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Abstract - Accurately predicting the compressive strength of Self-Compacting Concrete (SCC) is essential for attaining 

sustainable and high-performance construction with little trial-and-error.  This study conducts a comprehensive comparative 

analysis of various models, including Artificial Neural Networks (ANN), Levenberg-Marquardt (LM), Machine Learning (ML) 

models such as Random Forest (RF), Gradient Boosting (GB), Extreme Gradient Boosting (XGB), LightGBM, and a Deep 

Learning (DL) model developed with Keras.  A constant set of data was employed in the preparation of twenty SCC mixes. The 

typical variables that had been used in each mix included cement, fly ash, the ratio of water/ powder, aggregates, and 

superplasticizer.  It examined real values of compressive strength in all mixes (20 mixes) in the lab before churning out 

prediction models with the results.  In the cases when the models could not give clear predictions, the trend-based estimations 

were used to give artificial values to ensure consistency in the study.  In an extremely elaborate comparison of the entire 

models, we are using performance indicators such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and 

Coefficient of Determination (R2).  It is also highly interesting to use XGBoost and DL, particularly Keras. The LM optimised 

ANN model achieved the most accurate R2 = 0.999, and the lowest MAE.  The prediction reliability of ANN-II was also 

confirmed experimentally.  The created figures and tables provide a visual and statistical analysis of all the models within the 

20-mix dataset.  Such a combination methodology, founded on artificial intelligence, makes the SCC mix design even more 

precise and economical and allows people to make environmentally friendly decisions because they may reduce the amount of 

waste materials and laboratory tests.  The outcomes of this work provide engineers with an easy-to-use aid in bringing AI to 

concrete and their predictability.. 

 

Keywords - Artificial Neural Networks, Levenberg–Marquardt Algorithm, Machine Learning, Self-Compacting Concrete, 

Strength prediction. 

1. Introduction  
Concrete, being a composite construction material, 

dominates the global infrastructure industry because it is cost-

saving, accessible, and versatile.  Yet, traditional vibrated 

concrete has some shortcomings with respect to workability, 

effective compaction around large reinforcement, and the 

requirement of skilled labor for its installation.  The 

shortcomings have been markedly reduced by the advent of 

Self-Compacting Concrete (SCC), an extremely fluid type that 

compacts by its own weight without applying mechanical 

vibration [1].  SCC is precisely designed to have performance 

properties like filling capacity, flowability, and resistance to 

segregation through the optimization of the granular matrix 

and incorporation of super plasticizers and Viscosity-

modifying agents [2]. Despite these advances, precise 

anticipation of compressive strength, one of the key 

performance standards of SCC, is still a major challenge. Non-

linear dynamics governing the relationship between material 

components and mechanical performance complicate the mix 

design process, particularly when working with 

Supplementary Cementitious Materials (SCMs) in the form of 

fly ash or slag [3]. 

 

1.1. Research Gap and Problem Statement 

Although critical advancements have been observed in 

the study of artificial intelligence with respect to the prediction 

of the concrete strength, a limitation within such models is yet 

to be filled as regards the characterization of Self-Compacting 

Concrete (SCC). Previous research tends to either concern 

solidified concrete materials or a generic ML pipeline that 

cannot be transferred to new mix optimization. Also, not many 

comparative works have been done where both typical ML 

and DL methods have been compared under the same 

conditions of the experimental setup. Such weaknesses leave 

http://www.internationaljournalssrg.org/
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a gap of certainty among the field practitioners who strive to 

apply real-time AI-based mix designs [4-7]. 

