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Abstract - This research explores the application of Random Forest (RF) and Artificial Neural Networks (ANN) to determine the 

most effective method for predicting the displacement of ground-floor structures subjected to various seismic excitations, 

modeled using the Newmark-Beta method. The introduction first presents the Random Forest algorithm, which uses bagging 

(bootstrap aggregation) combined with variance-based splitting. Then, we introduce Artificial Neural Networks, detailing their 

structure and training steps. This is followed by a presentation of the Newmark-Beta method, which is used to compute the 

seismic response of the structures. In the results section, we analyze the range of variation in input parameters and the 

corresponding displacement outputs at the ground floor. Next, we apply both the Random Forest and ANN models using the 

results generated by the Newmark-Beta method. In the discussion, we compare the performance of both models using the Mean 

Squared Error (MSE). We also examine the sensitivity and non-linearity of each model to assess which method—Random Forest 

or ANN—provides more accurate predictions. Finally, we compare our results with similar studies in the literature and highlight 

our contribution as well as future research perspectives. 

 

Keywords - Seismic Displacements, Newmark-Beta Method, Random Forest, Artificial Neural Network, Predictive Modeling. 

 

1. Introduction  
1.1. Presentation of Earthquakes 

Earthquakes are natural phenomena resulting from a 

sudden release of energy in the Earth's crust, generating 

seismic waves perceptible at the surface [1]. Understanding 

seismic processes and the resulting deformations is essential 

for assessing seismic risks in vulnerable areas [2]. The 

complexity of tectonic interactions, combined with local 

characteristics of the soil and urban structures, makes 

predicting the impacts of an earthquake particularly 

challenging [3].  

 

Recent studies, such as that of Portillo & Moya [4], have 

highlighted that rapid urbanization without consideration of 

seismic risk can aggravate the consequences of seismic events. 

Furthermore, the analysis of spatio-temporal distribution 

patterns of earthquakes not only allows for the identification 

of risk areas, but also for the improvement of early warning 

systems and urban planning [5]. These efforts converge 

towards better management of natural disasters and a 

reduction of human and economic losses on a global scale.  

However, for seismic analysis to be truly effective in 

disaster prevention and management, it must rely on precise 

and efficient digital tools capable of faithfully simulating the 

dynamic responses of structures subjected to seismic stress. 

This research, entitled Intelligent Prediction of Seismic 

Displacements Computed Using the Newmark-Beta Method: 

A Comparison Between Random Forests and Artificial Neural 

Networks, aims to improve the accuracy of seismic 

predictions using artificial intelligence.  

 

However, the Newmark-Beta method still has several 

shortcomings in terms of 

 Dependence on numerical parameters (β, γ) and data 

quality-The stability and accuracy of the Newmark Beta 

method are very sensitive to the choice of β and γ, as well 

as to the quality of the input data (acceleration, damping, 

mass). For example, Takács & Fülöp [6] demonstrate that 

compensation terms applied to modified matrices (mass, 

stiffness, damping) can improve accuracy, thus revealing 

the limitations of the original scheme without such 

adjustments. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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 High computational time for complex structures-

Applying Newmark Beta to complex structural systems 

(high degrees of freedom, nonlinear phenomena) is time-

consuming. The study by Takács & Fülöp [6] highlights 

the increased computational cost and the loss of the sparse 

structure of matrices with more accurate compensated 

methods. 

 Few studies combine Newmark-Beta and artificial 

intelligence; the use of Artificial Intelligence to directly 

predict Newmark-calculated movements is rare. One 

notable study by Wang et al [7] applies XGBoost to 

predict these movements, but neural networks and 

random forests remain largely underexplored. 

 There is a lack of comparisons between different AI 

models for this type of problem. One study proposes an 

ANN (neural network) model for Newmark movement 

prediction [9], but it does not directly compare its 

performance to that of random forests or XGBoost. The 

lack of detailed comparative analyses between AI models 

limits our understanding of their specific advantages and 

disadvantages. 

1.2. Novelty of This Research 

This analysis highlights a real scientific interest in an in-

depth comparative study on the use of Random Forest and 

neural networks in predicting Newmark-Beta movements: it 

will fill a methodological gap and potentially improve 

prediction performance in a practical setting. 

1. Sequential Use of Newmark-Beta and Artificial Intelligence 

- The idea of using the results calculated by Newmark-Beta as 

a learning database to train AI models is an innovative hybrid 

approach. This allows:  

 To preserve the rigor of the physical model,  

 While accelerating future predictions by eliminating the 

need for cumbersome simulations. 

2. Direct Comparison between RF and ANN- An explicit 

comparison between two AI algorithms—Random Forest and 

Artificial Neural Networks—applied to Newmark movement 

prediction represents a gap in the current literature. This 

comparison will allow: 

 To identify the most suitable algorithm in different 

contexts (quantity of data, noise, complexity), 

 To assess the robustness, accuracy, and generalizability 

of the models. 
 

3. Contribution over existing approaches  

 The majority of existing work is limited to a single 

algorithm (often XGBoost or ANN) without comparative 

evaluation.  

 This approach proposes a complete and scalable 

architecture, combining deterministic methods 

(Newmark-Beta) and machine learning, with comparative 

and quantitative analysis.  

 It can result in a fast, economically and time-efficient 

prediction tool for engineers. 

In this context, we propose to explore the effectiveness of 

two artificial intelligence approaches: Artificial Neural 

Networks (ANN) and random forests. These algorithms will 

be applied to estimate the structural displacement induced by 

seismic excitations, based on the results provided by the 

Newmark-β numerical method, commonly used for the time 

integration of the equations of motion in the dynamic analysis 

of structures.  

The objective of this study is to compare the predictive 

capacity of these two machine learning models, with a view to 

identifying the one offering the best accuracy and robustness 

in the context of seismic engineering. 

1.3. Organization of the Paper 

This paper is organized as shown in the Figure 1. 

 

2. Methods  
2.1. Random Forest  

Random Forest is a machine learning algorithm based on 

an ensemble of decision trees, which improves the accuracy of 

predictions by combining the results of multiple trees built on 

random subsamples of the data [9]. Zeini et al. [10] applied 

the Random Forest algorithm for the strength prediction of 

geopolymer-stabilized clayey soil. Singh et al. [11] utilized 

Random Forest in combination with the M5P model tree 

approach to estimate the compressive strength of high-

strength concrete.  

 

Kumar et al. [12], conducted a comparative study 

between Random Forest, CART, and MLR-based predictive 

models for the unconfined compressive strength of cement-

reinforced clayey soil. Aminpour et al. [13] applied Random 

Forest in a comparative study with other machine learning 

methods for slope stability prediction on spatially variable 

random fields. Geng et al. [14] used a Kriging–Random Forest 

hybrid model for real-time ground property prediction during 

earth pressure balance shield tunneling. Kaveh et al. [15], 

conducted an experimental study and developed a machine 

learning model using a Random Forest classifier for predicting 

the shear strength of RC beams with externally bonded GFRP 

composites.  

 

Yang et al. [16] developed hybrid Random Forest-based 

models to predict ground settlement induced by earth pressure 

balance tunneling. Li et al. [17], conducted research on the 

application of the Random Forest algorithm for estimating the 

dynamic mechanical behavior of reinforced concrete column 

members. Dabous et al. [18] used a case-based reasoning and 

Random Forest framework to select preventive maintenance 

strategies for flexible pavement sections. 

