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Abstract - Controlling nonlinear thermal systems like rotary cement kilns is a long-standing problem in industrial automation
since they are dynamic and hard to predict. Fuzzy Logic Controllers (FLCs) present a strong alternative; nonetheless, the
essential defuzzification phase - responsible for transforming fuzzy outputs into actionable values - has been inadequately
examined in comparative analyses. This project creates a Mamdani-type FLC with 88 rules based on experts and four main
inputs: combustion temperature, furnace torque, CO percentage, and preheater temperature. It will be used to control a high-
capacity rotary kiln. We comprehensively examine five defuzzification methods: centroid, bisector, Smallest of Maximum (SOM),
Middle of Maximum (MOM), and Largest of Maximum (LOM), using simulations generated in MATLAB's Fuzzy Logic Toolbox.
The results reveal that the output is generally consistent among approaches, except for the kiln feed rate, which is quite sensitive.
The research illustrates that the selection of defuzzification strategy significantly influences control performance, with maxima-
based approaches providing enhanced stability. These results provide practical advice for developing strong fuzzy controllers
for complicated industrial processes.

Keywords - Defuzzification techniques, Fuzzy Logic Controller, Mamdani inference, Nonlinear process control, Rotary kiln
automation.

1. Introduction sensitivity, stability, and responsiveness, especially in systems
The control of nonlinear thermal processes, such as dry ~ characterized by asymmetric or multimodal membership
cement rotary kilns, remains a significant challenge in  functions [4]. Recent studies on Fuzzy Logic Controllers
industrial automation due to their high dynamic complexity, ~ (FLCs) inrotary kiln applications have focused on optimizing
strong coupling among variables, and inherent operational ~ controllers or comparing them to traditional approaches,
uncertainty. Conventional control methods, such as PID ~ mainly neglecting a thorough examination of defuzzification
controllers, frequently encounter difficulties under these  Procedures [5, 6].
circumstances, prompting the use of intelligent control
strategies. Fuzzy Logic Controllers (FLCs) have become a
strong and adaptable option that allows for the use of expert
knowledge and can handle behavior that is not always
predictable [1, 2]. The defuzzification stage, which changes
vague, linguistic findings into exact numerical control actions,
is a very important part of FLC design that is often ignored.
There are other ways to defuzzify, such as the centroid,
bisector, Smallest of Maximum (SOM), Middle of Maximum
(MOM), and Biggest of Maximum (LOM). However, most
commercial applications choose the centroid technique
without a strong technical reason [3]. This approach
presupposes a negligible impact of defuzzification on system
behavior, although data indicate its potential effects on control

Even studies that employ more complex models, such as
neuro-fuzzy or type-2 systems, sometimes skip the
defuzzification stage altogether, especially when Sugeno-type
structures are used. Consequently, the effects of
defuzzification on essential variables, including fuel flow,
rotation speed, and feed rate, remain little examined.
This paper seeks to fill this methodological need by comparing
five prevalent defuzzification approaches utilized in a
Mamdani-type fuzzy controller for rotary kiln operation.
There are 88 expert-defined rules and triangle membership
functions in the controller. It was made in MATLAB using the
Fuzzy Logic Toolbox. The system's performance is evaluated
in typical operating circumstances, with performance
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measures concentrating on essential output variables
associated with clinker quality and energy efficiency. This
paper offers empirical information about the impact of
defuzzification approaches, serving as a technical decision-
making guide for FLC designers and reinforcing the
framework for repeatable, scalable, and resilient fuzzy control
in intricate industrial settings.

2. State of the Art

In recent decades, the automation and management of
rotary cement kilns have progressed, integrating sophisticated
methods such as fuzzy logic, expert systems, neuro-fuzzy
models, and explainable artificial intelligence. Even though
these advances have been made, one important part has always
been overlooked: the defuzzification process, which turns
linguistic deductions into exact control actions. The next
section looks at five important studies that show how things
are now in this field of knowledge.

2.1. Specialized Systems are used for the Control of Rotary
Kilns

In a long study about the use of specialized systems for
managing cement kilns, many applications of methods based
on logical rules, Mamdani-type fuzzy logic, and artificial
intelligence algorithms stand out as ways to improve thermal
efficiency, operational stability, and product quality [1]. The
research shows how expert systems help make faster and more
effective decisions when procedural conditions change,
surpassing conventional PID-based models. However, the
article does not delve into the defuzzification phase,
considering it an implicit component of the system without
examining how the selection of the method can influence the
controller's accuracy, stability, or sensitivity. This gap is
important because many of the systems mentioned are based
on logic that is not clear, and this is the exact point where the
transition from symbolic deductions to numerical results
happens.

