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Abstract - The construction sector is one of the top contributors to the world’s carbon footprint, owing to its energy requirements 

and resource consumption. This study aims to understand the impact of Machine Learning (ML) on estimating and assessing the 

carbon footprint of construction activities using multi-sector carbon datasets. Key components such as energy usage, emissions 

at the sector level, GDP, population, and the proportion of renewable energy were used to fine-tune and assess multiple 

regression-based ML algorithms. Six baseline models were created: Linear Regression, Ridge, Lasso, Support Vector Regression 

(SVR), Decision Tree, and Random Forest, as well as advanced ensemble methods XGBoost and LightGBM. Additional feature 

engineering was utilized to develop normalized emission ratios, such as per capita and per GDP. A broad range of evaluation 

indicators was used, including R² score, RMSE, MAE, MAPE, MSLE, median absolute error, and explained variance. The 

outcome indicated that traditional linear models were more predictable (R² ≈ -0.007, RMSE ≈ 85.97) while tree-based Random 

Forest models struggled (R² ≈ -0.034, RMSE ≈ 87.12), which means none of the parallel models outperformed the emission 

variance. XGBoost and LightGBM achieved similar yields; xGBoost earned R² = -0.235, RMSE = 95.20, illustrating that a model 

based on complex, high-dimensional environmental data is difficult to construct. In a hypothetical situation where the use of 

renewable energy sources was increased by 20%, most models still forecasted only slight emission reductions (for example, 

Random Forest: Change from 152.92 to 152.87 metric tons). SHapley Additive exPlanations (SHAP) explainability pointed to 

energy demand, industrial CO₂, and proportion of renewables as the main contributors to emissions. Further cluster analysis 

revealed distinct emission profiles by region, which can inform focused environmental policy. This research analyzes the 

possibility of applying machine learning to discover structural features in carbon emissions and assesses the impact of renewable 

energy policies in the construction industry. The study also stresses the role of explainability and feature engineering on 

environmental simulations. 
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1. Introduction  
The construction sector has an impact on the environment 

due to the extensive use of cement, steel, and construction 

activities, as well as the substantial demand for electricity and 

transportation. The construction and buildings sector has an 

even greater impact, accounting for almost 39% of global CO₂ 

emissions and joining other industries as one of the leading 

sectors that are in dire need of a global sustainability agenda.  

To mitigate construction emissions, there is a need to provide 

focus on Machine Learning (ML) approaches due to their 

predictive abilities. These methodologies stand in stark 

contrast to traditional Life Cycle Assessment (LCAs) and 

Input Output (IO) modeling methodologies, which, although 

rigorous, lack granularity and forecasting abilities. ML 

facilitates modeling complex non-linear relationships in 

construction activity involving emissions such as economic 

indicators, energy type, and demographic statistics. 

This area has recently begun to attract attention [1]. 

studied urban datasets, focusing on construction CO₂ 

emissions, and applied ensemble learning techniques. The 

study concluded that boosting methods achieved higher 

predictive accuracy compared to linear baselines [2]. focused 

on carbon ’regional’ emission models built using SVR and 

random forests, and noted energy consumption and intensity 

of industrial activities as significant factors [3]. augmented 

SHAP explainers with Machine Learning (ML) models to 

emissions data, clarifying where policies require transparent 

information, and enhancing the interpretability of the data. In 

the same context, [4] forecasted emissions at the building level 

using XGBoost and emphasized the usefulness of feature 

selection in optimizing performance. 

 

Regardless of these efforts, the literature regarding 

comprehensive studies that integrate several machine learning 
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techniques and conduct policy impact evaluations is limited. 

There is a lack of models that can assess and explain emissions 

policies and normalize custom emission features. This 

research fills these gaps by performing a multi-dimensional 

machine learning analysis on industrial, agricultural, 

domestic, and transport CO₂ emissions from several regions 

over a span of years. 

 

The main contributions of the study are as follows: 

1. A collection of machine learning algorithms is evaluated 

based on Linear Regression, Ridge Regression, Lasso 

Regression, Support Vector Regression (SVR), Decision 

Tree, Random Forest, XGBoost, and LightGBM. Such 

algorithms receive vast attention, especially regarding 

their evaluation through RMSE, R², MAPE, MSLE, and 

Explained Variance Score. 

2. Average CO₂ emissions across all regions are predicted, 

and it is discovered that there is a small change post the 

intervention. For example, Random Classifier goes from 

152.92 to 152.87 metric tons. 

