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Abstract - Predicting the seismic behavior of concrete gravity dams is a critical challenge in earthquake engineering. This Study 

investigates the potential of Artificial Neural Networks (ANNs) in predicting the natural frequency of concrete gravity dams 

based on their geometric and mechanical properties. A dataset of 320 numerical simulations was developed to train and evaluate 

different artificial neural network architectures. The results indicate that simple neural networks with one or two hidden layers 

provide strong predictive capabilities for predicting the fundamental frequency, depending on the number of neurons in each 

layer. However, the proposed approach does not yet incorporate all the factors that may influence the seismic response of a 

dam, such as hydrodynamic forces and realistic seismic input. Future research could integrate nonlinear modeling and realistic 

earthquake excitations to validate and enhance the trends identified in this Study. These findings underscore the potential of 

data-driven modeling, such as neural networks, to evaluate seismic vulnerability, especially for massive concrete structures. 

Keywords - Artificial Neural Networks, Concrete dams, Frequency prediction, Numerical modeling, Dynamic behavior. 

 

1. Introduction  
Since the early 21st century, the socio-economic 

dynamics of water utilization in the Kingdom of Morocco, a 

country characterized by a semi-arid climate, have been 

exposed to significant changes caused by urban expansion, 

demographic pressure, and the groundwater resources [1]. As 

a result, the development of dam infrastructure has been 

historically considered a priority in Morocco’s water policy. 

[2]. Furthermore, Morocco has a total of 140 large dams with 

a combined storage capacity exceeding several billion cubic 

meters. Among them, 13 are reserved for water transfer, with 

a total length of 1,100 km, a flow capacity of 200 m³/s, and an 

annual transfer volume of 2.5 billion m³ [3]. Moreover, 

Morocco is recognized as a leader in large-scale hydraulic, 

with the largest irrigated areas in the Maghreb, some 

exceeding 100,000 hectares, and more than 100 large dams 

[2]. It is worth emphasizing that the construction of dams has 

been employed since ancient times by various civilizations as 

a way to manage and utilize water resources [4]. By definition, 

dams are considered engineered structures designed to 

regulate water flow. They accomplish this objective by 
capturing and controlling its volume and release, thereby 

adjusting the magnitude and timing of downstream movement 

[5]. Consequently, they channel water flow, which enables the 

creation of a reservoir with the necessary water head. In 

addition, they regulate the downstream discharge [6]. 

Moreover, dams constructed on rivers fulfil multiple 

functions, including but not limited to the provision of 

drinking water, hydroelectric power generation, agricultural 

irrigation, industrial water supply,  flood management, 

fisheries development, sediment control, and recreational 

activities [7]. From the conceptual and technical perspectives, 

the configuration and materials employed in the dam’s 

construction are based on the characteristics of the project site, 

the particular design, the operational requirements and the 

prevailing geological conditions [6]. As a result, dams can be 

classified into various types, including embankment dams: 

earth-fill dams and rockfill dams and rigid dams: comprising 

gravity dams, rolled compacted concrete dams, arch dams, and 

buttress dams [7].  

Considering the dangerous impacts related to the high 

seismic risk, especially in dam structures, it is imperative to 

develop a comprehensive understanding of their dynamic 

behavior and the factors that influence it. This knowledge is 

essential for limiting the risk of unexpected structural 

responses, ensuring the safety and stability of these critical 

infrastructure elements [23]. It has been demonstrated that 
parameters such as natural frequency, vibration modes, and 

structure–fluid–soil interactions significantly influence the 
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reliability of simulations and seismic safety of dams [24]. By 

definition, the natural frequency of a structure is the inherent 

rate at which a structure vibrates on its own after an initial 

disturbance, without the influence of damping or sustained 

external excitation [24]. It essentially depends on the overall 

mass and stiffness of the structure [24]. In the context of 

gravity dams, this frequency is crucial. Indeed, in the event 

that it aligns with the natural frequency of a local earthquake, 

resonance may be triggered, substantially amplifying dynamic 

loads [25].  

Additionally, modal analysis identifies a system's natural 

frequencies and associated mode shapes by solving an 

eigenvalue problem based on the differential equations of 

motion [30]. These mode shapes represent the distinct 

vibration behaviors of the structure [26]. This analysis is 

generally conducted through the application of the finite 

element method, which is a technique that facilitates the 

construction of complex models of the dam's geometry, along 

with its interactions with the rock foundation and the 

reservoir fluid [27]. 

