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Abstract - Predicting the seismic behavior of concrete gravity dams is a critical challenge in earthquake engineering. This Study
investigates the potential of Artificial Neural Networks (ANNSs) in predicting the natural frequency of concrete gravity dams
based on their geometric and mechanical properties. A dataset of 320 numerical simulations was developed to train and evaluate
different artificial neural network architectures. The results indicate that simple neural networks with one or two hidden layers
provide strong predictive capabilities for predicting the fundamental frequency, depending on the number of neurons in each
layer. However, the proposed approach does not yet incorporate all the factors that may influence the seismic response of a
dam, such as hydrodynamic forces and realistic seismic input. Future research could integrate nonlinear modeling and realistic
earthquake excitations to validate and enhance the trends identified in this Study. These findings underscore the potential of
data-driven modeling, such as neural networks, to evaluate seismic vulnerability, especially for massive concrete structures.
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1. Introduction

Since the early 21st century, the socio-economic
dynamics of water utilization in the Kingdom of Morocco, a
country characterized by a semi-arid climate, have been
exposed to significant changes caused by urban expansion,
demographic pressure, and the groundwater resources [1]. As
a result, the development of dam infrastructure has been
historically considered a priority in Morocco’s water policy.
[2]. Furthermore, Morocco has a total of 140 large dams with
a combined storage capacity exceeding several billion cubic
meters. Among them, 13 are reserved for water transfer, with
a total length of 1,100 km, a flow capacity of 200 m3/s, and an
annual transfer volume of 2.5 billion m® [3]. Moreover,
Morocco is recognized as a leader in large-scale hydraulic,
with the largest irrigated areas in the Maghreb, some
exceeding 100,000 hectares, and more than 100 large dams
[2]. It is worth emphasizing that the construction of dams has
been employed since ancient times by various civilizations as
away to manage and utilize water resources [4]. By definition,
dams are considered engineered structures designed to
regulate water flow. They accomplish this objective by
capturing and controlling its volume and release, thereby
adjusting the magnitude and timing of downstream movement
[5]. Consequently, they channel water flow, which enables the
creation of a reservoir with the necessary water head. In
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addition, they regulate the downstream discharge [6].
Moreover, dams constructed on rivers fulfil multiple
functions, including but not limited to the provision of
drinking water, hydroelectric power generation, agricultural
irrigation, industrial water supply, flood management,
fisheries development, sediment control, and recreational
activities [7]. From the conceptual and technical perspectives,
the configuration and materials employed in the dam’s
construction are based on the characteristics of the project site,
the particular design, the operational requirements and the
prevailing geological conditions [6]. As a result, dams can be
classified into various types, including embankment dams:
earth-fill dams and rockfill dams and rigid dams: comprising
gravity dams, rolled compacted concrete dams, arch dams, and
buttress dams [7].

Considering the dangerous impacts related to the high
seismic risk, especially in dam structures, it is imperative to
develop a comprehensive understanding of their dynamic
behavior and the factors that influence it. This knowledge is
essential for limiting the risk of unexpected structural
responses, ensuring the safety and stability of these critical
infrastructure elements [23]. It has been demonstrated that
parameters such as natural frequency, vibration modes, and
structure—fluid—soil interactions significantly influence the
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reliability of simulations and seismic safety of dams [24]. By
definition, the natural frequency of a structure is the inherent
rate at which a structure vibrates on its own after an initial
disturbance, without the influence of damping or sustained
external excitation [24]. It essentially depends on the overall
mass and stiffness of the structure [24]. In the context of
gravity dams, this frequency is crucial. Indeed, in the event
that it aligns with the natural frequency of a local earthquake,
resonance may be triggered, substantially amplifying dynamic
loads [25].

Additionally, modal analysis identifies a system's natural
frequencies and associated mode shapes by solving an
eigenvalue problem based on the differential equations of
motion [30]. These mode shapes represent the distinct
vibration behaviors of the structure [26]. This analysis is
generally conducted through the application of the finite
element method, which is a technique that facilitates the
construction of complex models of the dam's geometry, along
with its interactions with the rock foundation and the
reservoir fluid [27].