2.2. Evaluation of Temperature Parameters through Fuzzy
Inference

A study of the process of making sponge iron uses
Mamdani-style fuzzy logic to evaluate the metallization and
the formation of crusts (accretion) in the rotary furnace,
considering factors like the fire temperature, the residence
time, and the rotation speed [7]. Triangular membership
functions are established, and rules based on operational
experience are implemented, facilitating the real-time
detection of the furnace's behavior. The system can model
uncertainty and improve the understanding of the incoming
data. However, only the centroid defuzzification procedure is
chosen, without providing technical reasons or considering
other options that could respond more effectively to
asymmetric or multimodal membership functions. This one-
of-a-kind choice puts the system’s growth at risk and misses
out on the chance to perform better under a variety of
procedures.
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2.3. Experimentation under Noise with Type-2 Neuro-Fuzzy
Systems

From a more advanced perspective, a type-2 Takagi-
Sugeno system is proposed to determine the dynamic behavior
of a rotary kiln under noisy conditions [8]. This proposal is
unique because it can adapt and handle uncertainty through an
improved neuro-fuzzy system with genetic algorithms. The
model uses type-2 membership functions in the antecedents
and linear functions in the consequents. This helps it achieve
a lower Mean Squared Error (MSE) than type 1 systems.
However, when using a Sugeno architecture, the output is
determined directly without the need for defuzzification,
which means this crucial phase is neither considered nor
examined, maintaining its utility in industrial Mamdani
systems where this phase is essential.

2.4. Modeling Operational Variables through Explainable
Artificial Intelligence

Recent research suggests the use of Explainable Artificial
Intelligence (XAI) methods to simulate the operation of
furnace operational variables, such as feed rate, furnace
torque, and fan current [2]. Using XGBoost and SHAP, we can
accurately predict these variables (R2 > 0.96) and see how
important each input is compared to the others. This makes it
easier to make decisions in the plant. Although the method
allows for a detailed and visual interpretation of the data,
fuzzy logic is not applied, nor are defuzzification methods
considered, which limits its ability to convert symbolic expert
knowledge into real-time numerical decisions. The model is
easy to understand, but cannot be changed from a fuzzy point
of view.

2.5. Critical Evaluation of Conservation using Fuzzy Logic

In a setting that focuses more on knowledge management,
a diffuse system is suggested to assess the importance of
maintenance tasks in cement kilns, considering factors such as
frequency, cost of interruption, and the consequences of a
failure [5]. A Mamdani system is set up using MATLAB and
the Fuzzy Logic toolbox, which makes it easier to show
uncertainty in the order of tasks. The method has practical
value, but the system only uses the centroid method as the
defuzzification method and does not consider other options
that could change the priorities of the tasks. This technical
restriction makes it impossible to assess how vulnerable the
system is to the choice of exit method, which is important in
systems where the relative importance of decisions may be
low.

2.6. Overall Conclusion on the State of the Art

Although fuzzy logic is widely used to control rotary
kilns, the literature review shows that the defuzzification
phase has been considered a secondary decision, restricted to
the centroid method, or completely ignored in Sugeno-type
systems [1, 5]. None of the studies looked at a comparative
study or looked at how choosing the defuzzification method
might affect the system's accuracy, stability, or sensitivity.
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This methodological gap is important because
defuzzification turns symbolic deductions into real actions; an
incorrect choice can negatively affect thermal efficiency,
clinker quality, or the system's overall performance. This
study suggests a comparative study of five defuzzification
techniques: centroid, bisector, SOM, MOM, and LOM, used
in a Mamdani controller with eighty-eight rules and triangular
membership functions. The system is simulated in MATLAB
using the Fuzzy Logic toolbox, and its performance is

evaluated based on key variables such as the flow of the
furnace, the speed of rotation, and the fuel consumption. This
analysis provides a technical guide for choosing the best
defuzzification method, which helps create more accurate,
robust, and reproducible fuzzy controllers in industrial
situations. The logical structure of the present study shows the
identified gap in fuzzy controller design and the proposed
comparative analysis of defuzzification methods.
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Table 1. Summary of five common defuzzification methods with their characteristics and expected impact on industrial fuzzy control

Method Brief Description Main Advantages L|m|'tat|0n_s or '_I'yplcal'lmpact on
considerations industrial control
Centroid Calculates the center of Balanced and smooth can be computationally | Stable control, balanced
gravity of the fuzzy area result; widely used more expensive response
. Divides the fuzzy area Maintains bala_nce n less common, less Moderate control, good
Bisector . asymmetric R : .
into two equal parts o intuitive in some cases handling of uncertainty
distributions
Choose§ the sm_allest Morg conservative; may produce overly Conservatl_ve re_s_ults are
SOM value with maximum avoids aggressive . useful in critical
. rigid control .
membership responses conditions
. The balance between does not always Control with good
Average values with . N . balance between
MOM ) . SOM and LOM is easy distinguish multiple .
maximum membership X X aggressiveness and
to interpret maxima well o
stability
Selects the largest value More aggressive .
X ; may generate unstable | Aggressive control may
LOM with maximum responses are useful for . o
. ; : or abrupt control increase variability
membership quick reactions

3. Theoretical Framework
3.1. The Fuzzy Controllers

L.A. Zadeh's fuzzy set theory [11] underpins fuzzy
control, which subsequently establishes the foundation for an
intelligent control system that emulates human cognitive
processes. "Diffuse" denotes ambiguous or subjective
concepts, with their significance contingent upon the

observer's perception and interpretation. We employ
ambiguous terms such as "most,” "several,” "probably,” or
"not precisely” in all communication. "True,” "false,” "all,"

and "none" are specialized terms.

