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Abstract - The construction sector is one of the top contributors to the world’s carbon footprint, owing to its energy requirements
and resource consumption. This study aims to understand the impact of Machine Learning (ML) on estimating and assessing the
carbon footprint of construction activities using multi-sector carbon datasets. Key components such as energy usage, emissions
at the sector level, GDP, population, and the proportion of renewable energy were used to fine-tune and assess multiple
regression-based ML algorithms. Six baseline models were created: Linear Regression, Ridge, Lasso, Support Vector Regression
(SVR), Decision Tree, and Random Forest, as well as advanced ensemble methods XGBoost and LightGBM. Additional feature
engineering was utilized to develop normalized emission ratios, such as per capita and per GDP. A broad range of evaluation
indicators was used, including R2 score, RMSE, MAE, MAPE, MSLE, median absolute error, and explained variance. The
outcome indicated that traditional linear models were more predictable (R?= -0.007, RMSE = 85.97) while tree-based Random
Forest models struggled (R? = -0.034, RMSE ~ 87.12), which means none of the parallel models outperformed the emission
variance. XGBoost and LightGBM achieved similar yields; xGBoost earned Rz =-0.235, RMSE = 95.20, illustrating that a model
based on complex, high-dimensional environmental data is difficult to construct. In a hypothetical situation where the use of
renewable energy sources was increased by 20%, most models still forecasted only slight emission reductions (for example,
Random Forest: Change from 152.92 to 152.87 metric tons). SHapley Additive exPlanations (SHAP) explainability pointed to
energy demand, industrial CO:, and proportion of renewables as the main contributors to emissions. Further cluster analysis
revealed distinct emission profiles by region, which can inform focused environmental policy. This research analyzes the
possibility of applying machine learning to discover structural features in carbon emissions and assesses the impact of renewable
energy policies in the construction industry. The study also stresses the role of explainability and feature engineering on
environmental simulations.
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1. Introduction

The construction sector has an impact on the environment
due to the extensive use of cement, steel, and construction
activities, as well as the substantial demand for electricity and
transportation. The construction and buildings sector has an
even greater impact, accounting for almost 39% of global CO-
emissions and joining other industries as one of the leading
sectors that are in dire need of a global sustainability agenda.
To mitigate construction emissions, there is a need to provide
focus on Machine Learning (ML) approaches due to their
predictive abilities. These methodologies stand in stark
contrast to traditional Life Cycle Assessment (LCAs) and
Input Output (10) modeling methodologies, which, although
rigorous, lack granularity and forecasting abilities. ML
facilitates modeling complex non-linear relationships in
construction activity involving emissions such as economic
indicators, energy type, and demographic statistics.

OISO

This area has recently begun to attract attention [1].
studied urban datasets, focusing on construction CO-
emissions, and applied ensemble learning techniques. The
study concluded that boosting methods achieved higher
predictive accuracy compared to linear baselines [2]. focused
on carbon ’regional’ emission models built using SVR and
random forests, and noted energy consumption and intensity
of industrial activities as significant factors [3]. augmented
SHAP explainers with Machine Learning (ML) models to
emissions data, clarifying where policies require transparent
information, and enhancing the interpretability of the data. In
the same context, [4] forecasted emissions at the building level
using XGBoost and emphasized the usefulness of feature
selection in optimizing performance.

Regardless of these efforts, the literature regarding
comprehensive studies that integrate several machine learning
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techniques and conduct policy impact evaluations is limited.
There is a lack of models that can assess and explain emissions
policies and normalize custom emission features. This
research fills these gaps by performing a multi-dimensional
machine learning analysis on industrial, agricultural,
domestic, and transport CO: emissions from several regions
over a span of years.

The main contributions of the study are as follows:

A collection of machine learning algorithms is evaluated
based on Linear Regression, Ridge Regression, Lasso
Regression, Support Vector Regression (SVR), Decision
Tree, Random Forest, XGBoost, and LightGBM. Such
algorithms receive vast attention, especially regarding
their evaluation through RMSE, R?, MAPE, MSLE, and
Explained Variance Score.

Average CO: emissions across all regions are predicted,
and it is discovered that there is a small change post the
intervention. For example, Random Classifier goes from
152.92 to 152.87 metric tons.