The Finite Element Method (FEM) is defined as a
numerical technique that subdivides complex structures into
discrete elements in order to simulate mechanical behaviors
[28]. However, this method is not without limitations,
particularly the required intensive mesh resolution, which
increases processing time and computational costs. [29].
Furthermore, variability in the mechanical properties of
materials significantly affects the accuracy of the results
generated from finite element models [30]. Additionally, the
simplification of modeling assumptions is a common practice
in this type of analysis, particularly in the context of linear
material behavior. However, this approach can impede the
efficacy of the finite element method in capturing nonlinear
seismic responses. [31] It should be added that the accurate
interpretation of computational results requires specialized
expertise and empirical validation to ensure their credibility
and precision [32]. Consequently, these limitations emphasize
the necessity of adopting hybrid or complementary
approaches to accurately evaluate the dam’s behavior under
dynamic conditions [33]. In light of these constraints,
Acrtificial Neural Networks (ANNs) have emerged as a
promising alternative to conventional methods, through
facilitating the accurate prediction of dynamic behaviors with
considerably reduced computational effort [34, 35].

In recent years, Artificial Neural Networks (ANNS) have
emerged as viable alternatives for structural prediction tasks
due to their capacity to model complex nonlinear interactions
and manage uncertain, noisy or missing data [36, 37]. This is
due to the fact that ANNs have proven considerable potential
in civil engineering applications, including material strength
prediction, structural damage assessment, and dynamic
performance analysis. [38, 39]. However, despite their proven
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potential, few studies have focused on the use of ANNs to
estimate dynamic characteristics of concrete gravity dams,
such as the natural frequency [40]. Indeed, in the Moroccan
context, the paucity of research addressing these issues is
significant, given the country's particular construction norms,
complex geotechnical conditions, and seismic sensitivity [41].

To address this Knowledge gap, this research aims to
develop an artificial neural network model to accurately
predict the natural frequencies of several concrete gravity
dams in Morocco. These models are trained using synthetic
geometric and dynamic data derived from conventional Finite
Element Method (FEM) simulations. Consequently, the main
objective of this Study is to evaluate the efficacy of ANN-
based approaches in effectively surmounting some of the
critical FEM limitations, including the susceptibility to the
quality of mesh, the high computational cost and the stringent
boundary condition requirements. In addition, by comparing
ANN results with conventional FEM outcomes, the Study also
seeks to assess the capability and adaptability of neural
networks to provide a more flexible and efficient tool for
dynamic analysis in dam engineering, particularly in capturing
complex dam—foundation—reservoir interactions.

2. Artificial Neural Networks
2.1. Definition of ANN

Inspired by the structural and functional principles of the
human brain, Artificial Neural Networks (ANNS) represent a
class of machine learning algorithms [8]. As seen in Figure 1,
ANNs are composed of a large number of interconnected
processing elements that are organized into three essential
layers: the input, hidden and output layers [9]. These entities
function as computational structures that iteratively adjust
their parameters to model the fundamental relationship
between input and output parameters [10]. Moreover, each
fundamental processing unit is responsible for receiving
information at the input nodes, executing internal
computation, and generating a result at the output nodes [11].
Furthermore, neural networks demonstrate high predictive
capacities when trained on large datasets comprising several
prior cases [12].

2.2. Working of an ANN

In the context of neural networks, each connection is
assigned a weight, and each neuron is characterized by a
threshold value and an activation function that determine its
output [13]. As the simplest ANN model introduced by
Rosenblatt, the perceptron represents the most basic type of
artificial neural network, in which inputs are individually
weighted and combined through a mathematical operation
known as the neuron activation function [10]. The activation
function is operational provided that each input has a positive
or negative weight. The magnitude of this weight determines
the intensity of the signal transmitted through the connection
[13].
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Fig. 1 Schematic representation of an artificial neural network

2.3. Types of Neural Network

In the broad Sense, artificial neural networks are
considered computational models that emulate the functioning
of the human brain. These networks have the capacity to
provide effective solutions to a wide range of complex
problems in various application domains [12]. Moreover,
among the most neural architectures explored in depth,
feedforward networks and feedback (recurrent) networks are
particularly prominent [13].