The Finite Element Method (FEM) is defined as a 

numerical technique that subdivides complex structures into 

discrete elements in order to simulate mechanical behaviors 

[28]. However, this method is not without limitations, 

particularly the required intensive mesh resolution, which 

increases processing time and computational costs. [29]. 

Furthermore, variability in the mechanical properties of 

materials significantly affects the accuracy of the results 

generated from finite element models [30]. Additionally, the 

simplification of modeling assumptions is a common practice 

in this type of analysis, particularly in the context of linear 

material behavior. However, this approach can impede the 

efficacy of the finite element method in capturing nonlinear 

seismic responses. [31] It should be added that the accurate 

interpretation of computational results requires specialized 

expertise and empirical validation to ensure their credibility 

and precision [32]. Consequently, these limitations emphasize 

the necessity of adopting hybrid or complementary 

approaches to accurately evaluate the dam’s behavior under 

dynamic conditions [33]. In light of these constraints, 
Artificial Neural Networks (ANNs) have emerged as a 

promising alternative to conventional methods, through 

facilitating the accurate prediction of dynamic behaviors with 

considerably reduced computational effort [34, 35]. 

In recent years, Artificial Neural Networks (ANNs) have 

emerged as viable alternatives for structural prediction tasks 

due to their capacity to model complex nonlinear interactions 

and manage uncertain, noisy or missing data [36, 37]. This is 

due to the fact that ANNs have proven considerable potential 

in civil engineering applications, including material strength 

prediction, structural damage assessment, and dynamic 

performance analysis. [38, 39]. However, despite their proven 

potential, few studies have focused on the use of ANNs to 

estimate dynamic characteristics of concrete gravity dams, 

such as the natural frequency [40]. Indeed, in the Moroccan 

context, the paucity of research addressing these issues is 

significant, given the country's particular construction norms, 

complex geotechnical conditions, and seismic sensitivity [41]. 

 

To address this Knowledge gap, this research aims to 

develop an artificial neural network model to accurately 

predict the natural frequencies of several concrete gravity 

dams in Morocco. These models are trained using synthetic 

geometric and dynamic data derived from conventional Finite 

Element Method (FEM) simulations. Consequently, the main 

objective of this Study is to evaluate the efficacy of ANN-

based approaches in effectively surmounting some of the 

critical FEM limitations, including the susceptibility to the 

quality of mesh, the high computational cost and the stringent 

boundary condition requirements. In addition, by comparing 

ANN results with conventional FEM outcomes, the Study also 

seeks to assess the capability and adaptability of neural 

networks to provide a more flexible and efficient tool for 

dynamic analysis in dam engineering, particularly in capturing 

complex dam–foundation–reservoir interactions. 

 

2. Artificial Neural Networks  
2.1. Definition of ANN  

Inspired by the structural and functional principles of the 

human brain, Artificial Neural Networks (ANNs) represent a 

class of machine learning algorithms [8]. As seen in Figure 1, 

ANNs are composed of a large number of interconnected 

processing elements that are organized into three essential 

layers: the input, hidden and output layers [9]. These entities 

function as computational structures that iteratively adjust 

their parameters to model the fundamental relationship 

between input and output parameters [10]. Moreover, each 

fundamental processing unit is responsible for receiving 

information at the input nodes, executing internal 

computation, and generating a result at the output nodes [11]. 

Furthermore, neural networks demonstrate high predictive 

capacities when trained on large datasets comprising several 

prior cases [12].  

 

2.2. Working of an ANN  

In the context of neural networks, each connection is 

assigned a weight, and each neuron is characterized by a 

threshold value and an activation function that determine its 

output [13]. As the simplest ANN model introduced by 

Rosenblatt, the perceptron represents the most basic type of 

artificial neural network, in which inputs are individually 

weighted and combined through a mathematical operation 

known as the neuron activation function [10]. The activation 

function is operational provided that each input has a positive 

or negative weight. The magnitude of this weight determines 

the intensity of the signal transmitted through the connection 

[13]. 
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Fig. 1 Schematic representation of an artificial neural network 

 

2.3. Types of Neural Network 

In the broad Sense, artificial neural networks are 

considered computational models that emulate the functioning 

of the human brain. These networks have the capacity to 

provide effective solutions to a wide range of complex 

problems in various application domains [12]. Moreover, 

among the most neural architectures explored in depth, 

feedforward networks and feedback (recurrent) networks are 

particularly prominent [13]. 