 



Mouna EL Mkhalet & Nouzha Lamdouar / IJCE, 12(7), 145-158, 2025 

 

147 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Methodolgy conducted in our research 

 
 

Over the past five years, the Random Forest (RF) 

algorithm has been widely used in earthquake engineering for 

various applications ranging from event detection to structural 

damage prediction. Ao et al [19] used an improved random 

forest algorithm to identify channel sand-body from multiple 

seismic attributes. The Random Forest algorithm was applied 

to automatically classify seismic signals into landslides, 

earthquakes or background noise, based on their temporal and 

frequency characteristics extracted from 642 recordings Lin et 

al [20]. The study conducted by Shi et al [21], using the 

Random Forest algorithm, demonstrates that a model based on 

distances and azimuths between the epicenter and the sites 

predicts co-seismic landslides more effectively than 

traditional PGA-based models, while being more accessible, 

faster to implement, and better suited to near-real-time and 

high spatial resolution applications. In their study, Kim et al 

[22] applied five machine learning-based prediction methods, 

highlighting the Random-Forest algorithm for tsunami 

prediction from seismic data. The results obtained indicate 

that Random Forest performs satisfactorily, compared to the 

XGBoost algorithm." 

 

According to Breiman [6], we present the steps of the 

algorithm that we will use   

 

Step 1. Bootstrap Sampling (Bagging) 
From a training dataset,𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1

𝑁 generate B 

bootstrap samples: 

𝐷(𝑏) = {(𝑥𝑖
(𝑏)

, 𝑦𝑖
(𝑏)

)}𝑖=1
𝑁 ,  for 𝑏 = 1,2, . . . , 𝐵         (1)   

 

 

Each D(b) is sampled with replacement from D. 

 

Step 2. Grow a Decision Tree on Each Bootstrap Sample 

At each node of the tree, choose a feature Xj and a 

threshold that minimizes the weighted variance of the target 

variable after the split. 

 

Variance Reduction Criterion: 

 

Varsplit =
𝑛𝐿

𝑛
⋅ Var(𝑌𝐿) +

𝑛𝑅

𝑛
⋅ Var(𝑌𝑅)                 (2) 

Where: 

 nL, nR are the number of samples in the left and right 

child nodes, 

 YL, YR are the response values in the left and right 

nodes, 

 Var(Y)  is the sample variance: 

 

We choose the split that results in the lowest Varsplit 
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Step 3. Repeat for All Trees 

Train B separate regression trees: 
 

𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝐵(𝑥) 

Each tree is trained independently on a different 

bootstrap sample. 

Step 4. Aggregate Predictions (Ensemble Averaging) 

For a new input x, the final prediction is the average of 

the predictions of all B trees: 

�̂� =
1

𝐵
∑ 𝑇𝑏

𝐵
𝑏=1 (𝑥)              (3) 

 

This aggregation step reduces variance and improves 

generalization. 

Table 1 below shows the advantages and disadvantages 

of Random Forest.

Table 1. Advantages and disadvantages of random forest  

Type Element Description  Reference 

A
d

v
a

n
ta

g
es

 

High Accuracy 
Multiple decision trees reduce prediction 

variance, leading to higher overall accuracy. 
Biau & Scornet [23], 

Robust to Noise and Outliers 
Random Forest minimizes the impact of 

outliers by averaging over many trees. 
Marimuthu & Saroja 

[24] 

 Handles Missing Data 
The algorithm is capable of dealing with 

missing data through bootstrap sampling. 

Variable Importance Estimation 
It calculates the importance of each feature 

based on impurity reduction or variance. 
Berk [25] 

High-Dimensional Data 

Handling 

Effective for large datasets with many 

variables, even when the number of 

observations is smaller. 

Biau & Scornet [23] 

D
is

a
d

v
a

n
ta

g
es

 

Complexity and Limited 

Interpretability 

Random Forest is often seen as a "black box", 

making it difficult to interpret individual tree 

decisions. 
Louppe [26] 

Sensitive to Hyperparameters 

Performance can be highly dependent on 

hyperparameter optimization, such as tree 

depth or the number of trees. 

Zhu [27], 

High Computational Cost 

Training many trees requires considerable 

memory and time, especially with large 

datasets. Marimuthu & Saroja 

[24] 

Not Ideal for Time Series Data 

Random Forest does not consider temporal 

dependencies, which makes it less suitable for 

time series tasks. 

Less Effective for Imbalanced 

Data 

Random Forest struggles with imbalanced 

datasets unless techniques like resampling are 

applied. 
Zhu [27] 

2.2. Artificial Neural Network  

An Artificial Neural Network (ANN), a subset of machine 

learning, acts as the core framework for deep learning 

techniques. It functions in a manner akin to neurons in the 

human brain, handling data effectively [28]. According to [29] 

[30], Artificial neural network architecture (ANN i-h1-h2-hn-

o).  

 

Bao et al.[31] a deep transfer learning network was 

applied for structural condition identification with limited 

real-world training data. Muhammad [32] applied ensemble 

models and neural networks for an improved prediction of 

high-performance concrete compressive strength. Sahin et al 

[33] researched Towards a Hybrid Digital Twin: Physics-

Informed Neural Networks as Surrogate Model of a 

Reinforced Concrete Beam. Nabizadeh et al [34] used 

artificial neural networks and machine learning models for 

predicting the lateral cyclic response of post-tensioned base 

rocking steel bridge piers. 

Soleimani and Liu [35] developed a probabilistic seismic 

demand model for bridge components using Artificial Neural 

Networks (ANNs), improving prediction over traditional 

methods. Moseley et al [36] designed a deep neural network 

inspired by waveNet capable of rapidly simulating the 

behavior of seismic waves in layered media. Conte et al [37] 

used a backpropagation neural network to model the seismic 

response of multistory buildings, demonstrating the network's 

ability to learn elastic dynamic behaviors. Figure 2 below 

presents the design of the ANN architecture. The design of an 

ANN architecture entails specifying the number of input and 

output units, the number of hidden neurons, and the depth of 

hidden layers. 
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Fig. 2 The design of an ANN architecture [29] [30] 

According to Rumelhart et al [38], Goodfellow et al [39] 

and LeCun et al. [40] we present the steps of the calculation 

of weight in ANN. In each layer, a neuron performs a 

weighted sum of its inputs, applies an activation function, and 

transmits the result to the next layer. 

Step 1. Weight Calculation in Each Layer 

Weights between the input layer and the first hidden layer 

𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛] (inputs) 

𝑊(1) (weight matrix of the first hidden layer) 

𝑏(1) (bias) 

𝑍(1) = 𝑊(1)𝑋 + 𝑏(1) 

Activation Function Applied to the First Hidden Layer 

𝐴(1) = 𝑓(𝑍(1)) (2)  

 

Step 2. Weights between hidden layers 

If a hidden layer has outputs A(L) and is connected to the 

next layer with weights W(l+1), then the weighted sum for the 

next layer is: 

Weighted Sum in a Hidden Layer 

𝑍(𝑙+1) = 𝑊(𝑙+1)𝐴(𝑙) + 𝑏(𝑙+1) (3)  

 

Activation Function Applied to a Hidden Layer 

𝐴(𝑙+1) = 𝑓(𝑍(𝑙+1)) (4)  

 

Step 3. Weighted Sum in the Output Layer 

If the last hidden layer has outputs A(L) and the output 

layer has weights W(out) and bias b(out), then: 

𝑍(𝑜𝑢𝑡) = 𝑊(𝑜𝑢𝑡)𝐴(𝐿)

+ 𝑏(𝑜𝑢𝑡) 

(5)  

 

Output Activation Function 

�̂� = 𝑓𝑜𝑢𝑡(𝑍(𝑜𝑢𝑡)) 
 

𝑓𝑜𝑢𝑡   is typically Softmax for classification and identity for 

regression. 

 

Step 4. Weight Update 

Weights are adjusted using gradient descent: 

𝑊(𝑙) ← 𝑊(𝑙) − 𝜂
𝜕𝐿

𝜕𝑊(𝑙)
 

(6)  

 

 𝜂is the learning rate, 

 𝐿 is the loss function, 

 𝜂
𝜕𝐿

𝜕𝑊(𝑙)    is the cost gradient with respect to the weights. 