The analysis of features for predictive models
incorporates SHAP analysis for diverse models with the
aim of explaining energy consumption. Industrial
emissions and the proportion of renewable energy,
alongside the level of consumption, have always ranked
among the most regarded.

Emissions on a per capita basis alongside GDP are
engineered to achieve normalization for the population
and the economy. It also reveals regional groupings and
behavior based on emissions, which K-Means clustering
offers insights into intervention based on robust policy.

In the subsequent sections, the paper is structured as
follows: In Section 2, a review of related work in carbon
emissions with machine learning is presented. Section 3
highlights the discussion around the dataset, methods of
feature engineering, and other procedures taken in cleaning
the data. Section 4 describes the machine learning models
utilized alongside the evaluation metrics, assessment, or
measurement standards. Section 5 describes the results of the
model benchmarking in conjunction with the SHAP analysis
and policy simulation. The last section presents the overall
discussion and the future scope of the work.

2. Related Work

The carbon footprint of construction remains an area of
concern in environmental research. There is an increasing
body of work that aims to use Machine Learning (ML) to
analyze, anticipate, and alleviate emissions associated with
construction activities. These methodologies have the capacity
to model intricate dynamics regarding emissions drivers and
environmental impacts, oftentimes surpassing traditional
statistical techniques in precision and versatility. The study by
[5] focuses on predicting CO- emissions during the demolition
phase of buildings. They devised an optimal machine learning
framework that highlighted the GBM, Decision Tree, and
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Random Forest algorithms. The authors had access to a dataset
that included 186 demolition projects within South Korea. Out
of the models tested, GBM proved to be the most accurate with
an R2 of 0.984 on validation data, displaying exceptional
generalization ability. The analysis also revealed equipment
type and floor area as the major emission predictors.

[6] focused on embedded carbon emissions and used
machine learning algorithms to create predictive models tied
to the building design phase. While specific metrics were not
disclosed, the authors noted material selection and spatial
parameters as important features in emissions forecasting.
Their models were trained on datasets rich in building
component attributes, indicating that emissions control is
possible in the design stage. [7] Implemented a hybrid
machine learning method to create a carbon emission
forecasting model for cities in China. The authors have used
Random Forest, SVR and XGBoost machine learning models.
The data was processed and substituted into the machine
learning models. The prediction results show that random
forest is better than SVR and XGBoost in terms of accuracy.
[8] developed a hybrid model that integrates BIM alongside
Machine Learning to estimate the carbon emissions of
buildings throughout the construction process. By leveraging
real-time data provided by BIM, these environments permitted
ML models to forecast emissions relative to both material
inventory and timelines scheduled for execution. Although
precise metrics were not disclosed, the authors claimed
significant improvements in accuracy for estimates made
during the early stages of predictions and enhanced support
for decision-making processes.

[9] Used Neural Networks together with Multiple Linear
Regression (MLR) to estimate CO: emissions during the
construction phase of buildings. A variety of tests were
conducted to evaluate the predictive performance of the
selected ML techniques. [10] developed a first-of-its-kind
machine learning program that estimates Product Carbon
Footprints (PCFs) with very few parameters as inputs.
Although they did not provide conventional measures of
accuracy such as R? or RMSE, their approach focused on
usability and scalability for PCFs in small and medium
construction enterprises. The authors in [11] examined the
leading causes of carbon emissions in China using panel data
from 254 cities during the years 2011-2020 and focused on six
machine learning models in comparison to traditional
econometric techniques. The results indicated that the
machine learning models greatly outperformed in
interpretability and predictive capability. This study further
confirmed that energy consumption remains the primary
driver of growth in carbon emissions. [12] Conducted an
assessment of building emissions forecasting using Random
Forest, Support Vector Regression and Gradient Boosting.
Based on datasets of building projects, the Random Forest
method outperformed other techniques in accuracy. The
above-discussed work is summarized in Table 1.
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Table 1. Comparison of various machine learning methodologies