 

2.3.1. Feed Forward Neural Network 

This fundamental Artificial Neural Network (ANN) 

architecture is frequently used for typical recurring and 

analysis tasks [14]. It is classified as a multilayer, fully 

connected hierarchical network, composed of an input layer, 

one or more hidden layers, and an output layer [15]. 

Furthermore, as seen in Figure 2, this network is strictly 

unidirectional and feedforward, with the absence of 

connections or recurrent loops [13]. In addition, the 

transmission of data occurs in a unidirectional manner from 

the input layer to the output layer [12]. Each unit processes 

incoming signals from the preceding layer, applying a weight 

to every input data element depending on the strength of its 

connection [13].  

 

 
Fig. 2 Structure of a typical feedforward neural network 

 

2.3.2. Recurrent Neural Network 

A Recurrent Neural Network (RNN) is a machine 

learning algorithm that processes data by retraining the output 

from previous layers and feeding it back as input, enabling the 

network to predict the outcome of the layer [12]. Indeed, the 

implementation of recurrent connections within feedback 

networks facilitates the communication of information in both 

forward and reverse directions [15]. From an application 

perspective, RNNs have been applied in several domains, 

including language modeling, image processing, and systems 

in which characters are added sequentially to text [14]. As 

seen in Figure 3. 

 
Fig. 3 Structure of a typical recurrent neural network 

 

2.4. Advantages of an ANN  

The main advantage of using a neural network in any of 

the aforementioned issues is its remarkable capacity for 

learning and its resilience to minor perturbations [13]. In fact, 

ANNs have demonstrated an ability to learn and model non-

linear and complicated interactions, a capacity that is 

particularly critical in contexts where real-life situations 

frequently exhibit such non-linear and complex relationships 

between input and output parameters [16]. Moreover, neural 

networks, with their significant ability to derive meaning from 

complicated or imprecise data, render them a suitable 

instrument for the extraction of patterns and the detection of 

trends [14]. 

2.5. Applications in the Civil Engineering Field 
In the civil engineering field, artificial neural networks 

have proven efficacy in solving complex problems and 

predictive modeling. In fact, in their work, Zhang et al. 

introduce PhyCNN, a convolutional neural network improved 

by physical constraints. This innovation reduces data 

requirements, thereby enhancing dynamic response prediction 

[17]. Furthermore, Yasin applied an ANN to predict dynamic 

properties of concrete, providing high accuracy and efficiency 

[19]. Iqbal et al. developed an artificial neural network model 

that accurately predicts the axial strain of Fibre-Reinforced 

Polymer (FRP)-confined concrete. This model surpasses 

conventional empirical methods [18]. In addition, Kaushik et 

al. also presented a comprehensive overview of artificial 

neural networks in the construction field, offering useful 

insights into their practical applications and future research 

direction [20]. Moreover, Ahmed et al. thoroughly reviewed 

artificial neural networks' capacity to improve viability in the 

construction industry across environmental, economic, and 

social dimensions [21]. 
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3. Methods 
Ensuring structural stability during seismic events is 

critically important in civil engineering practice. Indeed, 

earthquakes are defined as sudden events that cause high 

vibrations. These vibrations can potentially lead to structural 

failure or collapse [22].  

Dams are defined as critical infrastructures that require 

thorough technical design and execution. These structures are 

vulnerable to extreme damage or failure in the event of seismic 

activity. Therefore, this Study adopts a numerical approach to 

simulate various gravity dam configurations with varied 

geometric parameters (length, height), and mechanical 

properties (elastic modulus, density, and Poisson’s ratio).   

Consequently, a comprehensive approach including 

numerical simulations and artificial intelligence was 

implemented to accurately predict the natural frequencies of 

concrete gravity dams in Morocco. In the first step, simulated 

data were obtained using the Finite Element Method (FEM). 

These simulations included varying the geometric and 

mechanical properties of dams in Morocco. Dynamic 

simulation software was used to conduct these simulations. As 

illustrated in Figures 4 and 5, the only applied load is the self-

weight of the dam-foundation structures without any external 

forces or dynamic effects.   

Subsequently, these data were used to train Artificial 

Neural Network (ANN) models, aiming to capture the 

nonlinear interactions between input parameters (dimensions, 

elastic modulus, density) and the natural frequency results. 

Therefore, various neural network architectures were explored 

to identify the configuration that provides the most accurate 

results.  