2.3.1. Feed Forward Neural Network

This fundamental Artificial Neural Network (ANN)
architecture is frequently used for typical recurring and
analysis tasks [14]. It is classified as a multilayer, fully
connected hierarchical network, composed of an input layer,
one or more hidden layers, and an output layer [15].
Furthermore, as seen in Figure 2, this network is strictly
unidirectional and feedforward, with the absence of
connections or recurrent loops [13]. In addition, the
transmission of data occurs in a unidirectional manner from
the input layer to the output layer [12]. Each unit processes
incoming signals from the preceding layer, applying a weight
to every input data element depending on the strength of its
connection [13].

Inputs
Outputs

Output Layer

Input Layer Hidden Layer

Fig. 2 Structure of a typical feedforward neural network

2.3.2. Recurrent Neural Network

A Recurrent Neural Network (RNN) is a machine
learning algorithm that processes data by retraining the output
from previous layers and feeding it back as input, enabling the
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network to predict the outcome of the layer [12]. Indeed, the
implementation of recurrent connections within feedback
networks facilitates the communication of information in both
forward and reverse directions [15]. From an application
perspective, RNNs have been applied in several domains,
including language modeling, image processing, and systems
in which characters are added sequentially to text [14]. As
seen in Figure 3.

Inputs
Outputs

Hidden Layer

Input Layer
Fig. 3 Structure of a typical recurrent neural network

Output Layer

2.4. Advantages of an ANN

The main advantage of using a neural network in any of
the aforementioned issues is its remarkable capacity for
learning and its resilience to minor perturbations [13]. In fact,
ANNs have demonstrated an ability to learn and model non-
linear and complicated interactions, a capacity that is
particularly critical in contexts where real-life situations
frequently exhibit such non-linear and complex relationships
between input and output parameters [16]. Moreover, neural
networks, with their significant ability to derive meaning from
complicated or imprecise data, render them a suitable
instrument for the extraction of patterns and the detection of
trends [14].

2.5. Applications in the Civil Engineering Field

In the civil engineering field, artificial neural networks
have proven efficacy in solving complex problems and
predictive modeling. In fact, in their work, Zhang et al.
introduce PhyCNN, a convolutional neural network improved
by physical constraints. This innovation reduces data
requirements, thereby enhancing dynamic response prediction
[17]. Furthermore, Yasin applied an ANN to predict dynamic
properties of concrete, providing high accuracy and efficiency
[19]. Igbal et al. developed an artificial neural network model
that accurately predicts the axial strain of Fibre-Reinforced
Polymer (FRP)-confined concrete. This model surpasses
conventional empirical methods [18]. In addition, Kaushik et
al. also presented a comprehensive overview of artificial
neural networks in the construction field, offering useful
insights into their practical applications and future research
direction [20]. Moreover, Ahmed et al. thoroughly reviewed
artificial neural networks' capacity to improve viability in the
construction industry across environmental, economic, and
social dimensions [21].
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3. Methods

Ensuring structural stability during seismic events is
critically important in civil engineering practice. Indeed,
earthquakes are defined as sudden events that cause high
vibrations. These vibrations can potentially lead to structural
failure or collapse [22].

Dams are defined as critical infrastructures that require
thorough technical design and execution. These structures are
vulnerable to extreme damage or failure in the event of seismic
activity. Therefore, this Study adopts a numerical approach to
simulate various gravity dam configurations with varied
geometric parameters (length, height), and mechanical
properties (elastic modulus, density, and Poisson’s ratio).

Consequently, a comprehensive approach including
numerical simulations and artificial intelligence was
implemented to accurately predict the natural frequencies of
concrete gravity dams in Morocco. In the first step, simulated
data were obtained using the Finite Element Method (FEM).
These simulations included varying the geometric and
mechanical properties of dams in Morocco. Dynamic
simulation software was used to conduct these simulations. As
illustrated in Figures 4 and 5, the only applied load is the self-
weight of the dam-foundation structures without any external
forces or dynamic effects.

Subsequently, these data were used to train Artificial
Neural Network (ANN) models, aiming to capture the
nonlinear interactions between input parameters (dimensions,
elastic modulus, density) and the natural frequency results.
Therefore, various neural network architectures were explored
to identify the configuration that provides the most accurate
results.

