum values in the dataset, respectively, and 𝑋𝑁 the result 

of the normalization of 𝑋𝑖, scaled to be between 0 and 1. 

Network Architecture and Training Methodology 

The ANN is implemented using a feed-forward 

backpropagation approach, with weight optimization 

performed using the Levenberg-Marquardt (LM) algorithm in 

MATLAB due to its robust neural network toolbox, which 

provides built-in functions for training, validating and testing 

neural networks. 

Feed-forward neural networks are selected due to their 

widespread use in solving complex problems [114]. Their 

popularity stems from their ability to approximate nonlinear 

functions effectively, making them particularly suited for 

reliability analysis and regression tasks.  

The backpropagation algorithm is employed as the 

learning rule, where the error signal-defined as the difference 

between the predicted and actual output- is propagated in 

reverse through the network to update the weights from the 

output to the input via the hidden layers [115].  

This iterative process ensures the model progressively 

improves its predictive accuracy by adjusting the network 

parameters at each step [115]. 

The Levenberg-Marquardt (LM) algorithm is chosen for 

optimisation due to its suitability for nonlinear regression 

tasks. Initially developed in the early 1960s to solve nonlinear 

least square problems [116], LM is one of the most widely 

used optimization algorithms [117].  

The dataset is split into 80% training, 10% validation and 

10% testing subsets. 

Hyperparameter Optimization 

To determine the optimal ANN configuration, several 

hyperparameters were systematically varied. 

Table 8. Selected Input Scenarios for ANN Modeling, 

Representing Both Failure and Success Outcomes Across Wall 

Thicknesses and Compressive Strengths 

Thickness t 

(m) 

Compressive 

Strength 𝒇𝒄 

(MPa) 

State 

0.2 0.4 Failure 

0.2 0.5 Failure 

0.225 0.5 Failure 

0.25 0.6 Failure 

0.25 1 Failure 

0.3 0.6 Failure 

0.3 1 Success 

0.35 1 Success 

0.4 1 Success 

0.45 1.5 Success 

0.45 2 Success 

0.5 2.5 Success 
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 Activation function: Different transfer functions were 

tested, including the Sigmoid and Tangential Sigmoid 

Function (tansig), and the Rectified Linear Unit (ReLU) 

provided the best performance. 

 Learning rate: A learning rate of 0.001 was found to  

 offer the best balance between convergence speed and 

stability. 

 Early stopping: Early stopping with patience of 6 epochs 

was applied to prevent overfitting. 

 Regularization: A regularization parameter 0.01 was used 

after testing different values to improve generalisation 

and reduce overfitting during training. 

 Number of hidden layers and neurons: The study varied 

the number of hidden layers from two to three to 

investigate their effect on the model’s efficiency. The 

number of neurons per layer was extensively tested, and 

the final configurations are summarized in Table 9 for two 

hidden layers and Table 10 for three hidden layers. 

 

The final MATLAB script, shown in Figure 5, illustrates 

the implementation of this procedure.  

Performance Evaluation and Model Comparison 

Two metrics were used to evaluate the performance of the 

various ANN configurations tested in this study: The Mean 

Squared Error (MSE) and the Coefficient of Determination 

(R²). These metrics were calculated for each configuration to 

assess prediction accuracy and goodness of fit. The results are 

summarized in Table 9 and Table 10 for networks with two 

and three hidden layers, respectively. In addition, Figures 6 

and Figure 7 visualize the performance of each configuration 

in terms of MSE and R², respectively, with each point 

representing a distinct ANN architecture. This graphical 

representation directly compares how different network 

structures perform for error minimization and predictive 

strength. 

3.3.3. Cross-Validation and Model Robustness  

Based on the results presented in Table 9, Table 10, 

Figure 6 and Figure 7, the ANN configuration that yielded the 

best performance was Net311 (architecture presented in 

Figure 8), which consists of three hidden layers, with the first 

layer containing 11 neurons, the second layer with 12 neurons, 

and the third layer with 13 neurons. 