3. The analysis of features for predictive models 

incorporates SHAP analysis for diverse models with the 

aim of explaining energy consumption. Industrial 

emissions and the proportion of renewable energy, 

alongside the level of consumption, have always ranked 

among the most regarded. 

4. Emissions on a per capita basis alongside GDP are 

engineered to achieve normalization for the population 

and the economy. It also reveals regional groupings and 

behavior based on emissions, which K-Means clustering 

offers insights into intervention based on robust policy. 

In the subsequent sections, the paper is structured as 

follows: In Section 2, a review of related work in carbon 

emissions with machine learning is presented. Section 3 

highlights the discussion around the dataset, methods of 

feature engineering, and other procedures taken in cleaning 

the data. Section 4 describes the machine learning models 

utilized alongside the evaluation metrics, assessment, or 

measurement standards. Section 5 describes the results of the 

model benchmarking in conjunction with the SHAP analysis 

and policy simulation. The last section presents the overall 

discussion and the future scope of the work. 

2. Related Work  
The carbon footprint of construction remains an area of 

concern in environmental research. There is an increasing 

body of work that aims to use Machine Learning (ML) to 

analyze, anticipate, and alleviate emissions associated with 

construction activities. These methodologies have the capacity 

to model intricate dynamics regarding emissions drivers and 

environmental impacts, oftentimes surpassing traditional 

statistical techniques in precision and versatility. The study by 

[5] focuses on predicting CO₂ emissions during the demolition 

phase of buildings. They devised an optimal machine learning 

framework that highlighted the GBM, Decision Tree, and 

Random Forest algorithms. The authors had access to a dataset 

that included 186 demolition projects within South Korea. Out 

of the models tested, GBM proved to be the most accurate with 

an R2 of 0.984 on validation data, displaying exceptional 

generalization ability. The analysis also revealed equipment 

type and floor area as the major emission predictors.  

  

 [6] focused on embedded carbon emissions and used 

machine learning algorithms to create predictive models tied 

to the building design phase. While specific metrics were not 

disclosed, the authors noted material selection and spatial 

parameters as important features in emissions forecasting. 

Their models were trained on datasets rich in building 

component attributes, indicating that emissions control is 

possible in the design stage. [7] Implemented a hybrid 

machine learning method to create a carbon emission 

forecasting model for cities in China. The authors have used 

Random Forest, SVR and XGBoost machine learning models. 

The data was processed and substituted into the machine 

learning models. The prediction results show that random 

forest is better than SVR and XGBoost in terms of accuracy. 

[8] developed a hybrid model that integrates BIM alongside 

Machine Learning to estimate the carbon emissions of 

buildings throughout the construction process. By leveraging 

real-time data provided by BIM, these environments permitted 

ML models to forecast emissions relative to both material 

inventory and timelines scheduled for execution. Although 

precise metrics were not disclosed, the authors claimed 

significant improvements in accuracy for estimates made 

during the early stages of predictions and enhanced support 

for decision-making processes.   

 

 [9] Used Neural Networks together with Multiple Linear 

Regression (MLR) to estimate CO₂ emissions during the 

construction phase of buildings. A variety of tests were 

conducted to evaluate the predictive performance of the 

selected ML techniques. [10] developed a first-of-its-kind 

machine learning program that estimates Product Carbon 
Footprints (PCFs) with very few parameters as inputs. 

Although they did not provide conventional measures of 

accuracy such as R² or RMSE, their approach focused on 

usability and scalability for PCFs in small and medium 

construction enterprises. The authors in [11] examined the 

leading causes of carbon emissions in China using panel data 

from 254 cities during the years 2011-2020 and focused on six 

machine learning models in comparison to traditional 

econometric techniques. The results indicated that the 

machine learning models greatly outperformed in 

interpretability and predictive capability. This study further 

confirmed that energy consumption remains the primary 

driver of growth in carbon emissions. [12] Conducted an 

assessment of building emissions forecasting using Random 

Forest, Support Vector Regression and Gradient Boosting. 