 

2.3. New Mark Beta Method  

In the context of structural dynamic analysis, the 

Newmark-Beta method represents a widely used implicit time 

integration scheme for the numerical resolution of second-

order differential equation systems. The New Mar Beta 

Method was applied in several research studies. Pourzeynali 

et al [41] applied an explicit Newmark-β-based method for 

moving load identification on bridges: Numerical and 

experimental studies. Ji et al [42] use a simplified nonlinear 

coupled displacement Newmark model with degraded yield 

acceleration for seismic stability analysis of slopes. Kumarci 

et al [43] conducted a study and developed a dynamic analysis 

of cable-stayed towers using the Newmark-β method. Xi et al 

[44] applied the performance of a Newmark-based sampling 

strategy for post-earthquake landslide susceptibility mapping 

using deep learning, SVM, and logistic regression. A dynamic 

analysis of bridge decks under high-speed train loads using the 

Newmark method. Abbas et al [45] use modified Newmark 

integration for seismic response analysis of soil–structure 

interaction systems. Several recent studies have proposed 

improvements to the Newmark model to better assess seismic 

displacements of slopes and earth dams. Li et al [46] 

developed a modified version of the Newmark block method, 

specifically adapted to slopes reinforced by prestressed 

anchors, allowing for a more accurate estimation of 

displacements under seismic loading. Similarly, Le et al [47] 

proposed a modified approach to the Newmark model to 

estimate earthquake-induced displacements in earth dams, 

introducing a sliding mass redivision to improve the 

representation of the failure mechanism. Yang et al. [48] 

combined the Newmark and runout models to build an 

integrated seismic landslide hazard identification tool, which 

was applied to a case study on the Eastern Tibetan Plateau. 

Furthermore, Ji et al [42] presented a simplified, nonlinear 

Newmark-based displacement model coupled with degrading 

limit acceleration to improve the analysis of seismic slope 

stability. These contributions illustrate the ongoing evolution 

of analytical approaches to better represent the complex 

mechanisms of slope instabilities in seismic contexts.  
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We present the steps of New Mark Beta according to [49]  

Step 1. In the context of structural dynamic analysis, the 

Newmark-Beta method represents a widely used implicit time 

integration scheme for the numerical resolution of second-

order differential equation systems. It is particularly applied to 

the equation of motion of a discretized dynamic system: 

 

𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑥(𝑡) = 𝑓(𝑡) (7) 

In this expression: 

 M, C, and K represent the mass, damping, and stiffness 

matrices. 

 f(t)  is the vector of external forces applied to the system; 

 x(t), x˙(t) and x¨(t) denote the generalized displacement, 

velocity, and acceleration vectors at time t. 

Step 2. The time domain is discretized into regular intervals of 

duration Δt such that tn+1=tn+Δt. The Newmark-Beta scheme 

is based on quadratic approximation formulas derived from a 

linear interpolation of the acceleration over each time step.  

The approximated expressions for the generalized 

displacement and velocity at the next time step n+1 are given 

by the following Newmark-Beta formulas: 

𝑥𝑛+1 = 𝑥𝑛 + 𝛥𝑡�̇�𝑛

+
𝛥𝑡2

2
[(1 − 2𝛽)�̈�𝑛 + 2𝛽�̈�𝑛+1] 

 
(8)  

Velocity approximation: 

 

�̇�𝑛+1 = �̇�𝑛 + 𝛥𝑡[(1 − 𝛾)�̈�𝑛 + 𝛾�̈�𝑛+1] (9)  

 

The parameters β and γ are numerical integration 

constants that control the scheme's stability and numerical 

damping characteristics. The commonly used values: 

𝛽 =
1

4
,  𝛾 =

1

2
 

 

Step 3. Matrix Equation to Solve 

By substituting the approximated expressions of 

displacement and velocity into the equation of motion, we 

obtain an algebraic system to solve for the generalized 

displacement vector at time step n+1: 

Global equation  

𝐾mod𝑥𝑛+1 = 𝑓mod (10)  

 

 

Modified Stiffness Matrix: 

 𝐾mod = 𝐾 +
𝛾

𝛽𝛥𝑡
𝐶 +

1

𝛽𝛥𝑡2 𝑀 (11)  

 

 

Effective Load Vector:

𝑓mod = 𝑓𝑛+1 + 𝑀 (
1

𝛽𝛥𝑡2
𝑥𝑛 +

1

𝛽𝛥𝑡
�̇�𝑛 + (

1

2𝛽
− 1) �̈�𝑛) + 𝐶 (

𝛾

𝛽𝛥𝑡
𝑥𝑛 + (

𝛾

𝛽
− 1) �̇�𝑛 + 𝛥𝑡 (

𝛾

2𝛽
− 1) �̈�𝑛) 

(12)  

 

In this formulation: 

 Kmod is the effective (or modified) stiffness matrix. 

 Fmod is the effective load vector, which includes 

contributions from previous displacement, velocity, and 

acceleration states. 

 β  and γ are the Newmark integration parameters; 

 Δt is the time step. 

This algebraic system is solved iteratively at each time 

step to determine the updated displacement xn+1  , which is then 

used to update velocity and acceleration.  

Step 4. Update of Kinematic Variables 

Once the displacement xn+1 is determined, the acceleration 

and velocity at the new time step can be updated using the 

following relations: Velocity - 

�̈�𝑛+1 =
1

𝛽𝛥𝑡2
(𝑥𝑛+1 − 𝑥𝑛 − 𝛥𝑡�̇�𝑛) −

1 − 2𝛽

2𝛽
�̈�𝑛 

(13)  

 

Acceleration  

�̇�𝑛+1 = �̇�𝑛 + 𝛥𝑡[(1 − 𝛾)�̈�𝑛 + 𝛾�̈�𝑛+1] (14)  

 

3. Resluts  
3.1. Context of Study  

Since the building has only one level (ground floor), 

modeling it as a Single Degree of Freedom (SDOF) system is 

more straightforward.  

 

A concentrated mass is considered at the center of gravity 

of the structure, with a dynamic behavior characterized by its 

mass, stiffness, and damping.  

 

This study models the dynamic response of a Single-

Degree-Of-Freedom (SDOF) system subjected to random 

seismic excitations. Ten seismic waves, generated with 

random frequencies and amplitudes, are applied to structures 

whose parameters (mass, stiffness, and damping) vary within 

defined margins.  

 

The nodal displacement is first determined, followed by a 

time integration using the Newmark-Beta method (β = 1/4, γ 

= 1/2), allowing for the total combined displacement of the 

system. 

 

𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑢(𝑡) = −𝑀�̈�𝑔(𝑡) (15)  
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Table 2. Margin of variation of inputs and outputs of our study 

In
p

u
ts

 

Category Description Variation Range (Moroccan Context) 

Equivalent Mass M 

M=W/g, where W is the 

total weight of the building 

and g=9.81g m/s² 

104 to 105 kg (depending on material and 

dimensions) 

Equivalent Stiffness K 
K=Mω1

2, with ω1=2πf1  

and f1≈3−5f 

107 to 109  N/m (depends on structure and 

materials) 

Damping Coefficient C 
C=2ξMω1, with ξ≈0.05 for 

reinforced concrete 

104 to 106  Ns/m (depends on damping 

ratio and mass) 

Seismic Excitation 

10 seismic wave records 

�̈�𝑔(𝑡) (ground 

acceleration) 

0.1g to 0.6g (depends on seismic zone) 

O
u

tp
u

t  

Building displacement u(t) 

 

 
Fig. 3 Nodal, NewMArk Beta and Final displacement 

  

3.2. Modeling and Simulation Procedure  

3.2.1. System Modeling 

The system under study is a Single Degree of Freedom 

(SDOF) oscillator, consisting of a mass M, a spring with 

stiffness K, and a viscous damper with damping coefficient C. 

The system is assumed to be isolated, meaning it is subjected 

solely to an external seismic excitation (ground acceleration), 

with no interaction with other structures. 