In addition, to evaluate the model’s reliability, cross-

validation was employed, and the ANN predictions were 

consistently compared to FEM results. This approach aims to 

evaluate the effectiveness of neural networks as a reliable, 

robust substitute to conventional dynamic simulations of dam 

structures.  

 
Fig. 4 Basic model of dam-foundation structure 

 
Fig. 5 Simulated behavior of the dam–foundation structure 

In order to build a reliable dataset for training the 

predictive model, numerical simulations were conducted 

using a dynamic simulation software based on the Finite 

Element Method (FEM). This method is widely 

acknowledged for its proven accuracy in evaluating complex 

structures in civil engineering applications.  The simulations 

were based on models of ten concrete gravity dams in 

Morocco. These were chosen to represent a wide range of 

geometric and mechanical characteristics, such as concrete 

and rock foundations. Geometric parameters (height, length) 

and mechanical characteristics (elastic modulus, density, 

Poisson’s ratio) were systematically varied to represent a 

variety of structural configurations. For each model, a modal 

analysis was executed to extract the structure's natural 

frequency (Dam-Foundation), seeking to evaluate the 

structure’s dynamic behavior, using FEM-based software. 

This approach depends on solving the structural free vibration 

equation, enabling the identification of natural modes without 

applying external dynamic loads [3]. In the present work, the 

focus is specifically on the first vibration mode of each dam’s 

configuration. Moreover, the generation of natural frequency 

data for each configuration was achieved through 320 distinct 

simulations. Subsequently, the Artificial Neural Network 

(ANN) models were implemented in later phases. 

In the strict Sense, a neural network model's predictive 

accuracy is essentially dependent on a suitable choice of input 

variables. Indeed, the selected parameters for this Study 

include geometric variables that directly affect the dynamic 

response of dams (height, length) and mechanical 

characteristics (elastic modulus, mass density, Poisson’s ratio) 
[2]. Furthermore, input data were normalized within the 

interval [-1, 1] to ensure efficient convergence throughout the 

model training.  

The present Study introduces an Artificial Neural 

Network (ANN) architecture designed as a Multi-Layer 

Perceptron (MLP) with a feedforward structure using 

MATLAB and its Neural Network Toolbox. Furthermore, 
the network is organized with three types of layers: the input 

layer receives seven normalized parameters, including the 

dam’s height and length, the elastic modulus of the dam and 
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foundation, the material density of the dam and foundation, 
and the Poisson’s ratio of the foundation. As illustrated in 

Table 1, implementing one, two or three hidden layers 

was executed, with the number of neurons being modified 

within the range of 5 to 40. However, the output layer 

includes a single neuron that generated a continuous value of 

the fundamental natural frequency for each tested 

configuration. For the hidden layers, the hyperbolic tangent 

sigmoid function (tanh) was selected as the activation 

function. Moreover, a linear activation function (purelin) was 

implemented in the output layer to produce continuous 

predictions. In the context of this numerical simulation, 
320 distinct configurations were generated, with 224 (70%) 

allocated for model training, 48 (15%) designated for 

validation, and the remaining 48 (15%) allocated for testing.  

 

Table 1. The following represent the configurations of neural networks employed in this study 

Case 
ANN 

Architecture 
Activation Function Training Algorithm Description 

1 Feedforward [5] tansig trainlm 
1 hidden layer with 5 

neurons 

2 Feedforward [30] tansig trainlm 
1 hidden layer with 30 

neurons 

3 Feedforward [10, 5] tansig trainlm 
2 hidden layers with 10 and 

5 neurons 

4 Feedforward [30, 15] tansig trainlm 
2 hidden layers with 30 and 

15 neurons 

5 Feedforward [10, 8, 5] tansig trainlm 
3 hidden layers with 10, 8 

and 5 neurons 

6 Feedforward [40, 30, 20] tansig trainlm 
3 hidden layers with 40, 30 

and 20 neurons 

In the following step, the network is trained using the 

Levenberg–Marquardt algorithm (trainlm), which is 

particularly appropriate for moderate-sized datasets and for 

modeling intricate nonlinear system behaviors with minimal 

error. Furthermore, the model’s performance was evaluated 

using multiple metrics, including the coefficient of 

determination. 𝑅2 and the final Mean Squared Error (MSE). 

In the first place, the Mean-Squared Error (MSE) is defined as 

a statistical measure that calculates the average of the squared 

differences between predicted and observed values.  Indeed, a 

lower MSE indicates a higher degree of model accuracy.  