Based on datasets of building projects, the Random Forest 

method outperformed other techniques in accuracy. The 

above-discussed work is summarized in Table 1. 
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Table 1. Comparison of various machine learning methodologies 

Paper 

Name/Year 
Methodology Dataset Performance Metrics (Numerical) 

[5]/2025 
GBM, Decision Tree, 

Random Forest 

186 demolition projects 

(Korea) 

GBM: R² = 0.997 (train), 0.983 

(test), 0.984 (val) 

[6]/2024 
12 ML models to develop 

72 alternative models 

Building design parameters 

& materials 

The gradient boosting model gave 

superior performance with  R2 and 

MAPE values of 0.917 and 0.038 

[7]/2025 

Random Forest, 

XGBoost, 

SVR 

 Chinese cities  
Random Forest: Highest R², Lowest 

MSE  

[8]/2024 
BIM + ML ensemble 

models 

BIM-integrated construction 

data 

XGBoost demonstrates a relatively 

higher degree of accuracy and 

minimal errors, with the RMSE of 

206.62 and R2 of 0.88  

[9]/2024 
Linear Regression, Neural 

Networks 

The building sector across 

the world 

Mean Absolute Percentage Error  

(MAPE) 

[10]/2024 
Light ML framework for 

PCF 

Construction 

product/process data 

Lightweight model; no R² or RMSE 

reported 

[11]/2024 
Comparison of 6 ML 

models vs. econometric 

Panel data from 254 

Chinese cities 

ML models outperformed 

econometric models. SE, MAPE 

and R², to evaluate the predictive 

performance of traditional OLS and 

six machine learning algorithms. 
The Extra-trees is superior by 

providing the smallest MSE and 

MAPE values and the largest R2  

[12]/2021 RF, SVR, GB Building construction data 
RF model with the highest value of 

R2=99.88% 

A few more systematic reviews also contributed to this 

field. [13] examined the use of Artificial Intelligence (AI) 

techniques such as ANN, CNN, RF, and SVR in the 

calculations and predictions of carbon emissions associated 

with buildings. They highlighted the usefulness of AI in smart 

construction for real-time tracking and optimization of 

operations. In a similar manner, [14] performed a science-

mapping review of AI applications for net-zero emissions in 

sustainable buildings, analyzing 154 papers, which revealed 

LCA, energy, and decision-making tools as key dominating 

subject areas. The authors called attention to the need for more 

interpretable AI that connects models and crucial decision-

making outputs.  [15] analyzed different AI applications for 

carbon footprinting in construction. Their assessment of the 

capabilities of current ML-based platforms revealed a distinct 

trend: while adoption of such technologies is increasing, most 

lack adequate system-wide interoperability and 

interpretability frameworks that impact environmental policy. 

Analyzing the latest literature on the application of machine 

learning for analyzing the carbon footprint in construction 

indicates important areas of research. First, the majority of the 

studies, like [5, 9], evaluate single algorithms or a max of two, 

and do not test numerous models in the linear, tree-based, and 

ensemble categories. More broad studies like [7] also seem to 

have this issue, as they focus on urban-level emission 

domains. Second, not many studies include normalized 

indicators such as emissions per capita or emissions over 

GDP, which are critical for ideal cross-regional comparisons. 

This does not increase the generalizability of findings for a 

diverse dataset. Third, in the rising interest in predictive 

modeling, there seems to be a huge gap in policy scenario 

simulations in the literature. Some studies not only consider 

model outputs, but even fewer explore the impact of 

increasing renewable energy, a focus for international climate 

policy. Fourth, very few except [3] make use of 

“explainability” techniques like SHAP, which has decreased 

the transparency in predicting outputs of the models. Lastly, 

emission profiling behavior across regions using clustering 

and other unsupervised learning techniques is limited, which 

reduces opportunities for strategic policy creation. To address 

these gaps, the current research performs a detailed 

benchmarking of eight machine learning models on a practical 

multi-sector emissions dataset: Linear Regression, Ridge, 

Lasso, SVR, Decision Tree, Random Forest, XGBoost, and 

LightGBM. It adds designed features such as emissions and 

GDP per capita, models a 20% increase in renewable energy 

supply to assess policy responsiveness, uses SHAP for 

explainability, and implements KMeans clustering to reveal 

regional emission profiles. This approach improves accuracy 

while offering clear, actionable information critical for 
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designing effective policies to mitigate carbon emissions in 

the construction industry. 