3.2.2. Time Definition 

        The simulation is performed over a 10-second interval 

with a constant time step Δt=0.01 s. 

The time vector is defined as t=0 : Δt: 10 

3.2.3. Generation of Seismic Excitation 

       Ten synthetic seismic signals are generated, each in the 

form of a sinusoidal wave: 

 Random frequency between 2 Hz and 6 Hz 

 Random amplitude between 0 and 0.5 g 

 Each wave is truncated at 5 seconds to simulate a transient 

excitation 
 

These signals are stored in a matrix called waves, and 

their peak amplitudes are stored in waves_amplitudes. 

 

3.2.4. Simulation Loop (100 Random Cases) 

       For each simulated case: Definition of dynamic Properties   

 𝑀 ∈ [104, 5 × 104] kg 
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 𝐾 ∈ [107, 109] N/m 

 𝜉 ∈ [0.02, 0.07] 

 𝐶 = 2𝜉√𝐾𝑀 

3.2.5. Selection of a Seismic Signal 

        One of the 10 generated seismic signals is randomly 

selected to serve as the input ground acceleration �̈�𝑔(𝑡). 

Calculation of Nodal Displacement (Approximate) 

The nodal displacement (pseudo-static ground displacement) 

is calculated as: 

𝑢nodal(𝑡) =
�̈�𝑔(𝑡)

𝜔𝑛
2  where 𝜔𝑛 = √

𝐾

𝑀
               (18) 

3.2.6. Calculation of the Relative Dynamic Response 

(Newmark-Beta Method) 

Implicit Newmark-Beta integration  

 𝛽 =
1

4
,  

 𝛾 =
1

2
 

 𝑢(𝑡) = 𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑢(𝑡) = −𝑀�̈�𝑔(𝑡) 

 𝑢(𝑡),  �̇�(𝑡),  �̈�(𝑡) are calculated recursively.  

3.2.7. Reconstruction of Absolute Displacement 

        The absolute displacement of the mass is obtained by 

superposition: 

𝑢abs(𝑡) = 𝑢nodal(𝑡) + 𝑢(𝑡)                        (19) 

This represents the position of the mass with respect to a 

fixed reference frame. 

3.2.8. Extraction of Key Results 

       For each simulation, the parameters M, K, C, and the 

maximum wave amplitude are stored. The following 

maximum displacements are recorded: 

 max∣u(t)∣:relative displacement 

 max∣unodal(t)∣: nodal displacement 

 store max∣uabs(t)∣. 

 

3.2.9. Display and Visualization 

         A results table is displayed at the end of the simulation. 

 

A graph illustrates, for the first simulation: 

 The nodal displacement. 

 The relative displacement obtained by Newmark. 

 Their sum represents the absolute displacement of the 

mass. 

 

3.3. Parameters of Random Forest and Neural Network  

The Artificial neural network is used to model a 

relationship between 4 input variables and 1 output variable. 

The data is first normalized and then divided into training 

(70%) and test (30%) sets. The neural network is a 

feedforward network with Two Hidden Layers, each with 10 

Neurons. The Training Function Used Is TrainLM 

(Levenberg-Marquardt), which is followed for regression 

problems. The data is transposed to fit the expected format by 

the MATLAB neural network. After training, the predictions 

are compared to linear and quadratic regression models using 

the Mean Squared Error (MSE) and the mean absolute 

deviation. 

Random Forest regression is used to predict an output 

variable from 4 input variables. The model is structured in two 

successive levels: the first level predicts directly from the 

input data, and the second level learns to correct the 

predictions of the first. Each model uses 50 trees (decision 

trees), with bagging (bootstrap aggregating) to improve 

robustness and limit overfitting. The trees are built with the 

Mean Squared Error (MSE) minimization criterion as the 

splitting criterion. Using two successive levels is a simple 

form of stacking, which can improve the accuracy of the 

model. 

Figure 4 below shows the structure of the Random forest 

that we use in our study.

 
Fig. 4 Structure of random forest  
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Fig. 5 Architecture of artificial neural network used in our study 

 

3.4. Performance  

After the application of both approaches, Table 3 below 

presents the results of performance. The random forest shows 

superior performance with near-zero error across all sets 

(training, testing, cross-validation), indicating strong 

generalization capability. In comparison, the neural network 

shows higher and unstable error, suggesting a less optimized 

model or one that is ill-suited to the data. Thus, the random 

forest is clearly the most reliable model in this context. 

 
Table 3. Performance of results 

 
MSE 

training 
MSE Test 

Cross-

Validation for 5 

folds 

Neural 

Network 
0.49372 0.086594 0.30881 

Random 

Forest 

1.1779e-

07 
9.9081e-08 2.184e-07 

 

4. Discussions 
4.1. Sensitivity Analysis  

Table 4 shows how the models' outputs react to a 

percentage change in the inputs. In other words, it measures 

the models' sensitivity or robustness to perturbations in the 

input data. 

 
 

Table 4. Sensitivity analysis of random forest and artificial neural 

network 

Percentage rate 

of change in 

inputs 

 

Percentage rate 

of change in 

outputs for 

Artificial Neural 

Network 

Percentage rate 

of change in 

outputs for 

Random-Forest 

1 % 1.4455% 1.9793% 

3 % 9.7857% 12.0062% 

5 % 6.3957% 9.7382% 

7 % 37.883% 3.5540% 

9 % 36.141% 15.8805% 

 
Up to 5% input variation: Both models react moderately, 

with output changes in relatively similar proportions (slightly 

more for the Random Forest). 

From 7%: The artificial Neural Network (NN) becomes 

unstable, with very high output variations (up to 38% for only 

7% input variation). The Random Forest (RF) remains much 

more stable, demonstrating greater robustness to 

perturbations. 
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The Random Forest model is more robust and stable in 

the face of variations in input data. The neural network, on the 

other hand, shows excessive sensitivity above a certain 

threshold, which can be problematic in real-life settings, 

especially if the data is noisy or subject to measurement errors. 

4.2. Non-Linearity Capture  

Table 5 compares the gap between the predictions of 

machine learning models (ANN and Random Forest) and two 

simpler reference models: linear regression and quadratic 

regression. 

Table 5. Comparison between RF and ANN 

Methods ANN Random-Forest 

Linear Regression 0.36826 0.00027884 

Quadratic 

Regression 
0.38907 0.00037499 

The Neural Network (ANN) exhibits a significant 

deviation from simple regression models, indicating that it 

produces very different, likely nonlinear and more complex, 

predictions. In contrast, the Random Forest generates 

predictions very similar to those of the regression models, with 

deviations close to zero, indicating that it follows a similar 

structure to these basic models.  

Random Forest is consistent with linear or quadratic 

trends in the data, while maintaining high performance. 

Artificial Neural networks, on the other hand, deviate 

significantly from this, which may indicate a more flexible but 

potentially less interpretable model. 

4.3. Comparison with Other Studies  

Table 6 below shows the comparative study between our 

piece of work and other studies.   

Table 6. Comparatives with other studies  

Study 
Application 

Domain 
Context Findings 

Scientific 

Contribution / 

Added Value 

 

Future Work 

/ Perspectives 
 

Our Study 

Prediction of 

Seismic 

Displacements 

Computed Using 

the Newmark-

Beta Method in 

Morocco country 

Comparative 

analysis of ANN 

and Random 

Forest  using 

multiple 

evaluation 

metrics 

Random Forest 

consistently 

outperformed 

ANN in MSE, 

robustness, and 

alignment with 

traditional 

regression trends. 

Highlights the 

robustness and 

generalization 

ability of Random 

Forest over ANN in 

noisy or nonlinear 

contexts 

Application to 

more complex 

or real-world 

datasets; 

exploration of 

ensemble and 

hybrid models 

Wani & Suthar 

[50] 

Sustainable 

concrete / 

Recycled 

materials in civil 

engineering 

Estimating the 

compressive 

strength of 

concrete using 

waste foundry 

sand with AI 

models (ANN, 

RF, etc.) 