In the second place, the coefficient of determination (R²) 

is a statistical measure of how well a model explains the 

variability in a dataset. A value close to 1 indicates a strong fit 

between the model and the data. In practice, a low MSE 

combined with a high R² reflects reliable model performance. 

The subsequent flowchart (Figure 6) illustrates the successive 

steps that were followed in the development of this Study. 

Table 2 presents a comprehensive synthesis of all input and 

output data for the ten structure cases (dam–foundation 

systems). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Structured process for conducting the experimental study 
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Table 2. Summary of input and output data for the dam–foundation structure cases 

 Input Data 
Output 

Data 

Parameter 

/ 

Structure 

Dam Foundation 
Natural 

frequency 

L 

(m) 

H 

(m) 

E (GPa) 

(Variations) 
𝜌 (Kg/𝑚3) 
(Variations) 

E (GPa) 

(Variations) 
𝜗 

(Variations) 

𝜌 (Kg/𝑚3) 

(Variations) 

F (Hz) 

(range) 

Structure 1 100 60 25/32 2300/2500 50/60/70/100 0.2/0.25 2600/2700/2800/3000 
[6.7528-

9.3793] 

Structure 2 230 50 25/35 2300/2500 50/60/70/100 0.2/0.25 2600/2700/2800/3000 
[6.4886-

8.9417] 

Structure 3 240 60 25/35 2300/2500 50/60/70/100 0.2/0.25 2600/2700/2800/3000 
[5.8575-

7.6797] 

Structure 4 280 64 25/35 2300/2500 50/60/70/100 0.2/0.25 2600/2700/2800/3000 
[5.5691-

6.929] 

Structure 5 290 133 25/35 2300/2500 50/60/70/100 0.2/0.25 2600/2700/2800/3000 
[1.9482-

4.9257] 

Structure 6 210 29 25/35 2300/2500 50/60/70/100 0.2/0.25 2600/2700/2800/3000 
[7.1807-

9.8944] 

Structure 7 260 67 25/35 2300/2500 50/60/70/100 0.2/0.25 2600/2700/2800/3000 
[5.9762-

8.1268] 

Structure 8 200 45 25/35 2300/2500 50/60/70/100 0.2/0.25 2600/2700/2800/3000 
[6.8811-

9.3844] 

Structure 9 260 64 25/35 2300/2500 50/60/70/100 0.2/0.25 2600/2700/2800/3000 
[5.4044-

6.6635] 

Structure 

10 
120 43 25/35 2300/2500 50/60/70/100 0.2/0.25 2600/2700/2800/3000 

[7.0363-

9.646] 

 
Table 3. MSE and R² values for different neural network configurations 

Case Typology of Artificial Neural 

Networks 

Training 

Algorithm 

Activation 

function 
MSE 𝑹𝟐 

1 Feedforward [5] trainlm  tansig 0.13466 0.95061 

2 Feedforward [10] trainlm tansig 0.13822 0.9493 

3 Feedforward [15] trainlm tansig 0.12617 0.95372 

4 Feedforward [20] trainlm tansig 0.15042 0.94483 

5 Feedforward [30] trainlm tansig  0.16876 0.9381 

6 Feedforward [10, 5] trainlm tansig 0.17373 0.93628 

7 Feedforward [15, 10] trainlm tansig 0.15151 0.94442 

8 Feedforward [20, 10] trainlm tansig 0.15712 0.94237 

9 Feedforward [25, 15] trainlm tansig  0.14263 0.94768 

10 Feedforward [30, 15] trainlm tansig 0.16383 0.93991 

11 Feedforward [10, 8, 5] trainlm tansig 0.20662 0.92421 

12 Feedforward [15, 10, 5] trainlm tansig 0.24668 0.90951 

13 Feedforward [20, 15, 10] trainlm tansig 0.21352 0.92168 

14 Feedforward [30, 20, 10] trainlm  tansig 0.15349 0.9437 

15 Feedforward [40, 30, 20] trainlm  tansig 0.6435 0.76396 
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4. Results and Discussion  
The Study's next step involves varying the number of 

neurons and layers in the neural network to ascertain their 

impact on prediction performance. Indeed, the performance 

of various Artificial Neural Network (ANN) architectures was 

assessed using two fundamental metrics: The Mean Squared 

Error (MSE) and the coefficient of determination (R²). As 

illustrated in Table 1, a total of fifteen feedforward Artificial 

Neural Network (ANN) architectures were examined. It is 

important to note that all of the architectures were trained 

with the Levenberg-Marquardt (trainlm) algorithm and 

employed the tansig activation function (hyperbolic tangent 

sigmoid). In addition, the Architectural differences manifest 

in the quantity and dimensions of hidden layers. Moreover, 

the performance evaluation is conducted using Mean Squared 

Error (MSE) and the determination coefficient (R²). 