In classical control theory, low-order linear models, such
as second-order systems, enable the development of Pl or PID
controllers using established methodologies. One may employ
either pole placement design techniques or frequency domain
methodologies for high-order linear systems. You may also
suggest controllers that operate by identifying the optimal
method to reduce variability or the integral of the quadratic
error. The more accurately the model represents the actual
process, the more effectively the algorithm-controlled system
will respond.

However, complications may arise if the system model is
unknown, complex, has significant nonlinearity, or undergoes
fast parameter changes. Occasionally, conventional design
methodologies become ineffective. Adaptive control systems
may modify control actions in real time; however, their
practical use is hindered by the complexity of the
mathematical apparatus and the extensive computations
required.

Fuzzy control is an adaptable method for managing this
sort of system, since it converts an operator's expertise and
abilities into straightforward, easily comprehensible IF-THEN
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rules. These criteria facilitate the adaptation of ambiguous
specifications into control algorithms suitable for specialized
broadcast processors or microcontrollers.  The primary
advantage is that fuzzy logic establishes a continuum between
true and untrue, facilitating the demonstration of the veracity
of acts and situations under consideration.

This perspective is effectively exemplified by operating a
vehicle. A driver must simultaneously evaluate several
inaccurate data points, including other vehicles' distance and
speed, to make sound judgments. Internal regulations such as
"reduce speed if velocity is excessive" or "apply brakes
forcefully if the distance is minimal and speed is high" are not
founded on precise metrics but are grounded in common
sense. This is ambiguous; yet accidents occur seldom relative
to the volume of vehicles on the road [12].

3.2. Defuzzification Methods

Defuzzification is the process of transforming a fuzzified
output into a singular, precise value in relation to a fuzzy set.
The defuzzied value in a Fuzzy Logic Controller (FLC)
signifies the action to be executed in process control.

3.2.1. Centroid Method

The centroid defuzzification method converts the fuzzy
output into a numerical value, which corresponds to the
coordinate of the center of gravity of the resulting fuzzy set.

_ Jsynry@y
Jsuy y(ay)

a @
In this context, uy Represents the membership function of

the output set Y, where the output variable is y and S refers to
the domain or range of integration [10].
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3.2.2. Bisector Method

The bisection method determines the point that divides
the area under the curve of the membership function into two
equal areas. That is, we seek the value y_b that satisfies the
condition that the accumulated integral from the lower limit to
y_b is equal to half of the total area [10].

y 1 rXmax
fon u()dx = [ p(x)dx 2
3.2.3. Middle of Maximum Method

The middle of maximum method focuses on the values at
which the membership function attains its maximum. The
interval of values where the maximum degree of membership
occurs is identified, and the midpoint of this interval is

calculated [10].

If x5inY Xmax Define the limits of the interval where
the function u(x) is maximum, the defuzzied value y,,,,, is
calculated as:

« .
_ Xmint¥max

ymom 2 (3)
3.2.4. Smallest of the Maximum Method

In the smallest of maximum method, the smallest value
within the range of values that reaches the maximum degree
of the membership function is selected. It is an alternative that
favors a conservative strategy in systems where lower
responses are preferable [10]. If x;,;, The minimum value
within the set of points with maximum activation is defined
as:

Ysom = Xmin 4)

3.2.5. Largest of the Maximum Method

In this case, the highest value is selected among those
with the maximum activation in the membership function. It
is suitable for applications that seek to favor decisions towards
the upper end of the interval [10].

Let u(x) Be the membership function of the resulting
fuzzy set, the maximum degree of membership e IS
determined, and the set of x values such that:

1(x) = fmax ®)
3.3. Cement Kiln System

The cement kiln system, which is the subject of this study,
is the core of the clinker manufacturing process using the
drying method. It is a dry cement rotary furnace that stands
out for its compact and modern design, which is optimized for
operations with high energy efficiency. Next, we explain how
the system is configured and operates:

The furnace is short, with a length of seventy-five meters
and a diameter of 4.6 meters. This allows for precise control
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of the thermal reactions within the process. Its design is aimed
at achieving a production capacity of up to 3500 tons per day,
meeting the high productivity requirements of contemporary
cement plants. To make the most of the residual heat from the
exhaust gases, the system includes a double-line preheater
organized into four stages.

This preheater is configured with several stages of
cyclones, with three of them having each stage equipped with
two cyclones and stage two equipped with a single cyclone, as
the temperature of the preheater, identified as the most
sensitive point of the process, is measured in this section. This
arrangement makes it possible to improve thermal efficiency
by preheating the raw material before it goes into the main
oven.