% Loading the dataset 
input = inptest;  % Input features 
target = targtest; % Target labels 
% Creating and configurating the network 
% Feedforward neural network with two hidden layers, using Levenberg-Marquardt as a training algorithm: 
% the first layer has 1 neuron, and the second has 2 neurons. 
nettest = feedforwardnet( [1 2], 'trainlm'); 
net.performParam.regularization = 0.01;  % % Applying L2 regularization to reduce overfitting 
% Setting ReLU activation function for the hidden layers 
net.layers{1}.transferFcn='poslin'; 
net.layers{2}.transferFcn='poslin'; 
% Setting training parameters 
net.trainParam.lr = 0.001; % Learning rate 
net.trainParam.epochs = 2000; % Max epochs 
net.trainParam.goal = 1e-6; % MSE goal 
net.trainParam.max_fail = 6; % Early stopping (6 validation failures) 
% Setting Mean Squared Error (MSE) as the loss function 
net.performFcn = 'mse'; 
% Setting data division 
net.divideFcn = 'dividerand'; 
net.divideParam.trainRatio = 0.8;  % 80% of the dataset for training 
net.divideParam.valRatio = 0.1;  % 10% of the dataset for validation 
net.divideParam.testRatio = 0.1;  %10% of the dataset for testing 
% Training the network 
 [nettest, tr] = train(nettest, input, target); 
% Predicting outputs using the trained network 
y_pred = nettest(input); 
% Computing Mean Squared Error (MSE) to evaluate prediction accuracy 
mse_value = perform(nettest, target, y_pred); 
fprintf('Mean Squared Error (MSE): %.6f\n', mse_value); 
% Computing R² (Coefficient of Determination) 
SStot = sum((target - mean(target)).^2);  % Total sum of squares 
SSres = sum((target - y_pred).^2);       % Residual sum of squares 
R_squared = 1 - (SSres / SStot);         % Compute R² 
fprintf('Coefficient of Determination (R²): %.6f\n', R_squared);

Fig. 5 MATLAB Script for ANN Implementation, Showing Key Hyperparameter Settings, Training Process, and Performance Metrics 

 

Although this model demonstrates the highest 

performance among the configurations tested, assessing its 

stability after training remains crucial. This step ensures that 

the model effectively learns the underlying data patterns 

without overfitting and can maintain reliable predictive 

accuracy when applied to independent, previously unseen data 

during deployment [118].  

In this context, cross-validation is used as a resampling 

technique of the most widely adopted approaches for 
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evaluating machine learning models to provide an unbiased 

estimate of model performance on unseen data [119, 120].   

Table 9. ANN configurations with two hidden layers and corresponding 

performance metrics 

Hidden 

Layers 

Number 

of neurons 
ID MSE R² 

T
w

o
 

 [1 2]* Net21 0.028135 0.824212 

 [2 3] Net22 0.023788 0.851372 

 [3 4] Net23 0.023836 0.851074 

 [4 5] Net24 0.023894 0.850709 

 [5 6] Net25 0.02467 0.845864 

 [6 7] Net26 0.024008 0.850002 

 [7 8] Net27 0.0239 0.850672 

 [8 9] Net28 0.02431 0.848112 

 [9 10] Net29 0.023929 0.850495 

 [10 11] Net210 0.025002 0.84790 

 [11 12] Net211 0.023531 0.852983 
* [i j] Denotes the number of neurons in the first (i) and second (j) hidden 

layers, respectively 

Specifically, k-fold cross-validation with k=10 is 

performed in this study, as it is considered a sensible choice 

that provides an almost unbiased estimate of prediction error 

[120]. K-fold cross-validation works by splitting the dataset 

into k random subsets. Each subset is used as the validation 

set once while the other k-1 subsets form the training set, and 

this cycle repeats k times [119].  

Table 11 presents the results of the 10-fold cross-

validation, including the MSE and the R² for each fold, along 

with the mean and standard deviation values for both metrics. 

The MATLAB script used to implement this cross-validation 

procedure is shown in Figure 9. 