 

4.1. Neural Network Architecture and Prediction 

Performance 

Considering the generated results, the first five cases 

correspond to architectures with a single hidden layer and an 

increasing number of neurons, ranging from 5 to 30. It is 

observed that the configuration with one hidden layer of 15 

neurons (Case 3) exhibited the optimal predictive performance 

among all tested and evaluated neural network models. This is 

due to a minimal prediction error (MSE = 0.1262) and an 

elevated coefficient of determination (R² = 0.9537). 

Consequently, this architecture appears to offer an optimal 

compromise between model complexity and generalization 

ability without leading to overfitting caused by excessive 

network depth or size. It can also be observed that a minor 

decrease in performance occurred when the number of 

neurons is lower or higher than this value (15).  

 

For Case 1 with 5 neurons, the MSE is 0.13466 and R² is 

0.95061. These findings indicate that this model exhibits 

satisfactory performance. However, its efficacy is less 

compared to the 15-neuron (case 3). Furthermore, the 

configuration with 30 neurons (case 5) demonstrates a 

considerable decline in performance (MSE = 0.16876, R² = 

0.93810), which potentially reflects slight overfitting or an 

excessively complex architecture. These results demonstrate 

that a single hidden layer with a moderate number of neurons 

can provide robust predictive performance. By contrast, 

increasing the number of neurons from 5 to 30 negatively 

impacted performance. In summary, this finding highlights the 

efficacy of low-depth architectures in addressing complex 

problems. 

 

As shown in Figure 7, for the Cas 3 with one hidden layer 

of 15 neurons, which demonstrated the optimal performance, 

the predicted values of natural frequencies are closely aligned 

with the original values generated from FEM along the 

identity diagonal. Similarly, as illustrated in Figure 8, the 

training, testing, and validation converge smoothly and remain 

closely parallel for the same Case. These observations suggest 

that the model in Case 3 demonstrates high accuracy in 

predicting the real values of natural frequencies. 

 
Fig. 7 Scatter Plot of predicted against actual values of natural 

frequencies for case 3 

 
Fig. 8 Evolution of loss during training, validation, and testing for case 3 

 

The two - hidden - layer architectures include 

configurations such as [10, 5], [15, 10], and up to [30, 15]. 
These architectures generally demonstrate lower performance 

in comparison to the optimal single-layer architecture (Case 

3). Case 9 yields the best performance in this category, with 

an MSE of 0.14263 and an R² of 0.94768. On its part, case 6 

([10, 5]) attains a higher MSE of 0.17373 and decreased R² of 

0.93628, indicating reduced performance. In this context, 

incorporating an additional hidden layer does not ensure 

superior performance. This finding suggests that increased 

complexity may not necessarily lead to better outcomes. 
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Finally, the three-hidden-layer architectures (Cases 11 to 

15) are more complex configurations. These deeper models 

generally perform less than the optimal one-hidden-layer 

configuration (case 3). Moreover, among the three-hidden-

layer models, the [30,20,10] architecture (Case 14) achieved 

the best-performing configuration (R² = 0.94370, MSE = 

0.15349), comparable to the top results of two-layer models.  

 

Furthermore, it is observed that the performance 

deterioration becomes more significant: The range of MSE 

extends from 0.15349 (case 14) to a remarkably maximum of 

0.64350 (case 15). In this respect, R² values decrease as well, 
ranging from 0.92421 to 0.76396, which is significantly less 

than in preceding cases.  
 

To summarise, the analysis of the results reveals that the 

neural network architecture significantly impacts the model’s 

performance. Subsequently, the optimal balance between 

complexity and performance was achieved by a single hidden 

layer architecture of 15 neurons, with the minimal MSE and 

maximal R². However, increasing the number of neurons or 

employing deeper architectures did not necessarily yield 

enhanced outcomes.  

 
Fig. 9 Scatter plot of predicted against actual values for cas 15 

 

Regarding the graphical outputs generated in MATLAB, 

the scatter plot in Figure 9 shows a significant discrepancy 

between the predicted and actual values compared to the 

identity diagonal, suggesting that the model in Case 15, with 

the most complex and deepest configuration, may not 

accurately predict the true values.  