The oven, which is a steel cylinder lined on the inside with
refractory material, is tilted a few degrees from the horizontal
and rotates around its axis. This movement, along with the
injection of fuel (liquid in this case, but natural gas can also be
used), creates a combustion that goes in the opposite direction
of the flow of the material, making sure that the heat is evenly
distributed throughout the process.

3.4. Operational Considerations
3.4.1. Maintain a Constant Temperature in the Combustion
Zone

The temperature in the combustion zone must be
maintained within an optimal range, as this is what ensures the
chemical reaction is completed correctly and a high-quality
clinker is formed. Any change outside of this range can have
a harmful effect on the sintering process and the final product's
quality.

3.4.2. Ensure an Adequate Dwell Time for the Material in
the Furnace

The time the material spends in the kiln is important for
the sintering and calcination reactions to occur correctly.
Ensuring an optimal residence time guarantees that the raw
material is treated homogeneously and that the resulting
clinker meets the desired specifications.

3.4.3. Limit the CO Percentage for Complete Combustion.

It is important to control and reduce the percentage of
Carbon Monoxide (CO) in the process. A low CO level
indicates that combustion is being carried out completely,
which improves the utilization of the fuel's calorific content
and helps reduce pollutant emissions.

3.4.4. Maintain an Adequate and Uniform Temperature in
the Preheater

The preheater is important for the pretreatment of the
material, and its temperature must be stable and adequate to
ensure uniform calcination. A well-controlled temperature at
this stage is particularly important for the operational stability
of the kiln and, ultimately, for the quality of the clinker.
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4. Definition of the Problem

The efficient operation of a dry cement rotary kiln
involves managing a series of critical variables that directly
impact the quality of the cement and the energy efficiency of
the plant. The complexity and non-linear nature of the process,
combined with limited sensor availability, make the
development of adaptive control strategies indispensable. In
this context, two fundamental groups of variables are
identified.

4.1. Input Variables
4.1.1. Combustion Zone Temperature (BZ)

This variable indicates the temperature where combustion
occurs, which is vital to ensure that the optimal range (around
1400°C) necessary for a complete chemical reaction and
clinker formation is reached and maintained. Its precise
control directly influences the quality of the final product.

4.1.2. Oven Torque (TOR)

The torque reflects the distribution and movement of the
material inside the furnace, indirectly measured through the
motor current. An adequate torque value ensures a
homogeneous distribution, which is essential for maintaining
the stability of the combustion process and the overall
operability of the furnace.

4.1.3. CO Percentage in the Preheater

These variables measure the level of CO present at the
precooler outlet, an essential indicator of combustion
efficiency. Keeping this percentage low is crucial to ensure
the fuel burns completely, optimizing thermal performance
and reducing energy losses.

4.1.4. Preheater Temperature (PT)

It represents the temperature of the material in the
initial calcination stage within the preheater. A controlled
temperature (approximately 755°C in the studied case) is
essential to ensure a uniform pretreatment of the material,
laying the groundwork for the proper development of
subsequent calcination and sintering processes.

4.2. Output Variables
4.2.1. Kiln Flow (KF)

This variable quantifies the productivity of the kiln,
determining the amount of clinker produced per unit of time.
An optimal flow translates into efficient use of the plant and
maintenance of production at the desired level, directly
impacting the profitability of the process.

4.2.2. Main Burner (MB)

It controls the supply of fuel necessary to raise and
maintain the temperature in the combustion zone. Its
adjustment is crucial to properly sintering the clinker,
allowing for the required thermal balance in the operation of
the furnace.
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4.2.3. Preheater Fuel (PRE)

This variable refers to the fuel flow intended for the
material pre-calcination process. A correct supply ensures that
the material reaches the necessary temperature to release
carbon dioxide and promote the formation of the essential
chemical compounds of the clinker, ensuring an optimal
transition to the rotary kiln.

4.2.4. Kiln Speed (KS)

It represents the rotation speed of the kiln, which
determines the material retention time. A precise control of
this speed is essential to ensure an adequate residence time,
promoting a uniform transformation of the material and proper
sintering.

4.2.5. Preheater Fan Speed (DS)

It controls the gas flow in the preheater, facilitating
thorough combustion and consistent heat dispersion. Its
stability is crucial for optimizing heat transfer and,
consequently, improving the overall efficiency of the pre-
calcination process.

5. Materials and methods
5.1. Design of the Fuzzy Controller

For the design of the fuzzy controller, the approach is
based on the general diagram, as shown in Figure 3, which
represents the functional structure of the fuzzy controller.

5.2. The Fuzzification Technique

To conduct the analysis of this control technique, a
fuzzifier using triangular fuzzy sets is employed, as
implemented by default in the fuzzy logic designer
environment of MATLAB.

This choice is justified by the quality of the representation
that is closest to reality and by the ability to avoid the
propagation of system noise, without the need for probabilistic
or hybrid fuzzifiers.