 

1.2. Novelty and Contribution of This Research 

This study fills the above gap via introducing a 

comprehensive AI framework that benchmarks more than one 

specifically ANN-I, ANN-II (Levenberg–Marquardt based), 

Random Forest, Gradient Boosting, XGBoost, LGBM, and 

Keras Deep Learning for compressive Strength prediction 

using 20 experimentally validated SCC mixes. The novelty 

lies in: 

 Integrating each shallow and deep network to assess 

prediction consistency 

 Ensuring all models are trained on the same blend 

proportions for fair benchmarking 

 Highlighting the sensitivity of compressive electricity to 

nice-grained enter versions 

 Emphasizing practical implications for mix design 

optimization using AI gear 

 

1.3. Difficulty of Strength Prediction for SCC 

Unlike conventional concrete, SCC has a number of 

interdependent variables, including cement content, mineral 

admixtures (such as fly ash), water-to-powder (w/p) ratio, 

aggregate grading, and superplasticizer dosage.  These 

variables influence both the fresh properties (flowability, 

resistance to segregation) and the characteristics of the 

hardened materials, such as compressive strength, modulus of 

elasticity, and durability. Traditional empirical models and 

regression-type methods do not effectively capture these 

nonlinear and multivariate interactions.[8, 9] The result is that 

trial-and-error practices still reign supreme in SCC mix 

design, causing time and material inefficiencies.  This calls for 

data-driven modelling methods that can embed and generalise 

past data to accurately predict compressive strength with high 

confidence accurately. 

 

1.4. The Emergence of Artificial Intelligence in Concrete 

Technology 

Over the past few years, the building materials industry 

has more and more employed Artificial Neural Networks 

(ANN), Machine Learning, and other artificial intelligence 

techniques and Deep Learning, for predictive modeling[10, 

11]. These models have been found to be remarkably effective 

in explaining the intricate relationships between input mix 

variables and resulting characteristics in a concrete way. 

Artificial neural Networks mimic the neuronal architecture of 

the human brain, allowing one to model complex nonlinear 

systems[12]. 

 

However, their success depends mostly on the selection 

of the training algorithm. The Levenberg–Marquardt (LM) 

optimization technique has proven useful in speeding up 

convergence and enhancing accuracy in Artificial Neural 

Network (ANN) training, particularly with medium-sized to 

large data sets typical of real research. ML algorithms such as 

Extreme Gradient Boosting (XGBoost), Gradient Boosting 

(GB), Random Forest (RF) and LightGBM achieve robust 

performance with ensemble learning and decision tree 

approaches[13]. Through Keras/Tensor Flow, Deep Learning 

has driven performance boundaries higher by allowing multi-

layered abstraction and examination of complex data patterns. 

Despite these advances, little empirical study exists that offers 

a comprehensive benchmarking of all these AI models against 

a standardized, empirically validated set of SCC blends, which 

is a prerequisite for equitable comparison and practical use in 

real-world applications [14-17]. 

1.5. Objective of the Current Study 

Current research aims to resolve these challenges by 

conducting a comprehensive comparative study using 

frequent datasets of 20 experimentally valid SCC mixes, 

including standard input parameters and actual 28-day 

compressed Strength values. 

There are specific objectives: 

 To develop a reliable SCC dataset based on real 

experimental results and the standard mix design method. 

 To train and evaluate six AI models: ANN-I (standard 

backprint), ANN-II (LM-Imtibed), RF, GB, xgboost, 

LightGBM and Keras DL. 

 To generate synthetic predictions for the missing mix 

using trend-based residual modeling to maintain 

uniformity in the model. 

 To assess model performance with MAE, RMSE, and R² 

metrics 

 To determine the most accurate, interpretable, and 

deployable model(s) for real-time SCC strength 

prediction. 

1.6. Research Innovation and Scope 

This study identifies the following unique contributions: 

 A 20-mix dataset, empirically validated and uniformly 

applied to all models, enhances benchmark integrity. 

 First-time comparison of LM-tuned artificial neural 

networks, ensemble machine learning methods, and deep 

learning for SCC strength prediction on a common data 

foundation. 

 Formulation of a model selection approach that is well-

suited to integration, prioritizing predictive accuracy, 

training time, and interpretability. 

 Creating intelligent SCC design systems and AI-

supported quality assurance for precast or ready-mix 

concrete industries. 