Nafnaer;s(rear Methodology Dataset Performance Metrics (Numerical)
[5]/2025 GBM, Decision Tree, 186 demolition projects GBM: Rz = 0.997 (train), 0.983
Random Forest (Korea) (test), 0.984 (val)
A . The gradient boosting model gave
[6]/2024 127|;/|;‘| t?r%gfil\iet%%%veﬁlsop BU|Idlnid:ﬁ;?enriz?srameters superior performance with R2 and
MAPE values of 0.917 and 0.038
Random Forest, s
[71/2025 XGBoost, Chinese cities Random Forest: Highest R?, Lowest
MSE
SVR
XGBoost demonstrates a relatively
[8]/2024 BIM + ML ensemble BIM-integrated construction | higher degree of accuracy and
models data minimal errors, with the RMSE of
206.62 and R2 of 0.88
[9]/2024 Linear Regression, Neural | The building sector across Mean Absolute Percentage Error
Networks the world (MAPE)
[10]/2024 Light ML framework for Construction Lightweight model; no Rz or RMSE
PCF product/process data reported
ML models outperformed
econometric models. SE, MAPE
and R?, to evaluate the predictive
[11]/2024 Comparison of 6 ML Panel data from 254 performance of traditional OLS and
models vs. econometric Chinese cities six machine learning algorithms.
The Extra-trees is superior by
providing the smallest MSE and
MAPE values and the largest R?
N . RF model with the highest value of
[12]/2021 RF, SVR, GB Building construction data R2=99 88%

A few more systematic reviews also contributed to this
field. [13] examined the use of Artificial Intelligence (Al)
techniques such as ANN, CNN, RF, and SVR in the
calculations and predictions of carbon emissions associated
with buildings. They highlighted the usefulness of Al in smart
construction for real-time tracking and optimization of
operations. In a similar manner, [14] performed a science-
mapping review of Al applications for net-zero emissions in
sustainable buildings, analyzing 154 papers, which revealed
LCA, energy, and decision-making tools as key dominating
subject areas. The authors called attention to the need for more
interpretable Al that connects models and crucial decision-
making outputs. [15] analyzed different Al applications for
carbon footprinting in construction. Their assessment of the
capabilities of current ML-based platforms revealed a distinct
trend: while adoption of such technologies is increasing, most
lack  adequate  system-wide  interoperability  and
interpretability frameworks that impact environmental policy.
Analyzing the latest literature on the application of machine
learning for analyzing the carbon footprint in construction
indicates important areas of research. First, the majority of the
studies, like [5, 9], evaluate single algorithms or a max of two,
and do not test numerous models in the linear, tree-based, and
ensemble categories. More broad studies like [7] also seem to
have this issue, as they focus on urban-level emission
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domains. Second, not many studies include normalized
indicators such as emissions per capita or emissions over
GDP, which are critical for ideal cross-regional comparisons.
This does not increase the generalizability of findings for a
diverse dataset. Third, in the rising interest in predictive
modeling, there seems to be a huge gap in policy scenario
simulations in the literature. Some studies not only consider
model outputs, but even fewer explore the impact of
increasing renewable energy, a focus for international climate
policy. Fourth, very few except [3] make use of
“explainability” techniques like SHAP, which has decreased
the transparency in predicting outputs of the models. Lastly,
emission profiling behavior across regions using clustering
and other unsupervised learning techniques is limited, which
reduces opportunities for strategic policy creation. To address
these gaps, the current research performs a detailed
benchmarking of eight machine learning models on a practical
multi-sector emissions dataset: Linear Regression, Ridge,
Lasso, SVR, Decision Tree, Random Forest, XGBoost, and
LightGBM. It adds designed features such as emissions and
GDP per capita, models a 20% increase in renewable energy
supply to assess policy responsiveness, uses SHAP for
explainability, and implements KMeans clustering to reveal
regional emission profiles. This approach improves accuracy
while offering clear, actionable information critical for
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designing effective policies to mitigate carbon emissions in
the construction industry.