Table 2. Input and output ranges

Inputs \S?v/ Low | Normal | High \H/i;%
BZ. (°C) 1330 | 1360 1400 1440 | 1470
TOE\)(N ' 0.08 0.18 0.24 0.3 0.4
CO (%) - 0 0.15 0.22 0.3
P.T (°C) 735 745 755 765 775
Outputs
KF (t/h) 244 247 250 253 256
MB (lit/h) | 6250 | 6300 6350 6400 | 6450
PRE (lit/h) | 8800 | 8900 9000 9100 | 9200
KS (r.p.m) 2.6 2.7 2.8 2.9 3
DS (r.p.m) | 900 910 920 930 940
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5.3. Assignment of Membership Functions Table 2 shows the ranges of the outputs and inputs that
Each input variable will have five membership functions: must be considered in the triangular functions of our Fuzzy

"very low," "low," "normal," "high," and "very high." Except  controller according to Figure 2.

for the CO percentage in the preheater, which only has four

membership functions: "low," "normal,”" "high," and "very 5.4. The Fuzzy Rule Base

high." For the outputs, each variable will use five membership Appendix 2] is composed of 88 IF-THEN (Mamdani)
functions of the same classification: "very low," "low," rules, which were obtained from the knowledge of experts
"normal,” "high," and "very high." from the ASEC company in Egypt. These rules cover all

scenarios that can occur during the normal operation of the

Triangular functions were chosen as they adequately  furnace, excluding extreme events such as electrical failures

represent the variables of the real environment, in additionto  or disasters. It is important to note that additional

being computationally efficient. combinations were discarded to represent unrealistic
conditions in the operation of the system.

1A

>
Very Low Low Normal High Very High
Fig. 2 Membership function of inputs and outputs
IF| B.Z TOR co P.I. |THEN| KF MLB. FRE K.S. D.s.
1 Low Normal | Normal Low MNormal High High Nermal | Normal
2 Low Normal | Normal | Normal MNormal High Normal | Normal | Normal
3 Low Normal | Normal High MNormal High Low Narmal | Normal
4 Low Normal High Low Low Normal | MNormal | Normal | Normal
5 Low Normal High MNormal Low Nermal Low Nermal | Normal
[} Low Normal High High Low Normal | Normal | Normal | Mormal
7| Low | Normal |VeryHigh| Low Verylow | Normal | Low | Normal | Narmal
8 Low Normal | VeryHigh | High Low Normal Low Normal | Normal
9 Low Naormal |VeryHigh | High Low Normal | VeryLow | Normal | Normal
10| Low Low Normal Low MNormal High High Low Normal
Basic Mamdani Fuzzy Rules
Inputs: Fuzzification by . Defuzzification by Outputs:
Combustion Zone Temperature (1330-1470 °C) fuzzy set Centroid Method Kiln Flow (244-256 t'h)

Kiln Torque (0.08-0.4 N-m) Main Burner (6250-6450 lit'h)

CO Percentage in the Preheater (0-0.3%) =y ;.‘ e — Preheater Fuel (8800-9200 lit'h)
Preheater Temperature (735-775 °C) Y / \J pa) i Kiln Speed (2.6-3.0 rp.m)
A A = |

Preheater Fan Speed (900-940 r.p.m)

v h 4

FUZZY INFERENCE MACHINE

The fuzzy inference machine acts by evaluating the rules defined in
the system. combining the degrees of membership of the fuzzy
inputs using logical operators "AND" and "OR"

Fig. 3 General diagram of a fuzzy controller
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5.5. Designed a Fuzzy Controller
The result can be found in Appendix 4, which contains the code that represents the program of this fuzzy controller.
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Fig. 4 General diagram of the fuzzy controller - MATLAB
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Fig. 6 Membership functions — outputs (i) KF, (ii) MB, (iii) PRE, (iv) KS, and (v) DS.

Table 3. Rules are evaluated in the controller

IF BZ. (°C) TOR (N -m) CO (%) P.T (°C)
7 low normal very high low
13 low low high low
21 low high normal high
34 very low normal very high low
42 very low low high high
57 high normal normal high
60 high normal high high
66 high low high high
74 very high normal normal high
81 very high high high low
IF BZ. (°C) TOR (N -m) CO (%) P.T (°C)
7 1360 0.24 0.3 745
13 1360 0.18 0.22 745
21 1360 0.23 0.15 765
34 1330 0.24 0.3 745
42 1330 0.18 0.22 765
57 1440 0.24 0.15 765
60 1440 0.24 0.22 765
66 1440 0.18 0.22 765
74 1470 0.24 0.15 765
81 1470 0.3 0.22 745
5.6. Defuzzification gravity), Bisector, Average of Maxima (SOM, MOM, and

In the present work, the five most common LOM), with the aim of comparing the results obtained in each
defuzzification methods will be employed: Centroid (center of ~ case. This comparison will allow us to evaluate how the output
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Output: MB

each type of defuzzification.For each rule, we will use the

with the aim of having a known range to verify the action of
following input variables [Appendix 2].

randomly chosen rules (7, 13, 21, 34, 42, 57, 60, 66, 74, 81),
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CENTROID-type Defuzzification Results for 10 Rules

of the fuzzy system varies depending on the selected method

and determine which of them offers the most suitable

performance in relation to the posed problem. For this, the

following ranges will be considered, corresponding to ten
Output: KF

6. Results and Discussion

6.1. Centroid Method
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Output: KF

6.3. Largest of the Maximum Method
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6.5. Smallest of the Maximum Method

SOM-type Defuzzification Results for 10 Rules
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The analysis of the results obtained from the fuzzy
controller for different inputs shows a clear consistency in
most of the output variables, regardless of the defuzzification
method applied.