2. Research Significance 

Self-Compacting Concrete (SCC) has developed into a 

high-performance material that attains complete compaction 

only by its own weight, hence obviating the need for external 

vibration.  Although SCC provides considerable benefits for 

workability and constructability, its design complexity 



Prashant K. Bhuva et al. / IJCE, 12(8), 251-265, 2025 

 

254 

escalates because of the numerous interactions among 

material components, including cement, supplementary 

cementitious materials, aggregates, water, and chemical 

admixtures. Compressed strength in 28 days is the most 

important performance indicator affecting structural design, 

durability and quality control among its many rigid-state 

properties.  Any departure from the specified strength can lead 

to initial failure in safety concerns, physical waste, or service 

life.  As a result, the ability to predict compressed power based 

on mixing factors is beneficial and important for durable and 

affordable SCC design. 

Methods of traditional prediction are inadequate for the 

non-linear multi-vendor dependence present in the SCC 

mixture using linear regression or empirical equations.  With 

the increasing acceptance of performance-based design, the 

shortcomings of traditional methods are becoming more 

pronounced, especially in precast and high-growth 

construction.  Thus, Artificial Intelligence (AI) and data-

operated modeling provide a contemporary solution for 

predicting the strength, which facilitates the development of 

refined decision-making equipment in concrete technology. 

 

This study is important for the integration of the real 

world due to its technical depth, practical utility, academic 

value and scalability.  The work uses contemporary AI 

algorithms on a comprehensive and verified SCC dataset, 

facilitating the advancement of intelligent concrete solutions 

of the next generation. 

 

This is where the recent literature has been focusing 

extensively on the utilization of AI in the maximization of 

fresh and hardened characteristics of cementitious composites. 

Loureiro A et al. [18], as an example, investigated a hybrid 

ensemble method consisting of a combination of several 

decision tree models, making predictions of flowability and 

strength properties of SCC. A maximum R 2 of 0.89 was 

recorded. Nonetheless, the study has not been validated using 

experimental data of real-time mixes. Likewise, in the case of 

Zhang et al. [5, 17], a convolutional neural network was 

introduced to study high-performance concrete and its 

rheological properties. However, the study did not revolve 

around self-compacting formulations. 

 

An analysis conducted by Jagadesh P et al. [19] compared 

the performance of gradient boosting algorithms to standalone 

regression models. It revealed that the former were more 

efficient in predicting compressive strength. However, their 

model did not generalize well when new mix designs with the 

modified VMA content were tested. Such constraints have 

been highlighted during the need to test the models under 

wider data sets, such as in the present study. 

The current study is one of few and even one of the largest 

comparisons of eight different AI models (tree based, kernel 

based, and neural network based learners) with 20 

experimental SCC mixes, a study that is highly valid and 

worth attention because of the limitations of previous studies 

in the area of SCC-mixing to counteract them [20-23]. 

3. Research Methodology 
This chapter delineates the comprehensive approach 

employed for the creation, training, and assessment of AI-

based models aimed at predicting the compressive strength of 

28-day-old Self-Compacting Concrete (SCC).  A uniform 

dataset of 20 SCC mixtures was employed across all models 

to provide equitable benchmarking. Each model was 

evaluated by three statistical matrices: MAE (Mean Absolute 

Error), RMSE (Root Mean Squared Error), and R² 

(coefficients of determination). The process of making a 

model includes: 

 
 

 

 

 

 

 

 

 

 

Fig. 1 Process of modeling involved 
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3.1. Dataset Description 

The dataset consists of SCC mixes with six input 

variables and one target variable (compressive strength). The 

mix proportions were designed based on EFNARC and IS 

10262 guidelines. 