 

Furthermore, as shown in Figure 10, in Case 15, the 

training curve exhibits a consistent decrease, while the test and 

validation curves reach a state of stability or even increase. 

This phenomenon indicates a potential occurrence of 

overfitting, which can compromise the model’s ability to 

generalize effectively.  
 

 
Fig. 10 Evolution of loss during training, validation, and testing for case 

15 

 
As shown in Figure 11, the diagram presents a visual 

summary of the performance indicators R² (coefficient of 

determination) and MSE (Mean Squared Error) for different 

network depths (number of hidden layers) and complexities 

(number of neurons per layer) across the neural networks 

evaluated in this Study. 

4.2. Comparative Performance Analysis with Related 

Studies 

This section presents a comparative assessment of the 

performance of the proposed ANN models compared to 

similar simulation-based studies. Indeed, the present research 

focused on predicting the natural frequencies of concrete 

gravity dams based on simulated MEF datasets.  

 
This Study achieved high predictive accuracy, with an 

MSE of 0.12617 and an R² of 0.95372. These results reflect 

high predictive precision and a substantial correlation between 

observed and predicted values.  

 
Similarly, El Abidi et al. (2025) present a study aiming to 

predict Moroccan pavement’s performance, using Artificial 

Neural Networks; they achieve an R² of 0.8156 and MSE of 

0.0037. Moreover, El Mkhalet and Lamdouar (2025) in their 

research about the prediction of seismic displacements have 

reported that the Random Forest approach achieves a 

significantly lower MSE (~9.9 × 10⁻⁸) compared to traditional 

artificial neural networks.  

 
Furthermore, Salhi et al. (2025) studied the prediction of 

the Structural reliability index. Achieve an R²  of 0.853408 

with an MSE of 0.0037. On their part, Alqatawna (2024), 

Onyelowe et al. (2021), and Onyelowe et al.(2023) 

demonstrate excellent predictive capabilities in their field of 

application. 
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Fig. 11 Evolution of MSE and R² as functions of both the network depth and the complexity across the neural networks evaluated 

In the realm of architectural design, the present model is 

characterized by its simplicity, with a single hidden layer of 

15 neurons. This configuration is designed to minimize 

computational costs, enabling an effective balance between 

execution speed and accuracy. In contrast, Salhi et al. (2025) 

propose a more complex architectural design comprising three 

hidden layers, each with 11, 12 and 13 neurons. However, 

these architectures come with considerably higher algorithmic 

complexity and computational cost. 

 

In summary, the present work effectively balances 

predictive accuracy, computational efficiency, and 

implementation simplicity. These results confirm the 

relevance of this model, which achieved an accuracy that is 

comparable to that reported in the other studies.  

 
Table. 4 Comparative overview of the present work and other similar research, highlighting objectives, network architectures, training data, and 

achieved accuracies

Study / 

Case 
Objective 

Optimal 

Architecture 

Training 

Algorithm 

Activation 

Function 
Training Data 

Data to 

Predict 

Optimal 

performance 

(MSE / R²) 

The present 

Study 

Predict dynamic 

properties of 

concrete gravity 

dams. 

1 layer with 

15 neurons. 

Levenberg–

Marquardt. 
tansig 

Simulated 

geometric and 

mechanical 

data. (320 case) 

Natural 

frequency of 

concrete 

gravity dams 

in Morocco. 

MSE = 

0.12617 

R² = 0.95372. 

M. El 

Mkhalet & 

N. 

Lamdouar 

(2025) [42] 

Comparison 

between 

Random Forests 

and Artificial 

Neural 

Networks to 

Predict the 

seismic 

displacements 

of a Single-

Degree-Of-

Freedom 

(SDOF) 

structure 

subjected to 

random seismic 

excitations. 

ANN: 2 

layers / 10 

neurons 

each. RF: 

50 trees. 

Levenberg-

Marquardt 

for ANN. 

Not 

specified. 

Data simulated 

using the 

Newmark-Beta 

method. 

Seismic 

displacements. 

MSE = 

0.086594. 
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O. El Abidi 

et al. 

(2025) [43] 

Predict the 

performance of 

Moroccan 

pavements using 

Artificial Neural 

Networks. 

ANN with 1 

hidden layer 

and 5 

neurons  

Levenberg-

Marquardt 

(trainlm). 