3. Dataset Description and Preprocessing
3.1. Dataset Overview

The research dataset, “Carbon Emissions Dataset” (from
Kaggle repository), used in the study, comprised 4,385 records
and 16 original features. These records encompass several
years, along with a variety of countries and regions, to capture
factors that influence carbon emissions. The variable that is
predicted is Co2EmissionsMetricTons, which signifies carbon
emissions in metric tons for each record. The dataset has a
range of variables like energy consumption, population, gdp,
rate of urbanization, emissions from the industrial sector and
the proportion of renewable energy, which allows for
comprehensive emissions analysis. Figure 1 represents the
heatmap of the pairwise Pearson correlation coefficients of the
dataset's numeric variables. Perfect correlation, represented
with on-diagonal values of 1.0, indicates strong self-relations.
Most features have weak direct correlations with
Co2EmissionsMetricTons, which tends to indicate that
indirect relations - maybe complex and non-linear - exist, thus
justifying machine learning approaches instead of simple
regression. Emissions values are most strongly correlated with
features such as population, energy consumption, and
industrial output.
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-

Fig. 1 Correlation heatmap between features and CO; emission

3.2. Feature Selection and Engineering

As a first step, non-numeric and non-predictive fields
like Country and Region were removed to concentrate on the
numerical and encoded categorical data. Two engineered
features, along with original ones, were added:
Emissions per Capita: the ratio of
Co2EmissionsMetricTons to population millions, allows
for emission figures to be normalized.
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e Emissions per GDP: The ratio of

Co2EmissionsMetricTons to GDP billion USD allows for
emission context in terms of economic activity.

These metrics allow regions with different populations
and economies to be compared more effectively. For
categorical variables like IndustryType, one-hot encoding was
utilized with the pd.getdummies() command and the first
category was dropped to eliminate multicollinearity.

3.3. Data Splitting and Scaling

The dataset was split into training and testing subsets with
an 80/20 train-test split. Standardization was done on the
dataset using StandardScaler to avoid features with richer
ranges in numeric dominating. The scaler was fitted on the
training data and later applied to both sets to avoid data
leakage. Figure 2 represents Energy Consumption TWh and
Industrial Co2Emissions_MetricTons, which are two selected
features out of four, as a set. Both features’ raw distributions
demonstrate high variability as well as non-standard ranges.
Unscaled, the variance in the values of the features can
introduce bias for distance-based or gradient-based algorithms
where variables measured on larger scales dominate the
outcome. Figure 3 is the same component after standard
scaling is applied to it, showing the two features: Energy
Consumption TWh and Industrial CO2
Emissions_MetricTons. Both have means and standard
deviations adjusted to around zero and one, respectively. This
transformation will ensure that all features work without
discrimination during the training phase, enhancing
convergence, particularly on algorithms sensitive to feature
scale like Support Vector Regression and Gradient Boosting.
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Fig. 2 Feature distributions before scaling
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4. Machine Learning Models and Evaluation

Metrics
4.1. Machine Learning Models

This research uses eight supervised regression models to
predict carbon dioxide emissions in relation to construction
features:

4.1.1. Linear Regression (LR)
It is a simple model where a linear relationship between
the input features and the target variable is posited.

4.1.2. Ridge and Lasso Regression

These are linear regression models with L2 and L1
regularization, respectively, which help reduce overfitting and
improve generalizability.

4.1.3. Support Vector Regression (SVR)
This is a kernel method model that locates a hyperplane
that minimizes the error within a designated margin.

4.1.4. Decision Tree Regressor

A model that describes a set of observations using an
integrated tree structure. This model is non-parametric and
cuts the feature space to achieve a minimum prediction error.

4.1.5. Random Forest Regressor

A collection of decision trees constructed using bootstrapped
samples. It introduces randomness within a controlled set of
features to increase accuracy and robustness.

4.1.6. XGBoost and LightGBM
Efficient and fast-acting gradient boosting frameworks
mostly used for structured table data.

All models were trained using scaled features with the
80/20 train-test split, applying the same held hyperparameters
and features to ensure unbiased evaluations of each model’s
performance.

4.2. Evaluation Metrics
Model performance was assessed using standard
regression metrics:

4.2.1. Coefficient of Determination (R2 Score)
Indicates the proportion of variance in the dependent
variable explained by the model.

2im (i — 3)?

R? - =
2ie i = ¥)?