 
Table 1. Ranges of SCC mix ingredients 

Ingredient Minimum Maximum Unit 

Cement 333 430 kg/m³ 

Fly Ash 140 220 kg/m³ 

Water-to-Powder 

Ratio 
0.3 0.36 ratio 

Fine Aggregate 

(Sand) 
770 840 kg/m³ 

Coarse Aggregate 

(CA) 
760 860 kg/m³ 

Superplasticizer (SP) 0.22 0.33 
% (by 

binder) 

Compressive 

Strength 
11 68 MPa 

 

3.2. AI Model Development 

This section aims to clarify the design, training and 

prediction mechanisms of each AI model used in this work.  

All models were trained on a uniform SCC dataset that 

included 20 mixtures with 6 input features: cement, fly ash, 

water-to-cement ratio, sand, coarse aggregate, and 

superplaster (%).   

The output variable is compressed power at 28 days 

(MPA).  Constant data pretence (generalization) and an 80:20 

train-testing division were implemented to guarantee 

comparability. Each AI model was configured with 

parameters tuned specifically for regression performance on 

small-to-medium datasets. Details for each model are outlined 

below. 

3.2.1. Ann-I: Standard Feedforward Neural Network 

In this context, Artificial Neural Network (ANN-I) is a 

basic feedforward backpropagation network, which is 

structured with an architecture of [6-10-1], where:  

 6 neurons correspond to input variables. 

 10 hidden neurons encounter non-linear associations. 

 1 neuron outputs predicted compressive strength. 

 

An Artificial Neural Network (ANN) is trained with 

shielded lineage backpropagation techniques to reduce the 

Mean-Squared Error (MSE) between anticipated and actual 

power values.  Revisioning the weight based on the network 

error gradients, the recurrence obtains weight via a forward 

and backwards sweep.  This model is performed in MATLAB 

using a standard training routine and performs satisfactorily 

for basic regression tasks. 

3.2.2. ANN-II: Levenberg–Marquardt Optimized ANN 

The Ann-II design resembles Ann-I, but uses Levenberg-

Marquardt (LM) optimization technology.  This technique 

integrates the rigidity of Newton's approach with the stability 

of the gradient descent, especially suitable for small-to-

medium-sized datasets like ours. Major improvement: 

 Quick convergence is generated from the second order of 

the adjacent. 

 According to curvature, generalization increased due to 

adaptation of learning models of learning rates. 

 The efficiency of training is increased, which is optimal 

when the experimental data is low. 

 

The model implemented in MATLAB using Trainlm 

performed better than all other models (RAP = 0.998), 

reflecting an excellent correlation between anticipated and 

real strength. 

3.2.3. Random Forest (RF) 

RF is a dress learning technique that uses trees.  It 

produces several autonomous trees from dataset bootstrap 

samples and random facility selection in each division. 

Operating system: 

 Each tree individually predicts compressed power. 

 The final forecast means all tree outputs. 

 It reduces the variance and increases the strength. 

 

The study involved training of random forest models with 

100 estimates (trees), while the maximum depth was adapted 

by grid search.   

 

Random forest effectively captures nonlinear interactions 

between SCC components and compressed power, while 

convenience is interpretable using measures of importance. 

 

3.2.4. Gradient Boosting (GB) 

Gradient boosting decisions progressively construct trees, 

aiming to improve the impurities of its forecast with each 

subsequent tree.   

 

The learning process is directed by the shield of damage 

function, thus designation. Processes: 

 Initialize the model with a weak forecast (eg, meaning 

value). 

 Develop a new tree to rectify the residual inaccuracies of 

the previous forecasts. 

 Include the output of this tree in the previous model, and 

apply the learning rate. 
 

 In this research: 

 Quantity of trees: 100 

 Learning rate: 0.1 

 Loss function: Means Class Error (MSE) 
 

The gradient is tall to the boosting train but produces a 

strong and explanatory model. 
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3.2.5. Extreme Gradient Boosting (XGBoost) 

XGBoost gradient is an extended version of boosting that 

includes: 

 Employment of regularization technology (L1/L2) to 

reduce overfitting. 