Tansig is for 

the hidden 

layer, and 

purelin is for 

the output 

layer. 

Degradation 

data from an 

automated 

vehicle on 

Morocco's 

National 

Highway N1. 

The Pavement 

Condition 

Index (PCI) 

MSE = 0.0037 

R² = 0.8156 

C. Salhi et 

al. (2025) 

[44] 

Assess the 

reliability of 

Unstabilized 

Rammed Earth 

(URE) 

structures under 

wind pressure. 

ANN with 3 

hidden 

layers (11, 

12, and 13 

neurons). 

Levenberg-

Marquardt. 
ReLU 

Dataset 

generated by 

Monte Carlo 

Simulation  

Structural 

reliability 

index. 

MSE = 

0.023462 

R² = 0.853408 

A. 

Alqatawna 

(2024) 

[45] 

 

Predict the road 

traffic accidents 

(RTAs) on 

Spanish 

highways by 

Utilizing 

Artificial Neural 

Networks 

(ANNs) 

ANN with 1 

hidden layer 

and 9 

neurons 

 

Levenberg-

Marquardt  

Sigmoid 

activation  

Dataset 

generated from 

road traffic 

accidents that 

occurred from 

2014 to 2017.  

The number of 

road traffic 

accidents on 

Spanish 

highways. 

MSE = 93.887  

R² =  0.9992 

Onyelowe 

et al. 

(2021) 

[46] 

Assess an 

expansive clay's 

consistency, 

compressibility, 

and strength 

characteristics 

using Artificial 

Neural Network 

and Fuzzy 

Logic models. 

ANN with 1 

hidden layer 

and 6 

neurons 

 

Levenberg-

Marquardt  

Sigmoid 

activation  

The proportions 

of the soil mix, 

with their 

compaction and 

consistency 

limit properties 

The strength 

responses of 

the soil mix 

MSE = 0.1726 

R² = 0.9983 

 

V.V.Tuan 

(2023) 

[47] 

Predict the 

compressive 

strength and 

slump values of 

concrete 

samples using. 

Artificial Neural 

Network (ANN) 

and Decision 

Tree (DT) 

methods 

ANN with a 

single 

hidden layer 

and 180 

neurons  

A multi-

layer 

feedforward 

with 

backpropag

ation 

learning 

algorithm 

was used. 

ReLU and 

tanh 

activation 

functions  

Experimental 

data generated 

from a previous 

research project  

compressive 

strength and 

slump values 

of concrete 

samples 

Compressive 

strength : 

MSE = 0.154 

R² = 0.991 

and  

 

Slump : 

MSE = 0.109 

R² = 0.997  

 

 

 

4.3. Contribution of the Study 

This Study thoroughly evaluates neural network 

architectures with one, two, and three hidden layers, analyzing 

how varying the number of neurons per layer impacts 

predictive performance. Moreover, it identifies configurations 

that achieve optimal balance between accuracy (R²) and error 

(MSE), revealing that certain Low-depth networks, such as 

[15] or [15, 25,], can outperform more complex architectures. 
Additionally, the findings highlight the limitations of deeper 

networks, such as [20, 30, 40], which exhibit a tendency to 

overfit the data. Using standardized evaluation metrics (R², 

MSE) and a comparative approach on a fixed dataset, this 

Study establishes a reproducible methodology for evaluating 

and optimizing neural network prediction performance of 

some mechanical properties, such as natural frequency in a 

dam configuration. 

5. Conclusion  
 To conclude, this Study aimed to apply Artificial Neural 

Networks (ANNs) to predict the natural frequency of concrete 

gravity dams based on their geometric and mechanical 

properties. In fact, the present Study investigated the impact 

of these variables on the structures' seismic behavior and 

determined architectural configurations that provide an 



Elmorsli Mohammed et al. / IJCE, 12(8), 218-230, 2025 

 

 

228 

optimal compromise between accuracy and generalization 

capability, particularly in the modeling of massive structures. 

Moreover, among all tested configurations, the Feedforward 

[15] architecture employing the Levenberg–Marquardt 

training approach with the tansig activation function delivered 

the Most Accurate Results (MSE = 0.12617; R² = 0.95372), 

signifying an excellent agreement between predicted and 

measured values. It should also be noted that a moderate 

increase in neuron count enhanced the model’s accuracy. 

However, exceeding a critical limit led to overfitting, reducing 

its generalization ability.  
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