 

3. Dataset Description and Preprocessing 
3.1. Dataset Overview 

 The research dataset, “Carbon Emissions Dataset” (from 

Kaggle repository), used in the study, comprised 4,385 records 

and 16 original features. These records encompass several 

years, along with a variety of countries and regions, to capture 

factors that influence carbon emissions. The variable that is 

predicted is Co2EmissionsMetricTons, which signifies carbon 

emissions in metric tons for each record. The dataset has a 

range of variables like energy consumption, population, gdp, 

rate of urbanization, emissions from the industrial sector and 

the proportion of renewable energy, which allows for 

comprehensive emissions analysis. Figure 1 represents the 

heatmap of the pairwise Pearson correlation coefficients of the 

dataset's numeric variables. Perfect correlation, represented 

with on-diagonal values of 1.0, indicates strong self-relations. 

Most features have weak direct correlations with 

Co2EmissionsMetricTons, which tends to indicate that 

indirect relations - maybe complex and non-linear - exist, thus 

justifying machine learning approaches instead of simple 

regression. Emissions values are most strongly correlated with 

features such as population, energy consumption, and 

industrial output. 

 

 
Fig. 1 Correlation heatmap between features and CO₂ emission 

 

3.2. Feature Selection and Engineering 

As a first step, non-numeric and non-predictive fields 

like Country and Region were removed to concentrate on the 

numerical and encoded categorical data. Two engineered 

features, along with original ones, were added: 

 Emissions per Capita: the ratio of 

Co2EmissionsMetricTons to population millions, allows 

for emission figures to be normalized. 

 Emissions per GDP: The ratio of 

Co2EmissionsMetricTons to GDP billion USD allows for 

emission context in terms of economic activity. 

These metrics allow regions with different populations 

and economies to be compared more effectively. For 

categorical variables like IndustryType, one-hot encoding was 

utilized with the pd.getdummies() command and the first 

category was dropped to eliminate multicollinearity. 

 

3.3. Data Splitting and Scaling 

The dataset was split into training and testing subsets with 

an 80/20 train-test split. Standardization was done on the 

dataset using StandardScaler to avoid features with richer 

ranges in numeric dominating. The scaler was fitted on the 

training data and later applied to both sets to avoid data 

leakage. Figure 2 represents Energy Consumption TWh and 

Industrial Co2Emissions_MetricTons, which are two selected 

features out of four, as a set. Both features’ raw distributions 

demonstrate high variability as well as non-standard ranges. 

Unscaled, the variance in the values of the features can 

introduce bias for distance-based or gradient-based algorithms 

where variables measured on larger scales dominate the 

outcome. Figure 3 is the same component after standard 

scaling is applied to it, showing the two features: Energy 

Consumption TWh and Industrial CO2 

Emissions_MetricTons. Both have means and standard 

deviations adjusted to around zero and one, respectively. This 

transformation will ensure that all features work without 

discrimination during the training phase, enhancing 

convergence, particularly on algorithms sensitive to feature 

scale like Support Vector Regression and Gradient Boosting. 
 

 
Fig. 2 Feature distributions before scaling 

 

 
Fig. 3 Feature distributions after scaling 
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4. Machine Learning Models and Evaluation 

Metrics 
4.1. Machine Learning Models 

This research uses eight supervised regression models to 

predict carbon dioxide emissions in relation to construction 

features:   

 
4.1.1. Linear Regression (LR) 

It is a simple model where a linear relationship between 

the input features and the target variable is posited.   

 
4.1.2. Ridge and Lasso Regression 

These are linear regression models with L2 and L1 

regularization, respectively, which help reduce overfitting and 

improve generalizability.   

 
4.1.3. Support Vector Regression (SVR) 

This is a kernel method model that locates a hyperplane 

that minimizes the error within a designated margin.   

 
4.1.4. Decision Tree Regressor 

A model that describes a set of observations using an 

integrated tree structure. This model is non-parametric and 

cuts the feature space to achieve a minimum prediction error.   

 
4.1.5. Random Forest Regressor 

A collection of decision trees constructed using bootstrapped 

samples. It introduces randomness within a controlled set of 

features to increase accuracy and robustness.   

 
4.1.6. XGBoost and LightGBM 

Efficient and fast-acting gradient boosting frameworks 

mostly used for structured table data.   

 
All models were trained using scaled features with the 

80/20 train-test split, applying the same held hyperparameters 

and features to ensure unbiased evaluations of each model’s 

performance. 

 
4.2. Evaluation Metrics 

Model performance was assessed using standard 

regression metrics: 

4.2.1. Coefficient of Determination (R² Score) 

Indicates the proportion of variance in the dependent 

variable explained by the model. 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 

 

4.2.2. Root Mean Squared Error (RMSE) 

Measures the square root of the average squared 

prediction error. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 

 

4.2.3. Mean Absolute Error (MAE) 

Represents the average absolute difference between 

predicted and true values. 
 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

 

 

4.2.4. Mean Absolute Percentage Error (MAPE) 

Evaluates prediction accuracy as a percentage useful for 

interpretability. 