In addition, to evaluate the model’s reliability, cross-
validation was employed, and the ANN predictions were
consistently compared to FEM results. This approach aims to
evaluate the effectiveness of neural networks as a reliable,
robust substitute to conventional dynamic simulations of dam
structures.

Fig. 4 Basic model of dam-foundation structure
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Fig. 5 Simulated behavior of the dam—foundation structure

In order to build a reliable dataset for training the
predictive model, numerical simulations were conducted
using a dynamic simulation software based on the Finite
Element Method (FEM). This method is widely
acknowledged for its proven accuracy in evaluating complex
structures in civil engineering applications. The simulations
were based on models of ten concrete gravity dams in
Morocco. These were chosen to represent a wide range of
geometric and mechanical characteristics, such as concrete
and rock foundations. Geometric parameters (height, length)
and mechanical characteristics (elastic modulus, density,
Poisson’s ratio) were systematically varied to represent a
variety of structural configurations. For each model, a modal
analysis was executed to extract the structure's natural
frequency (Dam-Foundation), seeking to evaluate the
structure’s dynamic behavior, using FEM-based software.
This approach depends on solving the structural free vibration
equation, enabling the identification of natural modes without
applying external dynamic loads [3]. In the present work, the
focus is specifically on the first vibration mode of each dam’s
configuration. Moreover, the generation of natural frequency
data for each configuration was achieved through 320 distinct
simulations. Subsequently, the Artificial Neural Network
(ANN) models were implemented in later phases.

In the strict Sense, a neural network model's predictive
accuracy is essentially dependent on a suitable choice of input
variables. Indeed, the selected parameters for this Study
include geometric variables that directly affect the dynamic
response of dams (height, length) and mechanical
characteristics (elastic modulus, mass density, Poisson’s ratio)
[2]. Furthermore, input data were normalized within the
interval [-1, 1] to ensure efficient convergence throughout the
model training.

The present Study introduces an Artificial Neural
Network (ANN) architecture designed as a Multi-Layer
Perceptron (MLP) with a feedforward structure using
MATLAB and its Neural Network Toolbox. Furthermore,
the network is organized with three types of layers: the input
layer receives seven normalized parameters, including the
dam’s height and length, the elastic modulus of the dam and
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foundation, the material density of the dam and foundation,
and the Poisson’s ratio of the foundation. As illustrated in
Table 1, implementing one, two or three hidden layers
was executed, with the number of neurons being modified
within the range of 5 to 40. However, the output layer
includes a single neuron that generated a continuous value of
the fundamental natural frequency for each tested
configuration. For the hidden layers, the hyperbolic tangent

sigmoid function (tanh) was selected as the activation
function. Moreover, a linear activation function (purelin) was
implemented in the output layer to produce continuous
predictions. In the context of this numerical simulation,
320 distinct configurations were generated, with 224 (70%)
allocated for model training, 48 (15%) designated for
validation, and the remaining 48 (15%) allocated for testing.

Table 1. The following represent the configurations of neural networks employed in this study

ANN . . I . .
Case Architecture Activation Function | Training Algorithm Description
1 Feedforward [5] tansig trainlm 1 hidden layer with 5
neurons
2 Feedforward [30] tansig trainim 1 hidden layer with 30
neurons
3 Feedforward [10, 5] tansig trainlm 2 hidden layers with 10 and
5 neurons
4 Feedforward [30, 15] tansig trainlm 2 hidden layers with 30 and
15 neurons
5 Feedforward [10, 8, 5] tansig trainim 3 hidden layers with 10, 8
and 5 neurons
6 Feedforward [40, 30, 20] tansig trainlm 3 hidden layers with 40, 30
and 20 neurons

In the following step, the network is trained using the
Levenberg—Marquardt algorithm  (trainlm), which s
particularly appropriate for moderate-sized datasets and for
modeling intricate nonlinear system behaviors with minimal
error. Furthermore, the model’s performance was evaluated
using multiple metrics, including the coefficient of
determination. R? and the final Mean Squared Error (MSE).
In the first place, the Mean-Squared Error (MSE) is defined as
a statistical measure that calculates the average of the squared
differences between predicted and observed values. Indeed, a
lower MSE indicates a higher degree of model accuracy.