Table 10. ANN configurations with three hidden layers and 

corresponding performance metrics 

Hidden 

Layers 

Number 

of neurons 
ID MSE R² 

T
h

re
e
 

 [1 2 3]* Net31 0.028646 0.821025 

 [2 3 4] Net32 0.027832 0.826107 

 [3 4 5] Net33 0.023494 0.853208 

 [4 5 6] Net34 0.023891 0.850734 

 [5 6 7] Net35 0.02396 0.850298 

 [6 7 8] Net36 0.024204 0.848776 

 [7 8 9] Net37 0.023518 0.853062 

 [8 9 10] Net38 0.023583 0.852657 

 [9 10 11] Net39 0.024023 0.849904 

 [10 11 12] Net310 0.024966 0.844016 

 [11 12 13] Net311 0.023462 0.853408 

 [12 13 14] Net312 0.023753 0.851594 

 [13 14 15] Net313 0.02451 0.846866 

* [i j k] Denotes the number of neurons in the first (i), second (j) and third (k) 
hidden layers, respectively 

 

 

Fig. 6 Mean Squared Error (MSE) across different ANN configurations, highlighting model performance sensitivity to architecture variations
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Fig. 7 Coefficient of determination (R²) across ANN configurations, indicating the predictive accuracy of each model architecture 

 

 
 Fig. 8 Architecture of the best-performing neural network during training (net311), highlighting the three hidden layers with 11, 12 and 13 

neurons respectively 

 
Table 11. 10-Fold Cross-Validation Results: MSE and R² per Fold with Corresponding Mean and Standard Deviation 

 MSE R² 

Fold 1 0.028644 0.84603 

Fold 2 0.027158 0.863122 

Fold 3 0.037357 0.790097 

Fold 4 0.03205 0.825052 

Fold 5 0.03568 0.810011 

Fold 6 0.033048 0.796914 

Fold 7 0.035155 0.80964 

Fold 8 0.02721 0.841083 

Fold 9 0.034457 0.807754 

Fold 10 0.030231 0.804821 

Mean Value 0.032099 0.819452 

Standard 

Deviation 
0.003652 0.023614 
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k = 10; % Defining number of folds for k-fold cross-validation 
N = size(inptest, 2); % Getting the number of samples in the dataset 
cv = cvpartition(N, 'KFold', k); % Creating cross-validation partition with k folds 
% Initializing arrays to store MSE and R² values 
mse_values = zeros(k, 1); 
r2_values = zeros(k, 1); 
 
for i = 1:k 
    % Extracting training and testing indices for the current fold 
    trainIdx = training(cv, i); 
    testIdx = test(cv, i); 
 
    % Creating training and testing input/target sets for this fold 
    inTrain = inptest(:, trainIdx); 
    targTrain = targtest(:, trainIdx); 
 
    inTest = inptest(:, testIdx); 
    targTest = targtest(:, testIdx); 
 
    % Initializing and training the feedforward neural network 
    net = feedforwardnet( [1 2], 'trainlm'); % Example architecture 
    net.performParam.regularization = 0.01;  % Applying L2 regularization 
    net = train(net, inTrain, targTrain); 
 
    % Predicting and evaluating performance 
    y_pred = net(inTest); 
 
    % Calculating Mean Squared Error (MSE) 
    mse_value = perform(net, targTest, y_pred); 
    mse_values(i) = mse_value;  % Storing MSE for the current fold 
 
    % Calculating R² (coefficient of determination) 
    ss_total = sum((targTest - mean(targTest)).^2);  % Total sum of squares 
    ss_residual = sum((targTest - y_pred).^2);  % Residual sum of squares 
    r2_value = 1 - (ss_residual / ss_total);  % R² formula 
    r2_values(i) = r2_value;  % Store R² for the current fold 
 
    % Displaying results for the current fold 
    fprintf('Fold %d - MSE: %.6f, R²: %.6f\n', i, mse_value, r2_value); 
end 
 
% Calculating the mean and standard deviation of MSE and R² 
mean_mse = mean(mse_values); 
std_mse = std(mse_values); 
mean_r2 = mean(r2_values); 
std_r2 = std(r2_values); 
% Displaying average performance metrics across all fold 
fprintf('\nOverall Performance:\n'); 
fprintf('Mean MSE: %.6f, Std MSE: %.6f\n', mean_mse, std_mse); 
fprintf('Mean R²: %.6f, Std R²: %.6f\n', mean_r2, std_r2); 

Fig. 9 MATLAB script for 10-fold cross-validation showing data splitting, network training, and performance evaluation using MSe and R² 

 