𝑀𝐴𝑃𝐸 =
100\%

𝑛
∑|

𝑦𝑖 − 𝑦𝑖̂
𝑦𝑖

|

𝑛

𝑖=1

 

 

4.2.5. Mean Squared Logarithmic Error (MSLE) 

Useful when target values vary across several orders of 

magnitude. 

𝑀𝑆𝐿𝐸 =∑(log(1 + 𝑦𝑖) − log(1 + 𝑦𝑖̂))
2

𝑛

𝑖=1

 

 

These metrics provide a comprehensive view of model 

performance, balancing error magnitude, interpretability, and 

sensitivity to outliers. 
 

5. Results and Analysis 
To determine the efficiency of different approaches of 

machine learning in forecasting carbon emissions, eight 

models were implemented and evaluated using the processed 

dataset: Linear Regression, Ridge, Lasso, SVR, Decision 

Tree, Random Forest, XGBoost and LightGBM. Models were 

assessed based on multiple evaluation criteria: R², RMSE, 

MAE, MAPE, MSLE, MedAE, and Explained Variance Score 

given by Table 2. Of all the models, SVR performed the most 

adequately, achieving R² of -0.0023, RMSE of 85.77, MAPE 

of 2.61% and MSLE of 0.96.  
 

Ensemble models are supposed to be more powerful, 

showing larger variation: The Random Forest model obtained 

an RMSE of 87.12; however, a negative R² of -0.034 suggests 

poor generalization.  
 

XGBoost was the worst performer in RMSE and R², 

recording 95.20 and -0.235, respectively, while LightGBM 

also did not generalize as well, reporting R² of -0.077 and 

RMSE of 88.90.  
 

The Decision Tree model performed the worst out of all 

models, overfitting with an R² of -0.964 and RMSE of 120.07, 

as shown in Table 2. 
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Table 2. Evaluation criteria of various machine learning models 

Model R² Score RMSE MAE MAPE (%) MSLE MedAE 
Explained 

Variance 

Support Vector 

Regression 
-0.00 85.77 74.08 2.61 0.96 72.04 -0.00 

Lasso Regression -0.00 85.8 74.21 2.57 0.95 72.81 -0.00 

Ridge Regression -0.01 85.97 74.26 2.58 0.95 72.49 -0.01 

Linear 

Regression 
-0.01 85.97 74.26 2.58 0.95 72.5 -0.01 

Random Forest -0.03 87.12 74.84 2.64 0.96 72.51 -0.03 

LightGBM -0.08 88.9 - 2.65 0.97 73.06 -0.08 

XGBoost -0.24 95.2 - 2.61 1.02 75.66 -0.24 

Decision Tree -0.96 120.07 98.37 2.94 1.63 85.82 -0.96 

These quantitative results now have accompanying visual 

analytics. The heatmap in Figure 4 contains a summary of all 

model results in relation to the evaluation metrics on a single 

consolidated image. In this Figure, dark and light color shades 

indicate lower normalized error values and higher 

performance scores, respectively.  

 

SVR appears to be the most favorable model across nearly 

all metrics, and Decision Tree dominates the high-error zones, 

confirming it as a weak performer. Also, the radar chart in 

Figure 5 displays the individual and relative attribute 

proportions of the models, allowing an outline of each model's 

strengths and weaknesses.  

 

The ideal models are positioned towards the center for 

relative error metrics and stretch towards the outer circle for 

performance metrics. SVR, Lasso and Ridge models display 

balanced shapes suggesting stability, while the Decision Tree 

model shows obfuscation with extremely unbalanced contour 

shapes. 

 

As depicted in the correlation heatmap in Figure 1, the 

strong linear relationships between the features and the target 

variable generally influence an algorithm’s domain 

generalization prowess. Thus, these results suggest that 

simpler models, especially SVR, may demonstrate better 

generalization within this domain. 