In the second place, the coefficient of determination (R?)
is a statistical measure of how well a model explains the
variability in a dataset. A value close to 1 indicates a strong fit
between the model and the data. In practice, a low MSE
combined with a high R2 reflects reliable model performance.
The subsequent flowchart (Figure 6) illustrates the successive
steps that were followed in the development of this Study.
Table 2 presents a comprehensive synthesis of all input and
output data for the ten structure cases (dam-foundation
systems).

s )

v

Data Preparation & Normalization

!

Data Splitting (Training / Validation / Test)

v

Model Training

v

Evaluation & Results Analysis

v

e )

Fig. 6 Structured process for conducting the experimental study
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Table 2. Summary of input and output data for the dam—foundation structure cases

Output
Input Data Data
. Natural
Para;neter Dam Foundation frequency
Structure L H E (GPa) p (Kgim?®) E (GPa) ) p (Kgim?) F (Hz)
(m) | (m) | (Variations) | (Variations) | (Variations) | (Variations) (Variations) (range)
Structure 1 | 100 | 60 25/32 2300/2500 | 50/60/70/100 0.2/0.25 2600/2700/2800/3000 [5377555]
Structure 2 | 230 | 50 25/35 2300/2500 | 50/60/70/100 0.2/0.25 2600/2700/2800/3000 [ggff%
Structure 3 | 240 | 60 25/35 2300/2500 | 50/60/70/100 0.2/0.25 2600/2700/2800/3000 [5)575;75]
Structure 4 | 280 | 64 25/35 2300/2500 | 50/60/70/100 0.2/0.25 2600/2700/2800/3000 [‘22321
Structure 5 | 290 | 133 25/35 2300/2500 | 50/60/70/100 0.2/0.25 2600/2700/2800/3000 %324:72]
Structure 6 | 210 | 29 25/35 2300/2500 | 50/60/70/100 0.2/0.25 2600/2700/2800/3000 [gglgSi)Z]-
Structure 7 | 260 | 67 25/35 2300/2500 | 50/60/70/100 0.2/0.25 2600/2700/2800/3000 [853276?82]
Structure 8 | 200 | 45 25/35 2300/2500 | 50/60/70/100 0.2/0.25 2600/2700/2800/3000 [g':,?ggjj]'
Structure 9 | 260 | 64 25/35 2300/2500 | 50/60/70/100 0.2/0.25 2600/2700/2800/3000 E’g’ggg]'
S”“l‘g“re 120 | 43 | 25/35 | 2300/2500 | 50/60/70/100 | 0.2/0.25 | 2600/2700/2800/3000 [;%i%?
Table 3. MSE and R2 values for different neural network configurations
Case Typology of Artificial Neural Training Activation MSE R2
Networks Algorithm function
1 Feedforward [5] trainlm tansig 0.13466 0.95061
2 Feedforward [10] trainlm tansig 0.13822 0.9493
3 Feedforward [15] trainlm tansig 0.12617 0.95372
4 Feedforward [20] trainlm tansig 0.15042 0.94483
5 Feedforward [30] trainlm tansig 0.16876 0.9381
6 Feedforward [10, 5] trainlm tansig 0.17373 0.93628
7 Feedforward [15, 10] trainlm tansig 0.15151 0.94442
8 Feedforward [20, 10] trainim tansig 0.15712 0.94237
9 Feedforward [25, 15] trainlm tansig 0.14263 0.94768
10 Feedforward [30, 15] trainlm tansig 0.16383 0.93991
11 Feedforward [10, 8, 5] trainim tansig 0.20662 0.92421
12 Feedforward [15, 10, 5] trainlm tansig 0.24668 0.90951
13 Feedforward [20, 15, 10] trainlm tansig 0.21352 0.92168
14 Feedforward [30, 20, 10] trainlm tansig 0.15349 0.9437
15 Feedforward [40, 30, 20] trainlm tansig 0.6435 0.76396
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4. Results and Discussion