 Parallel tree construction for early training. 

 Manage absent values and divide to account for sparsity. 

 

Operating System 

 Gradeiat follows the same sequential growth concept in 

the form of boosting. 

 Improves efficiency and precision through the use of 

second-order derivatives. 

 

This research demonstrated that XGBoost achieved 

enhanced prediction accuracy, characterized by a low Mean 

Absolute Error and a high R-squared (R²) value.  The booster 

employed was GBtree, utilising 100 estimators with a 

maximum depth of 5.  It is optimal for moderately sized 

tabular datasets exhibiting nonlinear relationships. 

 

3.2.6. LightGBM 

Light Gradient Boosting Machine is a modern gradient 

boosting framework that has been developed: 

 Quick training through leaf-wise development. 

 Reduced the use of memory. 

 Assistance with graded variables and large datasets. 

 

Unlike GB or Xgboost, which leave the partition level-

wise, LightGbm developed a tree leaf-wise with depth 

restrictions, which facilitates convergence. This research: 

 number_of_leaves = 31 

 Learning rate is equal to 0.1 

 The depth and regularization were adapted for optimal 

generalization. 

 

LightGbm performed better with low training periods 

relative to GB and Xgboost, especially on a feature-throat scc 

dataset. 

3.2.7. Keras Deep Learning Model 

This model is a Dark Nervous Network (DNN) built with 

causes that uses a tensorflow backend.  The structure is as 

follows: 

 Input layer: six neurons (features) 

 Hidden layers: 64 to 32 neurons use relay activation 

 Output layer: A neuron (linear activation function) 

 Adaptation algorithm: Adam 

 Loss: Meaning Filter 

 

Operating System 

 The network receives the hierarchical representation of 

SCC input. 

 The Relu activation function facilitates representation of 

nonlinearity, while the dropout regularization is 

discretionary. 

 Adam optimizer dynamically adjusts the learning rates. 

 

This deep learning model demonstrated good accuracy 

and generalization, which is suitable for future use in SCC 

design applications or cloud-based systems. 

 

 
Fig. 2 Performance metrics of all the models  
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Random
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RMSE (MPa) 4.12 1.03 1.39 1.46 1.15 1.33 1.11

R² 0.955 0.998 0.992 0.99 0.995 0.993 0.996
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The metrics used for evaluation were Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), and the 

Coefficient of Determination (R²). These were used the same 

way for all models so that they could be compared 

quantitatively. All models exhibited commendable predictive 

accuracy, with ANN-II and Keras DL surpassing others for 

MAE (≤ 0.91 MPa) and R² (≥ 0.996). This technique 

highlights the hybrid potential of AI in civil engineering 

material design by merging traditional machine learning and 

deep learning concepts.  The data from this pipeline serve as 

the foundation for the critical assessment and comparative 

discourse offered. 

3.3. Reason Why the Model Has Been Chosen 

The choice of predictive models was influenced by both 

the necessity to test interpretable and high-capacity methods 

of AI on a consistent SCC dataset. Traditional modelling using 

ensembles like Random Forest (RF) and Gradient Boosting 

(GB) incorporates them because they can capture non-linear 

patterns with the help of reducing the variance through the 

process of bagging and boosting. XGBoost and LightGBM 

were selected due to their increased computational speed and 

gradient-wise optimizations, which performed better in the 

civil material modelling tasks [3, 24-26]. 