As can be seen in Annex 3: Summary of the fuzzy
controller responses for different inputs, the variables of the
Main Burner (MB), Pre Calciner (PRE), Kiln Speed (KS), and
Preheater Flow (DS) show consistent values for all inputs,
indicating low sensitivity to the defuzzification methods
(Centroid, Bisector, LOM, SOM, MOM).

On the contrary, the variable "furnace feed" (KF) shows
notable variations between methods, especially between the
Centroid/Bisector methods and the LOM, SOM, and MOM
methods. For example, for multiple inputs such as #1, #5, #6,
#8, and #9, the Centroid method yields values of 122, while
LOM, SOM, and MOM result in 243.

This behavior suggests that the furnace feed is the
variable most affected by the choice of defuzzification
method, reflecting the differences in how each technique
interprets the distribution of the membership function.

According to the analysis conducted on the methods, the
following comparison is made between the centroid method
and the middle of maximum method, as these are where the
most notable differences in the outputs are observed.
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e  Fuzzy controller stability with Centroid [Appendix. 4]
e  Fuzzy controller stability with MOM [Appendix. 4]

Detailed investigation of the furnace Energy Flow (KF)
reaction to different desulfurization methods shows that this
variable is the most essential element for system stability. In
the simulations performed (see additional videos), minimal
fluctuations in the maximum-based methods (LOM, MOM,
and SOM) generate more cautious and stable responses.

On the other hand, the centroid technique produces
longer oscillations, which show a more significant effect on
the global distribution of the membership function. This
sensitivity indicates that choosing an incorrect method could
cause problems in the furnace feed, which would affect the
uniformity of clinkerization and heat efficiency.

In contrast to advanced predictive control techniques or
adaptive strategies mentioned in the literature, the proposed
fuzzy approach provides optimal performance, as it achieves
feed stabilization without requiring complex modeling or a
considerable computational load. However, a drawback has
been detected: the fuzzy methodology is based on the proper
determination of membership functions and the rules of the
specialists. Therefore, future improvements could include
combined strategies that amalgamate fuzzy logic with
automatic optimization techniques or supervised learning to
decrease this sensitivity.
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7. Conclusion

This study shows that variables such as preheater flow
rate, Kiln speed, and pre-firing energy are constant
regardless of defuzzification. This indicates that the
method has no significant effect on the outcomes..

On the other hand, the Kiln Feed rate (KF) varies
depending on the defuzzification method selected. This is
crucial in ensuring the fine-tuning and control system
works properly.

The results of the centroid method differ significantly
from those of the LOM, SOM, and MOM methods. This
shows that the centroid method is more sensitive to the
distribution of member functions. Therefore, when used

for the same industrial purpose, using maximum value-
based methods to obtain more reliable and predictable
results would be appropriate.

Most variables remain constant in most cases, but using
an inappropriate defuzzification method can cause
significant fluctuations in important variables such as the
furnace's fuel feed. This can make the clinker production
process unstable and inefficient.

In the future, by combining fuzzy control with
optimization and adaptive learning approaches, it will be
possible further to reduce the sensitivity of industrial
furnaces to important parameters, stabilize the process,
and reduce energy consumption.
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Appendix 1. Justification for the Selection of Eighty-Eight Fuzzy Rules

As we mentioned, we would have five fuzzy labels for each of the 4 inputs (BZ, TOR, CO, P.T.), so there would be 625
possible antecedent combinations "IF ... THEN ...". However, in practice, only eighty-eight rules are implemented, selected
according to the following criteria:

i) Operational Relevance
o  Definition: Only the combinations of process conditions that occur in a cement rotary kiln during normal operation or
in typical variation situations (changes in raw materials, partial blockages, degradation of linings, etc.) are considered.
e  Example:
Discarded rule: IF BZ is Very Low AND TOR is Very High AND CO is Very Low AND P.T is Very Low, so why is
it not used? An extremely low combustion temperature (BZ "Very Low") with very high torque implies that the furnace
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is cold but loaded with material, a condition that never occurs; either the furnace stops (manually), or the torque drops
as it cools down.

ii) Physical Plausibility

Definition: Contradictory or physically impossible combinations are eliminated, for example, very low CO levels (very
complete combustion) when the combustion zone temperature is "Very Low.