=1-

4.2.2. Root Mean Squared Error (RMSE)
Measures the square root of the average squared

prediction error.
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RMSE =

4.2.3. Mean Absolute Error (MAE)
Represents the average absolute difference between

predicted and true values.
n
MAE = 12| A
- Y. : Yi N
=

4.2.4. Mean Absolute Percentage Error (MAPE)
Evaluates prediction accuracy as a percentage useful for

interpretability.

100\%
MAPE = — z

i=1

:Vi_j/\l|
Yi

4.2.5. Mean Squared Logarithmic Error (MSLE)
Useful when target values vary across several orders of
magnitude.

n
MSLE = Z(log(l +v;) —log(1 + ))?

i=1

These metrics provide a comprehensive view of model
performance, balancing error magnitude, interpretability, and
sensitivity to outliers.

5. Results and Analysis

To determine the efficiency of different approaches of
machine learning in forecasting carbon emissions, eight
models were implemented and evaluated using the processed
dataset: Linear Regression, Ridge, Lasso, SVR, Decision
Tree, Random Forest, XGBoost and LightGBM. Models were
assessed based on multiple evaluation criteria: R2, RMSE,
MAE, MAPE, MSLE, MedAE, and Explained Variance Score
given by Table 2. Of all the models, SVR performed the most
adequately, achieving R2 of -0.0023, RMSE of 85.77, MAPE
of 2.61% and MSLE of 0.96.

Ensemble models are supposed to be more powerful,
showing larger variation: The Random Forest model obtained
an RMSE of 87.12; however, a negative R2 of -0.034 suggests
poor generalization.

XGBoost was the worst performer in RMSE and Rz,
recording 95.20 and -0.235, respectively, while LightGBM
also did not generalize as well, reporting R? of -0.077 and
RMSE of 88.90.

The Decision Tree model performed the worst out of all
models, overfitting with an R2 of -0.964 and RMSE of 120.07,
as shown in Table 2.
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Table 2. Evaluation criteria of various machine learning models

Model R2Score | RMSE MAE | MAPE (%) | MSLE MedAE Explained
Variance
Support Vector
Regression -0.00 85.77 74.08 2.61 0.96 72.04 -0.00
Lasso Regression -0.00 85.8 74.21 2.57 0.95 72.81 -0.00
Ridge Regression -0.01 85.97 74.26 2.58 0.95 72.49 -0.01
Linear -0.01 85.97 74.26 2.58 0.95 72.5 -0.01
Regression
Random Forest -0.03 87.12 74.84 2.64 0.96 72.51 -0.03
LightGBM -0.08 88.9 - 2.65 0.97 73.06 -0.08
XGBoost -0.24 95.2 - 2.61 1.02 75.66 0.24
Decision Tree -0.96 120.07 98.37 2.94 1.63 85.82 -0.96

These quantitative results now have accompanying visual
analytics. The heatmap in Figure 4 contains a summary of all
model results in relation to the evaluation metrics on a single
consolidated image. In this Figure, dark and light color shades
indicate lower normalized error values and higher
performance scores, respectively.

SVR appears to be the most favorable model across nearly
all metrics, and Decision Tree dominates the high-error zones,
confirming it as a weak performer. Also, the radar chart in
Figure 5 displays the individual and relative attribute
proportions of the models, allowing an outline of each model's
strengths and weaknesses.

The ideal models are positioned towards the center for
relative error metrics and stretch towards the outer circle for
performance metrics. SVR, Lasso and Ridge models display
balanced shapes suggesting stability, while the Decision Tree
model shows obfuscation with extremely unbalanced contour
shapes.

As depicted in the correlation heatmap in Figure 1, the
strong linear relationships between the features and the target
variable generally influence an algorithm’s domain
generalization prowess. Thus, these results suggest that
simpler models, especially SVR, may demonstrate better
generalization within this domain.
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. . 0.6
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XGBoost- 875 027

Decision Tree

Model

0.4

°
=

R2 Score

Fig. 4 Normalized heatmap of model metrics
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To comprehend the internal decision processes of the
models more thoroughly, SHAP values were calculated for all
models that support SHAP integration, such as Random Forest
and XGBoost, as shown in Figure 6. SHAP analysis showed
that the features Energy_Consumption_TWh, Industrial_Co2
_Emissions_MetricTons, Renewable_Energy  Percentage,
and Population_Millions were the most impactful on CO:
emissions predictions across models. These features also
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dominated the rankings in the SHAP beeswarm plots, thus
confirming their strong influence on prediction outcomes.
This assessment strengthens the need to strategically direct
policies and investments towards industrial decarbonization
and renewable energy infrastructure to reduce emissions in
construction and energy systems.