The Study's next step involves varying the number of
neurons and layers in the neural network to ascertain their
impact on prediction performance. Indeed, the performance
of various Atrtificial Neural Network (ANN) architectures was
assessed using two fundamental metrics: The Mean Squared
Error (MSE) and the coefficient of determination (R2). As
illustrated in Table 1, a total of fifteen feedforward Artificial
Neural Network (ANN) architectures were examined. It is
important to note that all of the architectures were trained
with the Levenberg-Marquardt (trainlm) algorithm and
employed the tansig activation function (hyperbolic tangent
sigmoid). In addition, the Architectural differences manifest
in the quantity and dimensions of hidden layers. Moreover,
the performance evaluation is conducted using Mean Squared
Error (MSE) and the determination coefficient (R?).

4.1. Neural
Performance

Considering the generated results, the first five cases
correspond to architectures with a single hidden layer and an
increasing number of neurons, ranging from 5 to 30. It is
observed that the configuration with one hidden layer of 15
neurons (Case 3) exhibited the optimal predictive performance
among all tested and evaluated neural network models. This is
due to a minimal prediction error (MSE = 0.1262) and an
elevated coefficient of determination (R2 0.9537).
Consequently, this architecture appears to offer an optimal
compromise between model complexity and generalization
ability without leading to overfitting caused by excessive
network depth or size. It can also be observed that a minor
decrease in performance occurred when the number of
neurons is lower or higher than this value (15).

Network Architecture and Prediction

For Case 1 with 5 neurons, the MSE is 0.13466 and R2 is
0.95061. These findings indicate that this model exhibits
satisfactory performance. However, its efficacy is less
compared to the 15-neuron (case 3). Furthermore, the
configuration with 30 neurons (case 5) demonstrates a
considerable decline in performance (MSE = 0.16876, R? =
0.93810), which potentially reflects slight overfitting or an
excessively complex architecture. These results demonstrate
that a single hidden layer with a moderate number of neurons
can provide robust predictive performance. By contrast,
increasing the number of neurons from 5 to 30 negatively
impacted performance. In summary, this finding highlights the
efficacy of low-depth architectures in addressing complex
problems.

As shown in Figure 7, for the Cas 3 with one hidden layer
of 15 neurons, which demonstrated the optimal performance,
the predicted values of natural frequencies are closely aligned
with the original values generated from FEM along the
identity diagonal. Similarly, as illustrated in Figure 8, the
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training, testing, and validation converge smoothly and remain
closely parallel for the same Case. These observations suggest
that the model in Case 3 demonstrates high accuracy in
predicting the real values of natural frequencies.

Actual vs Predicted Case 3
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Fig. 7 Scatter Plot of predicted against actual values of natural
frequencies for case 3
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Fig. 8 Evolution of loss during training, validation, and testing for case 3

The two hidden layer architectures include
configurations such as [10, 5], [15, 10], and up to [30, 15].
These architectures generally demonstrate lower performance
in comparison to the optimal single-layer architecture (Case
3). Case 9 yields the best performance in this category, with
an MSE of 0.14263 and an R2 of 0.94768. On its part, case 6
([10, 5]) attains a higher MSE of 0.17373 and decreased R? of
0.93628, indicating reduced performance. In this context,
incorporating an additional hidden layer does not ensure
superior performance. This finding suggests that increased
complexity may not necessarily lead to better outcomes.
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Finally, the three-hidden-layer architectures (Cases 11 to
15) are more complex configurations. These deeper models
generally perform less than the optimal one-hidden-layer
configuration (case 3). Moreover, among the three-hidden-
layer models, the [30,20,10] architecture (Case 14) achieved
the best-performing configuration (R? = 0.94370, MSE =
0.15349), comparable to the top results of two-layer models.

Furthermore, it is observed that the performance
deterioration becomes more significant: The range of MSE
extends from 0.15349 (case 14) to a remarkably maximum of
0.64350 (case 15). In this respect, R2 values decrease as well,
ranging from 0.92421 to 0.76396, which is significantly less
than in preceding cases.