 
Fig. 4 Normalized heatmap of model metrics 

 
Fig. 5 Spider chart of model metrics 

 

 
Fig. 6 SHAP values vs Feature Vallues 

 

To comprehend the internal decision processes of the 

models more thoroughly, SHAP values were calculated for all 

models that support SHAP integration, such as Random Forest 

and XGBoost, as shown in Figure 6. SHAP analysis showed 

that the features Energy_Consumption_TWh, Industrial_Co2 

_Emissions_MetricTons, Renewable_Energy_ Percentage, 

and Population_Millions were the most impactful on CO₂ 

emissions predictions across models. These features also 
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dominated the rankings in the SHAP beeswarm plots, thus 

confirming their strong influence on prediction outcomes. 

This assessment strengthens the need to strategically direct 

policies and investments towards industrial decarbonization 

and renewable energy infrastructure to reduce emissions in 

construction and energy systems. 

 

A policy simulation was performed further to assess the 

effect of renewable energy on emission reduction. In this 

experiment, a simulation with an increase of 20% in the 

Renewable_Energy_Percentage parameter for every piece of 

test data is conducted. Subsequently, the models are retrained 

and generate fresh predictions to determine CO₂ emission 

alterations.  

 

The Random Forest model estimated a minor decrease in 

average emissions from 152.92 tons to 152.88 tons, while the 

Decision Tree model anticipated a slightly larger reduction 

from 152.95 to 152.71 metric tons. Emissions decreased from 

151.91 to 151.89 metric tons in Lasso Regression and other 

linear models exhibiting minimal variation. Regardless of the 

small absolute changes, the consistent emissions reduction 

proposed by every model indicates the strong effect of 

additional renewable energy usage on the emission-reduction 

policy framework for the decline strategy climate policy. 

 
Fig. 7 Forecast of CO₂ emissions (mean per year) from 2023 to 2030 

 

Figure 7 displays historical CO₂ emissions (in metric 

tons) from the year 2000 to 2022 along with projected 

emissions from 2023 to 2030. The blue line shows the actual 

yearly average emissions, while the orange line shows the 

predicted trend from a time-series model.  

 

The forecast demonstrates emissions will gradually 

increase in the future if current industrial and energy 

consumption habits continue. The visual assists in 

understanding where carbon emissions could escalate and 

encourages anticipatory policies aimed at counteracting the 

upward trend. 

6. Conclusion and Future Scope 
The study investigates the application of machine 

learning techniques for forecasting and analyzing carbon 

emissions within the construction sector, demonstrating 

promising potential in this area. The research offers deep 

insights into various algorithms' prediction and generalization 

strengths by applying and benchmarking eight different 

regression models on a comprehensive dataset spanning 

multiple sectors. Among them, the simpler Support Vector 
Regression (SVR) model consistently outperformed XGBoost 

Ensemble and Decision Tree ensembles in robustness and 

accuracy, especially considering the weak linear correlations 

among the feature set and target variable. In addition, the 

constructed features, including per capita emissions and 

emissions per GDP, enhanced interpretability and cross-

regional comparability while aligning regional predictions 

closer to actual policy metrics. 

 

The most important contribution of the work is the 

integration of SHAP-based explainability, which highlighted 

dominant predictors such as energy consumption, industrial 

emissions, population, and the share of renewable energy. 

These findings fundamentally support known emission drivers 

and also help formulate targeted policy development aimed at 

emission reduction in energy-intensive industries. Moreover, 

the scenario simulation with a 20 percent increase in the share 

of renewables demonstrated that even with modest policy 

changes, emissions are consistently predicted to decrease 

across all models, indicating the potential for substantial 

emission reduction over time as a result of energy policy 

decisions made today. This is further corroborated by 

forecasting trends indicating the steady rise of emissions, 

underscoring the need for proactive carbon mitigation 

strategies. 

 

In future, this work can be extended in many ways. For 

example, understanding local and seasonal emission patterns 

could be greatly improved with predictive time-series 

forecasting models if more granular temporal and spatial data 

were integrated. Second, including values for embodied 

carbon from material sourcing and transportation from other 

constituents would further enrich the scope of emission 

attribution, expanding the dataset’s scope of value. Third, 

high-heterogeneous, high-dimensional datasets may improve 

predictive outcomes with the integration of hybrid models 

such as deep learning frameworks with attention mechanisms 

or graph-based ML.  

 

Finally, enhanced policy simulation modules stand to 

gain from incorporating counterfactual analysis, economic 

cost modeling, and multi-objective optimization for structured 

carbon-neutral infrastructures. All together, these approaches 

are fundamental towards developing advanced intelligent 

construction ecosystems, underpinned by data and AI, which 

are responsive to the sustainability challenge. 
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