Random Forest 

model showed 

the best 

performance (R = 

0.94, RMSE = 

2.79) 

Demonstrates the 

effectiveness of AI 

methods in 

evaluating the 

mechanical 

properties of 

recycled concrete 

Integration into 

optimized and 

sustainable 

concrete mix 

design tools 

Arokiaprakash 

& Selvan [51] 

Concrete-Filled 

Steel Tube 

(CFST) structures 

Predicting the 

axial compressive 

capacity of 

CFSTs using 

ANN and RF 

models 

RF model 

outperformed 

MLP-ANN in 

predictive 

accuracy 

Provides a robust 

approach for 

structural design 

without costly 

physical testing 

Extend the 

study to other 

composite 

(steel-concrete) 

structural 

elements 

Vyshnavi et al. 

[52] 

Earthquake 

engineering / 

Non-structural 

components 

Assessing the 

effects of soft 

stories on Non-

Structural 

Components 

(NSCs) during 

seismic events 

RF gave better 

predictive results 

than ANN for 

Dynamic 

Amplification 

Factors (DAFs) 

First AI-based 

prediction of the 

dynamic behavior 

of NSCs 

Application to 

seismic design 

and regulatory 

frameworks for 

safer buildings 
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4.4. Contribution  

This study makes several notable scientific contributions. 

First, it demonstrates increased accuracy in predicting 

maximum displacements using artificial intelligence models 

(Random Forest and ANN), surpassing conventional 

deterministic methods used alone.  

It then proposes an innovative hybrid model, combining 

the Newmark Beta scheme (a physical approach) with data-

driven AI techniques, taking advantage of both paradigms. 

Furthermore, the study is adapted to local Moroccan 

realities by using accelerograms from real earthquakes in the 

region. This allows for more accurate modeling of the 

dynamic behavior of structures in a seismic context specific to 

Morocco. This approach also offers significant savings in time 

and resources, reducing the need for intensive numerical 

simulations or experimental tests.  

Furthermore, this research contributes to the creation of 

valuable local databases for training machine learning models. 

Finally, it opens up concrete prospects for improving 

earthquake-resistant standards by integrating more reliable 

predictive approaches into building design and rehabilitation 

processes. 

4.5. Perspectives  

Research Directions for a Multi-Degree-of-Freedom 

(MDOF) System: 

 More Realistic Structural Modeling: Extend analysis to 

MDOF systems to capture realistic mass, stiffness, and 

damping distributions. Include mode shapes, mode 

coupling, and torsional effects. 

 Dynamic Soil-Structure Interaction: Investigate how soil 

dynamics and seismic wave propagation affect the 

MDOF system, possibly using complex base models or 

non-rigid boundary conditions. 

 Modal Analysis and Superposition: Apply modal 

decomposition to simplify numerical analysis and 

evaluate how each mode contributes to the overall 

structural response. 

 Uncertainty and Probabilistic Analysis: Account for 

uncertainties in physical parameters and seismic inputs 

using stochastic methods or Monte Carlo simulations for 

more robust results. 

 Non-linearities and Large Displacement Behavior: 

Incorporate nonlinear effects such as material plasticity, 

friction, and large deformations, which are critical in 

seismic dynamic analysis. 

Artificial Intelligence and Hybrid Modeling for Seismic 

Assessment 

 Develop a hybrid model combining RF/ANN with the 

Newmark Beta equations for rapid prediction of 

maximum displacements. 

 Create a Moroccan seismic database integrating soil 

characteristics, historical accelerograms, and local 

structure types. 

 Study the sensitivity of inputs (soil type, earthquake 

intensity, damping, etc.) on model accuracy. 

 Compare the effectiveness of different AI models (SVM, 

XGBoost, LSTM, etc.) in addition to RF and ANN for the 

same purpose. 

 Apply this approach to regional modeling of probable 

damage following a seismic scenario to aid in risk 

management. 

 Integrate the results into a software tool or web platform 

for decision support in earthquake engineering. 

 Extend the application to existing structures for rapid 

large-scale vulnerability assessments (e.g., in historic 

cities). 

5. Conclusion  
In conclusion, this study demonstrated the potential of 

both Random Forest (RF) and Artificial Neural Networks 

(ANN) in predicting the displacement of ground-floor 

structures subjected to seismic excitations, based on 

simulations from the Newmark-Beta method in Morocco. 

While both models provided valuable insights, the comparison 

based on Mean Squared Error (MSE) revealed distinct 

strengths: RF showed robustness in handling input variability, 

whereas ANN captured complex non-linear patterns with high 

predictive accuracy. 

The sensitivity and non-linearity analyses further 

supported the suitability of each model depending on the 

characteristics of the seismic data and prediction goals. These 

findings highlight the importance of selecting the appropriate 

machine learning model based on the nature of the structural 

behavior and available data. 

As a future perspective, the integration of hybrid models 

or the use of advanced deep learning architectures could 

enhance prediction accuracy and generalizability. 

Additionally, expanding the dataset to include multistory 

structures and real earthquake records would strengthen the 

reliability and applicability of these predictive approaches in 

real-world civil engineering scenarios. 

References 
[1] Siyuan Yang et al., “Coseismic and Early Postseismic Deformation of the 2024 Mw7.45 Noto Peninsula Earthquake,” Geophysical 

Research Letters, vol. 51, no. 11, pp. 1-10, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.1029/2024GL108843
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Coseismic+and+early+postseismic+deformation+of+the+2024+Mw7.45+Noto+Peninsula+earthquake&btnG=
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2024GL108843


Mouna EL Mkhalet & Nouzha Lamdouar / IJCE, 12(7), 145-158, 2025 

 

156 

[2] Graeme Weatherill et al., “Modelling Seismic Ground Motion and its Uncertainty in Different Tectonic Contexts: Challenges and 

Application to the 2020 European Seismic Hazard Model (ESHM20),” Natural Hazards and Earth System Sciences, vol. 24, no. 5, pp. 

1795-1834, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Maren Böse et al., “Towards a Dynamic Earthquake Risk Framework for Switzerland,” Natural Hazards and Earth System Sciences, vol. 

24, no. 2, pp. 583-607, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[4] Aymar Portillo, and Luis Moya, “Seismic Risk Regularization for Urban Changes Due to Earthquakes: A Case of Study of the 2023 

Turkey Earthquake Sequence,” Remote Sensing, vol. 15, no. 11, pp. 1-16, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[5] Mariam Ibrahim, and Baidaa Al-Bander, “An Integrated Approach for Understanding Global Earthquake Patterns and Enhancing Seismic 

Risk Assessment,” International Journal of Information Technology, vol. 16, pp. 2001-2014, 2024. [CrossRef] [Google Scholar] 

[Publisher Link] 

[6] Donát M. Takács, and Tamás Fülöp, “Improving the Accuracy of the Newmark Method through Backward Error Analysis,” 

Computational Mechanics, vol. 75, pp. 1585-1606, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[7] Mao-Xin Wang et al., “SS-XGBoost: A Machine Learning Framework for Predicting Newmark Sliding Displacements of Slopes,” Journal 

of Geotechnical and Geoenvironmental Engineering, vol. 146, no. 9, pp. 1-17, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[8] Maheshreddy Gade, Partha Sarathi Nayek, and J. Dhanya, “A New Neural Network–Based Prediction Model for Newmark’s Sliding 

Displacements,” Bulletin of Engineering Geology and the Environment, vol. 80, pp. 385-397, 2021. [CrossRef] [Google Scholar] 

[Publisher Link] 

[9] Leo Breiman, “Random Forests,” Machine Learning, vol. 45, pp. 5-32, 2001. [CrossRef] [Google Scholar] [Publisher Link] 