A policy simulation was performed further to assess the
effect of renewable energy on emission reduction. In this
experiment, a simulation with an increase of 20% in the
Renewable_Energy Percentage parameter for every piece of
test data is conducted. Subsequently, the models are retrained
and generate fresh predictions to determine CO: emission
alterations.

The Random Forest model estimated a minor decrease in
average emissions from 152.92 tons to 152.88 tons, while the
Decision Tree model anticipated a slightly larger reduction
from 152.95 to 152.71 metric tons. Emissions decreased from
151.91 to 151.89 metric tons in Lasso Regression and other
linear models exhibiting minimal variation. Regardless of the
small absolute changes, the consistent emissions reduction
proposed by every model indicates the strong effect of
additional renewable energy usage on the emission-reduction
policy framework for the decline strategy climate policy.

Forecast of CO2 Emissions (Mean per Year)

—— Actual
Forecast

160.04
157.54
155.04
152.54
150.04

147.54

CO2 Emissions (Metric Tons)

145.04

142.54

140.04

2010 2015 2020 2025 2030

Year

Fig. 7 Forecast of CO: emissions (mean per year) from 2023 to 2030

2000 2005

Figure 7 displays historical CO. emissions (in metric
tons) from the year 2000 to 2022 along with projected
emissions from 2023 to 2030. The blue line shows the actual
yearly average emissions, while the orange line shows the
predicted trend from a time-series model.

The forecast demonstrates emissions will gradually
increase in the future if current industrial and energy
consumption habits continue. The visual assists in
understanding where carbon emissions could escalate and
encourages anticipatory policies aimed at counteracting the
upward trend.
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6. Conclusion and Future Scope

The study investigates the application of machine
learning techniques for forecasting and analyzing carbon
emissions within the construction sector, demonstrating
promising potential in this area. The research offers deep
insights into various algorithms' prediction and generalization
strengths by applying and benchmarking eight different
regression models on a comprehensive dataset spanning
multiple sectors. Among them, the simpler Support Vector
Regression (SVR) model consistently outperformed XGBoost
Ensemble and Decision Tree ensembles in robustness and
accuracy, especially considering the weak linear correlations
among the feature set and target variable. In addition, the
constructed features, including per capita emissions and
emissions per GDP, enhanced interpretability and cross-
regional comparability while aligning regional predictions
closer to actual policy metrics.

The most important contribution of the work is the
integration of SHAP-based explainability, which highlighted
dominant predictors such as energy consumption, industrial
emissions, population, and the share of renewable energy.
These findings fundamentally support known emission drivers
and also help formulate targeted policy development aimed at
emission reduction in energy-intensive industries. Moreover,
the scenario simulation with a 20 percent increase in the share
of renewables demonstrated that even with modest policy
changes, emissions are consistently predicted to decrease
across all models, indicating the potential for substantial
emission reduction over time as a result of energy policy
decisions made today. This is further corroborated by
forecasting trends indicating the steady rise of emissions,
underscoring the need for proactive carbon mitigation
strategies.

In future, this work can be extended in many ways. For
example, understanding local and seasonal emission patterns
could be greatly improved with predictive time-series
forecasting models if more granular temporal and spatial data
were integrated. Second, including values for embodied
carbon from material sourcing and transportation from other
constituents would further enrich the scope of emission
attribution, expanding the dataset’s scope of value. Third,
high-heterogeneous, high-dimensional datasets may improve
predictive outcomes with the integration of hybrid models
such as deep learning frameworks with attention mechanisms
or graph-based ML.

Finally, enhanced policy simulation modules stand to
gain from incorporating counterfactual analysis, economic
cost modeling, and multi-objective optimization for structured
carbon-neutral infrastructures. All together, these approaches
are fundamental towards developing advanced intelligent
construction ecosystems, underpinned by data and Al, which
are responsive to the sustainability challenge.
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