To summarise, the analysis of the results reveals that the
neural network architecture significantly impacts the model’s
performance. Subsequently, the optimal balance between
complexity and performance was achieved by a single hidden
layer architecture of 15 neurons, with the minimal MSE and
maximal R2. However, increasing the number of neurons or
employing deeper architectures did not necessarily yield

enhanced outcomes.
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Fig. 9 Scatter plot of predicted against actual values for cas 15

Regarding the graphical outputs generated in MATLAB,
the scatter plot in Figure 9 shows a significant discrepancy
between the predicted and actual values compared to the
identity diagonal, suggesting that the model in Case 15, with
the most complex and deepest configuration, may not
accurately predict the true values.

Furthermore, as shown in Figure 10, in Case 15, the
training curve exhibits a consistent decrease, while the test and
validation curves reach a state of stability or even increase.
This phenomenon indicates a potential occurrence of
overfitting, which can compromise the model’s ability to
generalize effectively.
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Training Performance - Case 15
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Fig. 10 Evolution of loss during training, validation, and testing for case
15

As shown in Figure 11, the diagram presents a visual
summary of the performance indicators R2 (coefficient of
determination) and MSE (Mean Squared Error) for different
network depths (number of hidden layers) and complexities
(number of neurons per layer) across the neural networks
evaluated in this Study.

4.2. Comparative Performance Analysis with Related
Studies

This section presents a comparative assessment of the
performance of the proposed ANN models compared to
similar simulation-based studies. Indeed, the present research
focused on predicting the natural frequencies of concrete
gravity dams based on simulated MEF datasets.

This Study achieved high predictive accuracy, with an
MSE of 0.12617 and an R2 of 0.95372. These results reflect
high predictive precision and a substantial correlation between
observed and predicted values.

Similarly, EI Abidi et al. (2025) present a study aiming to
predict Moroccan pavement’s performance, using Artificial
Neural Networks; they achieve an R2 of 0.8156 and MSE of
0.0037. Moreover, ElI Mkhalet and Lamdouar (2025) in their
research about the prediction of seismic displacements have
reported that the Random Forest approach achieves a
significantly lower MSE (~9.9 x 10-%) compared to traditional
artificial neural networks.

Furthermore, Salhi et al. (2025) studied the prediction of
the Structural reliability index. Achieve an Rz of 0.853408
with an MSE of 0.0037. On their part, Algatawna (2024),
Onyelowe et al. (2021), and Onyelowe et al.(2023)
demonstrate excellent predictive capabilities in their field of
application.
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Comparison of ANN Architectures - MSE and R?
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Fig. 11 Evolution of MSE and R2 as functions of both the network depth and the complexity across the neural networks evaluated

In the realm of architectural design, the present model is
characterized by its simplicity, with a single hidden layer of
15 neurons. This configuration is designed to minimize
computational costs, enabling an effective balance between
execution speed and accuracy. In contrast, Salhi et al. (2025)
propose a more complex architectural design comprising three
hidden layers, each with 11, 12 and 13 neurons. However,

these architectures come with considerably higher algorithmic
complexity and computational cost.

In summary, the present work effectively balances
predictive  accuracy, computational efficiency, and
implementation simplicity. These results confirm the
relevance of this model, which achieved an accuracy that is
comparable to that reported in the other studies.

Table. 4 Comparative overview of the present work and other similar research, highlighting objectives, network architectures, training data, and
achieved accuracies

. . A Optimal
Study/ Objective Op_tlmal Tra"?'“g Actlva'_clon Training Data Data_to performance
Case Architecture | Algorithm Function Predict
(MSE/R?Y
Predict dynamic Simulated Natural _
) . - frequency of MSE =
The present properties of 1 layer with | Levenberg— . geometric and
. tansig X concrete 0.12617
Study concrete gravity | 15 neurons. | Marquardt. mechanical . _
gravity dams | R2=0.95372.
dams. data. (320 case) :
in Morocco.
Comparison
between
Random Forests
and Artificial
Neural
Networks to
M. El Predict the ANN: 2 Data simulated
Mkhalet & seismic layers /10 | Levenberg- ; I _
. Not using the Seismic MSE =
N. displacements neurons Marquardt specified Newmark-Beta | displacements 0.086594
Lamdouar of a Single- each. RF: for ANN. P ’ method P ' ’ ’
(2025) [42] Degree-Of- 50 trees. ’
Freedom
(SDOF)
structure
subjected to
random seismic
excitations.