4. Discussion 
4.1.  Monte Carlo Simulation 

Based on the results illustrated in Figure 4, an increase in 

wall thickness and compressive strength leads to higher 

reliability index values. The behavior across different 

thicknesses can be summarized as follows: 

 t = 0.20 m: The target reliability index is not reached for 

any of the compressive strengths evaluated (up to 2.5 

MPa), indicating that this thickness requires higher 

compressive strength values than those tested. Therefore, 

it is not recommended under the conditions of this study. 

 t = 0.225 m: The target reliability index is just barely met 

at 𝑓𝑐 = 2 𝑀𝑃𝑎 and exceeded at 𝑓𝑐 = 2.5 𝑀𝑃𝑎. This 

makes it a borderline option, suitable only when high 

compressive strength is ensured. 

 t = 0.25 m: The target reliability index is achieved starting 

from 𝑓𝑐 = 2 𝑀𝑃𝑎, indicating better performance and 

reliability. 

 t = 0.30 m: The reliability index surpasses the target 

reliability index for all compressive strengths starting 

from 1 MPa, showing a robust and safe configuration. 

 t = 0.35 m and above: The target reliability index is 

consistently met and exceeded for all evaluated 

compressive strength values, making this the safest and 

most reliable choice within the tested range. 
 

In conclusion, a minimum wall thickness of 0.35 m is 

recommended to ensure structural reliability without 

depending on extremely high compressive strength. 

Conversely, thinner walls such as 0.20 m are not advisable 

unless higher compressive strengths (beyond 2.5 MPa) can be 

guaranteed. 
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To clarify these findings, Table 12 summarizes the 

minimum compressive strength values required to reach the 

target reliability index for each wall thickness evaluated in the 

context of this study, which can serve as a guide to optimize 

material use while maintaining structural reliability. 

Additionally, the computed 95% confidence intervals for the 

probability of failure values are consistently narrow across all 

compressive strength and wall thickness combinations.  

This narrowness indicates high statistical confidence in 

the simulation outcomes, reflecting the stability of the MCS 

due to the large number of iterations (500,000). For instance, 

for a probability of failure as high as 0.3694, the interval is 

only ±0.0013, while even for rare failure probabilities such as 

0.000001, the interval remains tightly bound between 

approximately 1×10-7 and 9.6×10-6.  

This consistency suggests that the failure probabilities are 

well-converged and the simulation results are reliable. 

Therefore, these confidence intervals reinforce the credibility 

of the structural reliability estimates derived from the MCS. 

4.2. Artificial Neural Networks and Cross-Validation 

As shown in the results, after conducting MCS, ANN was 

performed to develop a model that can predict the reliability 

index of URE under wind pressure in the scope of 

recommendations existing in current technical documents. 

The results of ANN in both Table 9 and Table 10 and their 

representation in Figure 6 and Figure 7 showed that Net311 

represented the best results based on the metrics studied (MSE 

and R²).  

Furthermore, the k-fold cross-validation method was used 

to validate the model.  The ANN model demonstrated a strong 

predictive capability during training, with R²=0.853408, 

meaning the model explains 85% of the data and 

MSE=0.023462, close to 0. This indicates that the network 

successfully captured the underlying relationships between 

the input and output variables.  

The performance plot (Figure 10) shows that the best 

validation performance was achieved at epoch 10, beyond 

which the validation error increased while the training error 

continued to decrease. This suggests that early stopping was 

effectively applied to prevent overfitting, ensuring good 

generalization.  

Furthermore, the regression plots for training (Figure 11), 

validation, and test sets all reveal strong linear relationships 

with correlation coefficients above 0.9. The closeness of 

predicted outputs to actual targets across all datasets confirms 

the ANN model's ability to predict the reliability index 

reliably. These results validate the robustness and predictive 

power of the selected ANN configuration. The cross-

validation results (R²=0.819452 and MSE=0.032099) showed 

a slight reduction in performance compared to the training 

phase.  

This decline reflects the natural challenge of generalizing 

beyond the data the model was initially trained on. Notably, 

the relatively low value of standard deviation for both MSE 

and R² (respectively 0.03652 and 0.023614) indicates the 

consistency of the performance across all folds and suggests 

that the model is stable and not only sensitive to the particular 

data subset it is trained (Table 11).  