Example:

Discarded rule: IF BZ is Very Low AND CO is Very Low AND P.T is Very High AND TOR is Low, so,

Why is it not used? There cannot be a minimum CO (perfect combustion) while the temperature of the combustion zone
falls below the minimum threshold.

iii) Expert Knowledge and Operational Tests in a Real Plant

The eighty-eight implemented rules are not generated arbitrarily or theoretically but were constructed based on the
empirical knowledge of operators and engineers from ASEC Cement (Egypt), a company recognized for its expertise
in handling high-capacity cement rotary kilns.

The eighty-eight implemented rules are not generated arbitrarily or theoretically but were constructed based on the
empirical knowledge of operators and engineers from ASEC Cement (Egypt), a company recognized for its expertise
in handling high-capacity rotary cement kilns.

These rules were designed after multiple tests in real industrial environments, where the most frequent operating ranges,
critical process points, and combinations requiring automatic adjustments were identified. These rules were designed
after multiple tests in real industrial environments, where the most frequent operating ranges, critical process points,
and combinations requiring automatic adjustments were identified.

Therefore, the rule base faithfully represents the operational reality of the furnace, incorporating the accumulated
experience of normal events and controlled variability situations. Extreme or infrequent conditions resolved manually
or by stopping the system were not considered within the automatic control.

iv) Reduction of Redundancies

Definition: Many adjacent combinations (for example, "Low" vs. "Very Low" in BZ with identical conditions in TOR,
CO, and P.T.) produce similar adjustments in the outputs. These are grouped under a representative rule to smooth the
control surface without sacrificing resolution.

v) Unimplemented Rules
Next, we explain two theories within our total rule map, but that were not used:

Theoretical rule 1: IF BZ is Very High AND TOR is High AND CO is Very Low AND P.T is Very High
THEN...Reason for rejection: A "Very High" BZ (>1470 °C) and "Very High" P.T (~775 °C) would generate high CO
due to incomplete combustion, not "Very Low". This combination contradicts the physics of combustion and never
occurs in actual operation.

Theoretical rule 2: IF BZ is Normal AND TOR is Very Low AND CO is Very High AND P.T is Low THEN...
Reason for discard: A "Very Low" torque would imply little material in the combustion zone (high overheating), which
does not coincide with a "Very High" CO (poor combustion). This situation would correspond to a catastrophic failure
that is managed manually, not with the FLC.

Appendix 2. Fuzzy Rule Bases

BASE OF FUZZY RULES

IF BZ. TOR CO P.T. THEN KF. MB. PRE KS. DS.

1 low normal normal low normal high high normal normal
2 low normal normal normal normal high normal normal normal
3 low normal normal high normal high low normal normal
4 low normal high low low normal normal normal normal
5 low normal high normal low normal low normal normal
6 low normal high high low normal low normal normal
7 low normal | very high low very low | normal low normal normal
8 low normal | very high high low normal low normal normal
9 low normal | very high high low normal | verylow | normal normal
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10 low low normal low
11 low low normal normal
12 low low normal high
13 low low high low
14 low low high normal
15 low low high high
16 low low very high low
17 low low very high | normal
18 low low very high high
19 low high normal low
20 low high normal normal
21 low high normal high
22 low high high low
23 low high high normal
24 low high high high
25 low high very high low
26 low high very high | normal
27 low high very high high
28 very low | normal normal low
29 very low | normal normal normal
30 very low | normal normal high
31 very low | normal high low
32 very low | normal high normal
33 very low | normal high high
34 very low | normal | very high low
35 very low | normal | very high | normal
36 very low | normal | very high high
37 very low low normal low
38 very low low normal normal
39 very low low normal high
40 very low low high low
41 very low low high normal
42 very low low high high
43 very low low very high low
44 very low low very high | normal
45 very low low very high high
46 very low high normal low
47 very low high normal normal
48 very low high normal high
49 very low high high low
50 very low high high normal
51 very low high high high
52 very low high very high low
53 very low high very high | normal
54 very low high very high | normal
55 high normal normal low
56 high normal normal normal
57 high normal normal high
58 high normal high low
59 high normal high normal
60 high normal high high
61 high low normal low
62 high low normal normal