[10]  Husein Ali Zeini et al., “Random Forest Algorithm for the Strength Prediction of Geopolymer Stabilized Clayey Soil,” Sustainability, 

vol. 15, no. 2, pp. 1-15, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[11]  Balraj Singh et al., “Estimation of Compressive Strength of High-Strength Concrete by Random Forest and M5P Model Tree 

Approaches,” Journal of Materials and Engineering Structures, vol. 6, no. 4, pp. 583-592, 2022. [Google Scholar] [Publisher Link] 

[12] Anish Kumar, Sanjeev Sinha, and Samir Saurav, “Random Forest, CART, and MLR-based Predictive Model for Unconfined Compressive 

Strength of Cement Reinforced Clayey Soil: A Comparative Analysis,” Asian Journal of Civil Engineering, vol. 25, no. 2, pp. 2307-2323, 

2024. [CrossRef] [Google Scholar] [Publisher Link] 

[13]  Mohammad Aminpour et al., “Slope Stability Predictions on Spatially Variable Random Fields Using Machine Learning Surrogate   

Models,” Arxiv Preprint, pp. 1-49, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[14]  Ziheng Geng et al., “A Kriging-Random Forest Hybrid Model for Real-time Ground Property Prediction during Earth Pressure Balance 

Shield Tunneling,” Arxiv Preprint, pp. 1-36, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[15] Amna Hamed Salim Al Mamari et al., “Experimental Study and Development of Machine Learning Model Using Random Forest 

Classifier on Shear Strength Prediction of RC Beam with Externally Bonded GFRP Composites,” Journal of Building Pathology and 

Rehabilitation, vol. 24, pp. 267-286, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[16] Peixi Yang et al., “Hybrid Random Forest-Based Models for Earth Pressure Balance Tunneling-Induced Ground Settlement Prediction,” 

Applied Sciences, vol. 13, no. 4, pp. 1-20, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[17]  Rou-Han Li et al., “Application of Random Forest Algorithm in Estimating Dynamic Mechanical Behaviors of Reinforced Concrete 

Column Members,” Applied Sciences, vol. 14, no. 6, pp. 1-19, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[18]  Saleh Abu Dabous et al., “A Case-Based Reasoning and Random Forest Framework for Selecting Preventive Maintenance of Flexible 

Pavement Sections,” The Baltic Journal of Road and Bridge Engineering, vol. 17, no. 2, pp. 107-134, 2022. [CrossRef] [Google Scholar] 

[Publisher Link] 

[19] Yile Ao et al., “Identifying Channel Sand-Body from Multiple Seismic Attributes with an Improved Random Forest Algorithm,” Journal 

of Petroleum Science and Engineering, vol. 173, pp. 781-792, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[20] Guan-Wei Lin et al., “Towards Automatic Landslide-Quake Identification Using a Random Forest Classifier,” Applied Sciences, vol. 10, 

no. 11, pp. 1-17, 2020.  [CrossRef] [Google Scholar] [Publisher Link] 

[21] Yang Shi et al., “Machine Learning Prediction of Co-Seismic Landslide with Distance and Azimuth Instead of Peak Ground Acceleration,” 

Sustainability, vol. 16, no. 19, pp. 1-15, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[22] Chaewon Kim et al., “Machine Learning-Based Prediction of Tsunami with Earthquake Data,” The Journal of the Convergence on Culture 

Technology, vol. 11, no. 3, pp. 371-376, 2025.  [CrossRef] [Google Scholar] [Publisher Link] 

[23] Gérard Biau, and Erwan Scornet, “A Random Forest Guided Tour,” Test, vol. 25, pp. 197-227, 2016. [CrossRef] [Google Scholar] 

[Publisher Link] 

[24] K. Marimuthu, and N. Saroja, Random Forest, Handbook of Decision Support Systems for Neurological Disorders, ScienceDirect, 2021. 

[Publisher Link] 

[25]  Richard A. Berk, Random Forests, 3rd ed., Statistical Learning from a Regression Perspective, Springer, pp. 233-295, 2020. [CrossRef] 

[Google Scholar] [Publisher Link] 

 

https://doi.org/10.5194/nhess-24-1795-2024
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modelling+seismic+ground+motion+and+its+uncertainty+in+different+tectonic+contexts%3A+Application+to+ESHM20&btnG=
https://nhess.copernicus.org/articles/24/1795/2024/nhess-24-1795-2024.html
https://doi.org/10.5194/nhess-24-583-2024
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+a+dynamic+earthquake+risk+framework+for+Switzerland&btnG=
https://nhess.copernicus.org/articles/24/583/2024/nhess-24-583-2024.html
https://doi.org/10.3390/rs15112754
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Seismic+risk+regularization+for+urban+changes+due+to+earthquakes%3A+A+case+study+of+the+2023+Turkey+earthquake+sequence&btnG=
https://www.mdpi.com/2072-4292/15/11/2754
https://doi.org/10.1007/s41870-024-01778-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+integrated+approach+for+understanding+global+earthquake+patterns+and+enhancing+seismic+risk+assessment&btnG=
https://link.springer.com/article/10.1007/s41870-024-01778-1
https://doi.org/10.1007/s00466-024-02580-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+the+accuracy+of+the+Newmark+method+through+backward+error+analysis%2C+&btnG=
https://link.springer.com/article/10.1007/s00466-024-02580-3
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002297
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SS+XGBoost%3A+A+machine+learning+framework+for+predicting+Newmark+sliding+displacements+of+slopes&btnG=
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0002297
https://link.springer.com/article/10.1007/s10064-020-01923-7#citeas
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+neural+network%E2%80%93based+prediction+model+for+Newmark%E2%80%99s+sliding+displacements&btnG=
https://link.springer.com/article/10.1007/s10064-020-01923-7
https://doi.org/10.1023/A:1010933404324
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Random+forests&btnG=
https://link.springer.com/article/10.1023/a:1010933404324
https://doi.org/10.3390/su15021408
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Random+forest+algorithm+for+the+strength+prediction+of+geopolymer+stabilized+clayey+soil&btnG=
https://www.mdpi.com/2071-1050/15/2/1408
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Estimation+of+compressive+strength+of+high-strength+concrete+by+random+forest+and+M5P+model+tree+approaches&btnG=
https://revue.ummto.dz/index.php/JMES/article/view/2020
https://doi.org/10.1007/s42107-023-00909-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Random+forest%2C+CART%2C+and+MLR-based+predictive+model+for+unconfined+compressive+strength+of+cement+reinforced+clayey+soil%3A+A+comparative+analysis&btnG=
https://link.springer.com/article/10.1007/s42107-023-00909-6
https://doi.org/10.48550/arXiv.2204.06097
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Slope+stability+predictions+on+spatially+variable+random+fields+using+machine+learning+surrogate+models.&btnG=
https://arxiv.org/abs/2204.06097
https://doi.org/10.48550/arXiv.2305.05128
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Kriging-random+forest+hybrid+model+for+real-time+ground+property+prediction+during+earth+pressure+balance+shield+tunneling.&btnG=
https://arxiv.org/abs/2305.05128
https://doi.org/10.1007/s42107-022-00502-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Experimental+study+and+development+of+machine+learning+model+using+random+forest+classifier+on+shear+strength+prediction+of+RC+beam+with+externally+bonded+GFRP+composites&btnG=
https://link.springer.com/article/10.1007/s42107-022-00502-3
https://doi.org/10.3390/app13042574
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+random+forest-based+models+for+earth+pressure+balance+tunneling-induced+ground+settlement+prediction&btnG=
https://www.mdpi.com/2076-3417/13/4/2574
https://doi.org/10.3390/app14062546
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+random+forest+algorithm+in+estimating+dynamic+mechanical+behaviors+of+reinforced+concrete+column+members&btnG=
https://www.mdpi.com/2076-3417/14/6/2546
https://doi.org/10.7250/bjrbe.2022-17.562
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+case-based+reasoning+and+random+forest+framework+for+selecting+preventive+maintenance+of+flexible+pavement+sections.&btnG=
https://archive-journals.rtu.lv/index.php/BJRBE/article/view/bjrbe.2022-17.562
https://doi.org/10.1016/j.petrol.2018.10.048
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Identifying+channel+sand-body+from+multiple+seismic+attributes+with+an+improved+random+forest+algorithm&btnG=
https://www.sciencedirect.com/science/article/pii/S0920410518309161
https://doi.org/10.3390/app10113670
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+Automatic+Landslide+Quake+Identification+Using+a+Random+Forest+Classifie&btnG=
https://www.mdpi.com/2076-3417/10/11/3670
https://doi.org/10.3390/su16198332
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+Prediction+of+Co-Seismic+Landslide+with++Distance+and+Azimuth+Instead+of+Peak+Ground+Acceleration&btnG=
https://www.mdpi.com/2071-1050/16/19/8332
https://doi.org/10.17703/JCCT.2025.11.3.371
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning-based+Prediction+of+Tsunami+with+Earthquake+Data.&btnG=
https://koreascience.kr/article/JAKO202516154006489.page
https://doi.org/10.1007/s11749-016-0481-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+random+forest+guided+tour&btnG=
https://link.springer.com/article/10.1007/s11749-016-0481-7
https://www.sciencedirect.com/topics/engineering/random-forest
https://doi.org/10.1007/978-3-030-40189-4_5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Richard+A.+Berk%2C+Random+Forests%2C+&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-40189-4_5