Moreover, the R² values remained relatively high 

throughout cross-validation (Table 11), indicating that the 

model consistently explained a significant proportion of the 

variance (more than 79%) in the output variable, even across 

different validation sets. The model error remained within a 

tight range, confirming its predictive reliability.   

Overall, the cross-validation process reinforces the 

quality of the chosen ANN configuration. The slight 

discrepancy between training and validation performance is a 

normal and desirable outcome, confirming that the model is 

learning the general patterns in the data rather than simply 

memorizing them. This provides strong support for the 

suitability of the final model architecture.  

Table 12. Recommended Minimum Compressive Strengths to Achieve Target Reliability Index for Varying Wall Thicknesses, Based on Simulation 

Results 

 Values of thickness assessed (m) 

 0.2 0.225 0.25 0.3 0.35 0.4 0.45 0.5 

Minimal 

compressive 

strength 

recommended 

(MPa) 

-* 2.5 2 1 0.5 0.5 0.5 0.5 

                      *This value is not recommended in the context of this study 
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Fig. 10 Model performance evaluation based on Mean Squared Error (MSE) during training, showing best validation performance at epoch 10 

 

 
 Fig. 11 Regression performance of the ANN model across training, validation, and test sets 
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5. Conclusion 
This study applied MCS and ANN to assess the reliability 

of URE structures under lateral wind forces. The MCS was 

conducted to generate a robust dataset for training the ANN 

model while also performing a reliability analysis of the 

structure’s performance under varying conditions. The 

analysis was based on a limit state function derived from the 

elastic analysis in the study by Ciandio and Augarde [18] and 

the French Snow and Wind Load Regulations (NV65) [33]. 

The simulation included many iterations to incorporate 

randomness in key variables such as compressive strength, 

wall thickness, wind speed, and other relevant factors. To 

enhance the credibility of the probabilistic outcomes, 95% 

confidence intervals were calculated for each estimated 

probability of failure using the Wilson score method; the 

consistently narrow bounds confirmed the statistical stability 

of the results. The MCS results indicated that a wall thickness 

of 0.2 m was insufficient for the range of compressive 

strengths assessed, with the minimum thickness of 0.35 m 

ensuring safety across all compressive strength values 

considered. These findings are crucial for establishing 

practical design recommendations for URE under wind load 

conditions. 

The ANN model, developed using the dataset generated 

from the MCS, showed strong performance in predicting the 

structural reliability of URE under lateral wind forces. The 

model demonstrated good convergence with an MSE of 0.023 

and an R² value of 0.853, indicating its ability to learn the 

complex relationships in the data. Further evaluation using 10-

fold cross-validation confirmed the robustness and 

generalizability of the model, with only a slight increase in 

MSE and a modest reduction in R², demonstrating the model's 

stability and accuracy across different data subsets. 

The findings of this study offer practical guidance for the 

design of URE structures under wind loads. The probabilistic 

analysis provides minimum compressive strength 

requirements for different wall thicknesses, allowing 

engineers to make informed design decisions with a 

quantifiable safety margin. An ANN model also enables rapid 

reliability assessment without requiring full-scale simulations, 

supporting efficient design iteration. Incorporating these 

results into design guidelines or performance-based codes 

could improve URE’s structural safety and acceptance in 

modern construction. 

In this study, the limit state function was primarily based 

on the elastic analysis outlined in the work of Ciancio and 

Augarde [18], along with the NV65 [33] regulations. 

However, alternative methods for developing the limit state 

function could provide additional insights, particularly by 

directly incorporating tensile strength values where 

experimental data is available. Expanding the analysis to 

consider a broader range of wall dimensions, including length, 

height, and span variations between load-bearing walls, could 

further enhance the understanding of URE’s structural 

performance under lateral wind forces. 

Future research could also consider a broader set of 

compressive strengths and thickness values to extend the 

applicability of the findings to different structural 

configurations. Moreover, testing different ANN architectures 

and exploring alternative hyperparameter optimization 

methods may improve the model's predictive accuracy. 

Finally, considering the combined impact of wind forces and 

seismic loads on URE structures and validating the model with 

experimental data would provide a more comprehensive 

understanding of the performance and reliability of URE 

under various loading conditions. 
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