226




Elmorsli Mohammed et al. / 1JCE, 12(8), 218-230, 2025

Predict the Tansig is for Degradation
. ! data from an
.. | performance of | ANN with 1 the hidden
O. El Abidi Moroccan hidden laver Levenberg- laver. and automated The Pavement MSE = 0.0037
et al. . y Marquardt Yer, ¢ vehicle on Condition PN
pavements using and 5 . purelin is for . R? =0.8156
(2025) [43] o (trainlm). Morocco's Index (PCI)
Artificial Neural neurons the output National
Networks. layer. Highway N1.
Assess the
reliability of ANN with 3 Dataset
C. Salhi et Unstabilized hidden Structural MSE =
al.(2025) | Rammed Earth | layers (11, | rovercfd | pely generated OV | relianility 0.023462
[44] (URE) 12, and 13 quardt. Simulaion index. R2 = 0.853408
structures under neurons).
wind pressure.
Predict the road
traffic accidents Dataset
A. (RTAS) on ANN with 1 The number of
; . generated from .
Algatawna Spanish hidden layer L b . id d traffi road traffic MSE = 7
(2024) highways by and 9 evenberg- Sigmoi road traffic accidents on SE =93.88
e Marquardt activation accidents that - R2 = 0.9992
[45] Utilizing neurons Spanish
e occurred from :
Acrtificial Neural 2014 to 2017 highways.
Networks '
(ANNSs)
Assess an
expansive clay's
consistency, . The proportions
Onyelowe compressibility, ﬁzlc!\ér\:vlghelr of the soil mix, The strenath | MSE = 0.1726
etal. and strength y Levenberg- Sigmoid with their 9 P
9. and 6 2 - responses of R2? =0.9983
(2021) characteristics neurons Marquardt activation compaction and the soil mix
[46] using Artificial consistency
Neural Network limit properties
and Fuzzy
Logic models.
Predict the Compressive
compressive A multi- strength :
strength and layer MSE = 0.154
slump values of | ANN witha | feedforward ReL U and Experimental compressive R2=0.991
V.V.Tuan concrete single with P strength and and
. . tanh data generated
(2023) samples using. | hidden layer | backpropag N - slump values
g - activation from a previous .
[47] Artificial Neural and 180 ation functions research proiect of concrete Slump :
Network (ANN) neurons learning prol samples MSE =0.109
and Decision algorithm R2=0.997
Tree (DT) was used.
methods
4.3. Contribution of the Study Study establishes a reproducible methodology for evaluating
This Study thoroughly evaluates neural network  and optimizing neural network prediction performance of

architectures with one, two, and three hidden layers, analyzing
how varying the number of neurons per layer impacts
predictive performance. Moreover, it identifies configurations
that achieve optimal balance between accuracy (R?) and error
(MSE), revealing that certain Low-depth networks, such as
[15] or [15, 25,], can outperform more complex architectures.
Additionally, the findings highlight the limitations of deeper
networks, such as [20, 30, 40], which exhibit a tendency to
overfit the data. Using standardized evaluation metrics (R?,
MSE) and a comparative approach on a fixed dataset, this

some mechanical properties, such as natural frequency in a
dam configuration.

5. Conclusion

To conclude, this Study aimed to apply Artificial Neural
Networks (ANNS) to predict the natural frequency of concrete
gravity dams based on their geometric and mechanical
properties. In fact, the present Study investigated the impact
of these variables on the structures' seismic behavior and
determined architectural configurations that provide an
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optimal compromise between accuracy and generalization signifying an excellent agreement between predicted and
capability, particularly in the modeling of massive structures. measured values. It should also be noted that a moderate
Moreover, among all tested configurations, the Feedforward increase in neuron count enhanced the model’s accuracy.
[15] architecture employing the Levenberg-Marquardt  However, exceeding a critical limit led to overfitting, reducing
training approach with the tansig activation function delivered its generalization ability.

the Most Accurate Results (MSE = 0.12617; R2 = 0.95372),
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