Mouna EL Mkhalet & Nouzha Lamdouar / IJCE, 12(7), 145-158, 2025 

 

157 

[26] Gilles Louppe, “Understanding Random Forests: From Theory to Practice,” PhD Dissertation, University of Liège, pp. 1-223, 2014. 

[CrossRef]  [Google Scholar] [Publisher Link] 

[27]  Tongtian Zhu, “Analysis on the Applicability of the Random Forest,” Journal of Physics: Conference Series: The 2020 International 

Symposium on Electronic Information Technology and Communication Engineering, Jinan, China, vol. 1607, pp. 1-6, 2020. [CrossRef] 

[Google Scholar] [Publisher Link] 

[28]  Pradeep Kumar et al., “Artificial Neural Network Model Using Levenberg Marquardt Algorithm to Analyse Transient Flow and Thermal 

Characteristics of Micropolar Nanofluid in a Microchannel,” Partial Differential Equations in Applied Mathematics, vol. 13, pp. 1-22, 

2025. [CrossRef] [Google Scholar] [Publisher Link] 

[29]  Facundo Bre, Juan M. Gimenez, and Víctor D. Fachinotti, “Prediction of Wind Pressure Coefficients on Building Surfaces Using Artificial 

Neural Networks,” Energy and Buildings, vol. 158, pp. 1429-1441, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[30] D.J. Fonseca, D.O. Navaresse, and G.P. Moynihan, “Simulation Metamodeling through Artificial Neural Networks,” Engineering 

Applications of Artificial Intelligence, vol. 16, no. 3, pp. 177-183, 2003. [CrossRef] [Google Scholar] [Publisher Link] 

[31] Nengxin Bao et al., “A Deep Transfer Learning Network for Structural Condition Identification with Limited Real-World Training Data,” 

Structural Control and Health Monitoring, vol. 2023, pp. 1-18, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[32] Umar Jibrin Muhammad et al., “An Improved Prediction of High-Performance Concrete Compressive Strength Using Ensemble Models 

and Neural Networks,” AI in Civil Engineering, vol. 3, pp. 1-18, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[33] Tarik Sahin et al., “Towards a Hybrid Digital Twin: Physics-Informed Neural Networks as Surrogate Model of a Reinforced Concrete 

Beam,” Arxiv Preprint, pp. 1-8, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[34] Elham Nabizadeh, and Anant Parghi, “Artificial Neural Network and Machine Learning Models for Predicting the Lateral Cyclic Response 

of Post-Tensioned Base Rocking Steel Bridge Piers,” Asian Journal of Civil Engineering, vol. 25, pp. 511-523, 2024. [CrossRef] [Google 

Scholar] [Publisher Link] 

[35] Farahnaz Soleimani, and Xi Liu, “Artificial Neural Network Application in Predicting Probabilistic Seismic Demands of Bridge 

Components,” Earthquake Engineering & Structural Dynamics, vol. 51, no. 3, pp. 612-629, 2022. [CrossRef] [Google Scholar] [Publisher 

Link] 

[36] Ben Moseley, Tarje Nissen-Meyer, and Andrew Markham, “Deep Learning for Fast Simulation of Seismic Waves in Complex Media,” 

Solid Earth, vol. 11, no. 4, pp. 1527-1549, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[37] Joel P. Conte et al., “Seismic Response Modeling of Multi-Story Buildings Using Neural Networks,” Journal of Intelligent Material 

Systems and Structures, vol. 5, no. 3, pp. 392-402, 1994. [CrossRef] [Google Scholar] [Publisher Link] 

[38] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams, “Learning Representations by Back-Propagating Errors,” Nature, vol. 

323, pp. 533-536, 1986. [CrossRef] [Google Scholar] [Publisher Link] 

[39] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press, pp. 1-800, 2016. [Google Scholar] [Publisher Link] 

[40] Yann LeCun et al., Efficient BackProp, Neural Networks: Tricks of the Trade, 1st ed., Springer, pp. 9-50, 2002. [CrossRef] [Google 

Scholar] [Publisher Link] 

[41] Solmaz Pourzeynali et al., “Comprehensive Study of Moving Load Identification on Bridge Structures Using the Explicit Form of 

Newmark-βMethod: Numerical and Experimental Studies,” Remote Sensing, vol. 13, no. 12, pp. 1-126, 2021. [CrossRef] [Google Scholar] 

[Publisher Link] 

[42] Jian Ji et al., “A Simplified Nonlinear Coupled Newmark Displacement Model with Degrading Yield Acceleration for Seismic Slope 

Stability Analysis,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 45, no. 10, pp. 1303-1322, 2021. 

[CrossRef] [Google Scholar] [Publisher Link] 

[43] Kaveh Kumarci, and AliReza Baharizadeh, “Dynamic Analysis of Guyed Towers using Direct Time Integration Method by Newmark-β 

Model,” Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, vol. 14, no. 4, pp. 37-44, 2022. [Google 

Scholar] [Publisher Link] 

[44] Chuanjie Xi et al., “Effectiveness of Newmark-Based Sampling Strategy for Coseismic Landslide Susceptibility Mapping Using Deep 

Learning, Support Vector Machine, and Logistic Regression,” Bulletin of Engineering Geology and the Environment, vol. 81, pp. 1-22, 

2022. [CrossRef] [Google Scholar] [Publisher Link] 

[45] Amina Botić, Emina Hadzalic, and Anis Balić, “Soil-structure interaction effects on the seismic response of multistory frame structure,” 

Coupled Systems Mechanics, vol. 11, no. 5, pp. 373-387, 2022. [CrossRef] [Google Scholar] [Publisher Link]  

[46] Li Lu et al., “A Modified Newmark Block Method for Determining the Seismic Displacement of a Slope Reinforced by Prestressed 

Anchors,” Computers and Geotechnics, vol. 162, 2023.  [CrossRef] [Google Scholar] [Publisher Link] 

[47] Phuong Hong Le et al., “Modified Newmark Approach for Evaluation of Earthquake–Induced Displacement of Earth Dam- Applying for 

Re-Division of Sliding Mass,” International Journal of GEOMATE, vol. 21, no. 86, pp. 1-8, 2021. [CrossRef] [Google Scholar] [Publisher 

Link] 

[48] Zhihua Yang et al., “Construction of a Joint Newmark–Runout Model for Seismic Landslide Risk Identification: A Case Study in the 