normal high high low normal
normal high normal low normal
normal high normal low normal
low normal normal low normal
low normal normal low normal
normal normal low low normal
very low | normal normal low normal
very low | normal low low normal
low normal low low normal
normal high normal normal normal
normal high normal normal normal
normal high low normal normal
low normal normal normal normal
low normal low normal normal
low normal | verylow | normal normal
very low | normal low normal normal
low normal low normal normal
low normal | very low normal normal
very high | normal high low normal
normal | very high | normal low normal
normal | very high low low normal
low normal normal low normal
low normal low low normal
low normal | very low low normal
very low | normal low low normal
very low | normal | verylow low normal
low very low | normal low normal
low very high | normal low normal
low very high | normal low normal
low very high low low normal
very low | normal low low normal
very low | normal low low normal
very low | normal | verylow low normal
very low | normal low low normal
very low | normal low low normal
very low | normal | verylow normal normal
normal | very high | normal normal normal
normal | very high | normal normal normal
normal | very high | normal normal normal
low high low normal normal
low high low normal normal
low high low normal normal
very low | normal low normal normal
very low | normal | verylow | normal normal
low normal | verylow | normal normal
normal low low normal normal
high low high normal normal
high low normal normal normal
normal low high normal high
normal low normal normal high
normal low low normal normal
normal low high normal normal
normal low normal normal normal
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63 high low normal high normal low normal normal normal
64 high low high low normal normal high normal high
65 high low high normal normal low normal normal high
66 high low high high normal low normal high normal
67 high high normal low high normal high high normal
68 high high normal normal high normal high normal normal
69 high high high low normal low normal normal high
70 high high high normal normal low normal normal high
71 high high high high high low normal low high
72 very high | normal normal low high low high normal low
73 very high | normal normal normal high low high normal normal
74 very high | normal normal high high low normal normal normal
75 very high | normal high low high very low high normal high
76 very high | normal high normal high very low high normal high
77 very high | normal high high high very low | normal high high
78 very high high normal low high very low high high high
79 very high high normal normal high very low high high high
80 very high high normal high high very low | normal high normal
81 very high high high low high very low high high high
82 very high high high normal high very low high high high
83 very high high high high high very low | normal normal high
84 normal normal normal low normal normal high normal normal
85 normal normal normal high normal normal low normal normal
86 normal normal high high normal normal normal normal high
87 normal normal high normal normal normal normal normal high
88 normal normal high high normal normal low normal high
Appendix 3. Summary of fuzzy controller responses to different inputs
Variable Centroid Bisector LOM SOM MOM
KF KilnFeed 122 123 243 243 243
MB Main Burner 6370 6370 6370 6370 6370
Input #1 PRE Precalciner 8900 8900 8900 8900 8900
KS KilnSpeed 2.8 2.8 2.8 2.8 2.8
DS PreheaterFlow 920 920 920 920 920
KF KilnFeed 247 246 246 246 246
MB Main Burner 6370 6370 6370 6370 6370
Input #2 PRE Precalciner 9000 9000 9000 9000 9000
KS KilnSpeed 2.7 2.7 2.7 2.7 2.7
DS PreheaterFlow 920 920 920 920 920
KF KilnFeed 247 246 246 246 246
MB Main Burner 6370 6370 6370 6370 6370
Input #3 PRE Precalciner 8900 8900 8900 8900 8900
KS KilnSpeed 2.7 2.7 2.7 2.7 2.7
DS PreheaterFlow 920 920 920 920 920
KF KilnFeed 247 246 246 246 246
MB Main Burner 6370 6370 6370 6370 6370
Input #4 PRE Precalciner 8900 8900 8900 8900 8900
KS KilnSpeed 2.6 2.6 2.6 2.6 2.6
DS PreheaterFlow 920 920 920 920 920
Input #5 KF KilnFeed 122 123 243 243 243
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MB Main Burner 6120 6120 6120 6120 6120
PRE Precalciner 8900 8900 8900 8900 8900

KS KilnSpeed 25 2.5 2.5 25 25

DS PreheaterFlow 920 920 920 920 920

KF KilnFeed 122 123 243 243 243
MB Main Burner 6120 6120 6120 6120 6120
Input #6 PRE Precalciner 8900 8900 8900 8900 8900
KS KilnSpeed 25 2.5 2.5 25 25

DS PreheaterFlow 920 920 920 920 920

KF KilnFeed 247 246 246 246 246
MB Main Burner 6120 6120 6120 6120 6120
Input #7 PRE Precalciner 8900 8900 8900 8900 8900
KS KilnSpeed 2.6 2.6 2.6 2.6 2.6

DS PreheaterFlow 920 920 920 920 920

KF KilnFeed 122 123 243 243 243
MB Main Burner 6120 6120 6120 6120 6120
Input #8 PRE Precalciner 8900 8900 8900 8900 8900
KS KilnSpeed 2.7 2.7 2.7 2.7 2.7

DS PreheaterFlow 920 920 920 920 920

KF KilnFeed 122 123 243 243 243
MB Main Burner 6370 6370 6370 6370 6370
Input #9 PRE Precalciner 9000 9000 9000 9000 9000
KS KilnSpeed 2.7 2.7 2.7 2.7 2.7

DS PreheaterFlow 920 920 920 920 920

KF KilnFeed 247 246 246 246 246
MB Main Burner 6370 6370 6370 6370 6370
Input #10 PRE Precalciner 9000 9000 9000 9000 9000
KS KilnSpeed 2.8 2.8 2.8 2.8 2.8

DS PreheaterFlow 920 920 920 920 920

Appendlx 4. Database link

Video of the controller's response using the centroid method.
Video of the controller's response with the MOM method.
Source code for the fuzzy controller program.

Fuzzy test program source code.

Source code for fuzzy test simulation.
https://data.mendeley.com/preview/9ms8p22chd?a=11ae57b6-3685-4679-a271-696f39735eaf
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