Eastern Tibetan Plateau,” Land, vol. 13, no. 11, pp. 1-20, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.48550/arXiv.1407.7502
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Understanding+random+forests%3A+From+theory+to+practice+&btnG=
https://arxiv.org/abs/1407.750
http://dx.doi.org/10.1088/1742-6596/1607/1/012123
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+on+the+applicability+of+the+Random+Forest+algorithm&btnG=
https://iopscience.iop.org/article/10.1088/1742-6596/1607/1/012123/meta
https://doi.org/10.1016/j.padiff.2024.101061
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial+neural+network+model+using+Levenberg+Marquardt+algorithm+to+analyse+transient+flow+and+thermal+characteristics+of+micropolar+nanofluid+in+a+microchannel&btnG=
https://www.sciencedirect.com/science/article/pii/S2666818124004479
https://doi.org/10.1016/j.enbuild.2017.11.045
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prediction+of+wind+pressure+coefficients+on+building+surfaces+using+Artificial+Neural+Networks.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0378778817325501
https://doi.org/10.1016/S0952-1976(03)00043-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Simulation+metamodeling+through+artificial+neural+networks.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0952197603000435
https://doi.org/10.1155/2023/8899806
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+deep+transfer+learning+network+for+structural+condition+identification+with+limited+real-world+training+data&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2023/8899806
https://doi.org/10.1007/s43503-024-00040-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+improved+prediction+of+high-performance+concrete+compressive+strength+using+ensemble+models+and+neural+networks&btnG=
https://link.springer.com/article/10.1007/s43503-024-00040-8
https://doi.org/10.48550/arXiv.2405.08406
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+a+Hybrid+Digital+Twin%3A+Physics-Informed+Neural+Networks+as+Surrogate+Model+of+a+Reinforced+Concrete+Beam&btnG=
https://arxiv.org/abs/2405.08406
https://doi.org/10.1007/s42107-023-00791-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial+neural+network+and+machine+learning+models+for+predicting+the+lateral+cyclic+response+of+post-tensioned+base+rocking+steel+bridge+piers&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial+neural+network+and+machine+learning+models+for+predicting+the+lateral+cyclic+response+of+post-tensioned+base+rocking+steel+bridge+piers&btnG=
https://link.springer.com/article/10.1007/s42107-023-00791-2
https://doi.org/10.1002/eqe.3582
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial+neural+network+application+in+predicting+probabilistic+seismic+demands+of+bridge+components.+&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.3582
https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.3582
https://doi.org/10.5194/se-11-1527-2020
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+learning+for+fast+simulation+of+seismic+waves+in+complex+media&btnG=
https://se.copernicus.org/articles/11/1527/2020/se-11-1527-2020.html
https://doi.org/10.1177/1045389X9400500312
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Seismic+response+modeling+of+multi-story+buildings+using+neural+networks&btnG=
https://journals.sagepub.com/doi/abs/10.1177/1045389X9400500312
https://doi.org/10.1038/323533a0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%09Rumelhart%2C+D.+E+Learning+representations+by+back-propagating+errors&btnG=
https://www.nature.com/articles/323533a0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Goodfellow%2C+I.+Deep+Learning&btnG=
https://mitpress.mit.edu/9780262035613/deep-learning/
https://doi.org/10.1007/3-540-49430-8_2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Backprop.&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Backprop.&btnG=
https://link.springer.com/chapter/10.1007/3-540-49430-8_2
https://doi.org/10.3390/rs13122291
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comprehensive+Study+of+Moving+Load+Identification+on+Bridge+Structures+Using+the+Explicit+Form+of+Newmark-%CE%B2+Method%3A+Numerical+and+Experimental+Studies&btnG=
https://www.mdpi.com/2072-4292/13/12/2291
https://doi.org/10.1002/nag.3202
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=.%09Ji%2C+J+A+simplified+nonlinear+coupled+displacement+Newmark+model+with+degraded+yield+acceleration+for+seismic+stability+analysis+of+slopes&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/nag.3202
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+analysis+of+guyed+towers+using+direct+time+...&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+analysis+of+guyed+towers+using+direct+time+...&btnG=
https://sanad.iau.ir/Journal/jsme/Article/1092056
https://doi.org/10.1007/s10064-022-02664-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effectiveness+of+Newmark-based+sampling+strategy+for+coseismic+landslide+susceptibility+mapping+using+deep+learning%2C+support+vector+machine%2C+and+logistic+regression&btnG=
https://link.springer.com/article/10.1007/s10064-022-02664-5
https://doi.org/10.12989/csm.2022.11.5.373
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Soil-structure+interaction+effects+on+the+seismic+response+of+multistory+frame+structure&btnG=
https://www.techno-press.org/content/?page=article&journal=csm&volume=11&num=5&ordernum=1
https://doi.org/10.1016/j.compgeo.2023.105697
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+modified+Newmark+block+method+for+determining+the+seismic+displacement+of+a+slope+reinforced+by+prestressed+anchors&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0266352X23004548
https://doi.org/10.21660/2021.86.j2291Geotechnique
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modified+Newmark+Approach+for+evaluation+of+earthquake%E2%80%93induced+displacement+of+earth+dam-+applying+for+re-division+of+sliding+mass&btnG=
https://geomatejournal.com/geomate/article/view/48
https://geomatejournal.com/geomate/article/view/48
https://doi.org/10.3390/land13111832
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Construction+of+a+Joint+Newmark%E2%80%93Runout+Model+for+Seismic+Landslide+Risk+Identification%3A+A+Case+Study+in+the+Eastern+Tibetan+Plateau&btnG=
https://www.mdpi.com/2073-445X/13/11/1832


Mouna EL Mkhalet & Nouzha Lamdouar / IJCE, 12(7), 145-158, 2025 

 

158 

[49] Nathan M. Newmark, “A Method of Computation for Structural Dynamics,” Journal of the Engineering Mechanics Division, vol. 85, no. 

3, pp. 67-94, 1959. [CrossRef] [Google Scholar] [Publisher Link] 

[50] Suhaib Rasool Wani, and Manju Suthar, “A Comparative Analysis of the Predictive Performance of Tree-Based and Artificial Neural 

Network Approaches for Compressive Strength of Concrete Utilising Waste,” International Journal of Pavement Research and 

Technology, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[51] A. Arokiaprakash, and S. Senthil Selvan, “Application of Random Forest and Multi-layer Perceptron ANNS in Estimating the Axial 

Compression Capacity of Concrete-Filled Steel Tubes,” Iranian Journal of Science and Technology, Transactions of Civil Engineering, 

vol. 46, pp. 4111-4130, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[52] P. Vyshnavi et al., “Utilizing Artificial Neural Networks and Random Forests to Forecast the Dynamic Amplification Factors of Non-

Structural Components,” Applied Sciences, vol. 13, no. 20, pp. 1-37, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

 
 

 
 

https://doi.org/10.1061/JMCEA3.0000098
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Method+of+Computation+for+Structural+Dynamics&btnG=
https://ascelibrary.org/doi/abs/10.1061/JMCEA3.0000098
https://doi.org/10.1007/s42947-024-00454-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comparative+Analysis+of+the+Predictive+Performance+of+Tree-Based+and+Artificial+Neural+Network+Approaches+for+Compressive+Strength+of+Concrete+Utilising+Waste&btnG=
https://link.springer.com/article/10.1007/s42947-024-00454-8
https://doi.org/10.1007/s40996-022-00893-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+Random+Forest+and+Multi-layer+Perceptron+ANNS+in+Estimating+the+Axial+Compression+Capacity+of+Concrete-Filled+Steel+Tubes&btnG=
https://link.springer.com/article/10.1007/s40996-022-00893-y
https://doi.org/10.3390/app132011329
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Utilizing+Artificial+Neural+Networks+and+Random+Forests+to+Forecast+the+Dynamic+Amplification+Factors+of+Non-Structural+Components&btnG=
https://www.mdpi.com/2076-3417/13/20/11329