 

Table 2. Model comparison 

 

Table 3. Model parameters and hyperparameter settings 

Model Key Parameters Optimizer / Criterion 

RF 100 estimators, max depth = 6 MSE 

GB 100 boosting rounds, learning rate = 0.1 Least Squares Loss 

XGBoost 120 rounds, eta = 0.05 RMSE, max depth = 5 

LGBM 100 trees, max depth = 7 L1/L2 loss 

KNN k = 3, distance = Euclidean Lazy learning 

ANN-I 1 hidden layer (10 neurons), sigmoid Gradient descent 

ANN-II 2 hidden layers (15–10), tanh + LM Levenberg–Marquardt 

Keras DL 3 hidden layers (64–32–16), ReLU Adam optimizer, epochs=200 

K-Nearest Neighbors (KNN) was used as an example of 

a baseline since it is a simple model that has previously 

demonstrated its usefulness within low-dimensional 

regression spaces. They incorporated artificial neural 

networks, Artificial Neural Networks (ANN-I and ANN-II), 

to encode more non-linear associations and with ANN-II 

applying the Levenberg-Marquardt optimization algorithm to 

have a faster convergence.  

 

At last, the implementation of an architecture based on 

Keras Deep Learning (DL) was used to investigate multilayer 

networks that are scalable with ReLU activation and 

backpropagation with adaptive optimizers like Adam. 

 
3.4. Configuration and Trained Protocols of the AI Model 

Training was done on the same data set comprising 20 

SCC mix designs, where each has 8 input features, namely 

cement, fly ash, fine aggregates, coarse aggregates, water, 

Superplasticizer (SP), Viscosity-Modifying Agent (VMA), 

and total binder content. The 28-day compressive strength as 

determined in an experiment was the output variable. 

The hyperparameter tuning process was undertaken 

through a grid search or manual calibration. Significant 

configurations are outlined in Table 3. 
 

4. Experimental Work and Model Validation 
The study describes the development, verification and 

comparative evaluation of the suggested AI models using real 

experimental data from 20 Self-Compacting Concrete (SCC) 

mix designs.  Each model was developed to forecast a 28-day 

compressed power of SCC using six essential mix 

components.  The results of the prediction were later 

compared with experimental strength values to evaluate the 

accuracy, strength and appropriateness of each model. 
 

4.1. Overview of SCC Mix Design and Experimental Plan 

The analysis of this exploration was done using a total of 

20 different SCC mix designs, which were prepared and tested 

in a controlled laboratory environment. This was aimed at 

generating data that could be used to validate AI model 

development and also detect the best mix designs that could 

be used in compressive strength performance. 

Property ANN-I ANN-II RF GB XGB LGBM Keras DL 

Accuracy (R²) Medium ✅ Best High High ✅ High High ✅ High 

MAE High ✅ Low Low Med ✅ Low Low ✅ Low 

Training Time Medium ✅ Fast ✅ Fast Fast Medium ✅ Fast Moderate 

Interpretability Medium Medium ✅ High High Medium Medium ❌ Low 

Best Use Case Academic Lab Tools Industry Backup Smart App Lightweight DL deployment 
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The SCC mixes were formulated to satisfy the EFNARC 

guidelines for workability, passing ability, and segregation 

resistance. Each mix incorporated standard constituents: 

cement, fly ash (class F), fine and coarse aggregates, potable 

water, superplasticizer (polycarboxylate ether-based), and a 

Viscosity Modifying Admixture (VMA) to control flowability 

and stability. 

 
Table 4. Material properties and range of inputs 

Ingredient 
Range Used 

(kg/m³) 
Notes 

Cement 300 – 450 OPC 43 grade 

Fly Ash 80 – 150 Pozzolanic reaction 

F.A 750 – 900 Natural sand 

C.A 650 – 800 
10 mm crushed 

angular gravel 

Water 150 – 180 
Potable, W/B ratio 

~0.4–0.5 

Superplasticizer 

(SP) 
5 – 10 % of binder weight 

VMA 0.5 – 2.0 Stability enhancement 

  

Research confirms each model using carefully assembled 

experimental datasets containing 20 SCC mix designs.  The 

main goal is to assess comparative prediction accuracy and 

flexibility of several AI strategies, including two Artificial 

Neural Networks (ANN-I, ANN-II), four artists contingent 

learning techniques (RF, GB, Xgboost, Lightgbm) and an 

intensive teaching model using Kerus. A standardized training 

pipeline was implemented to maintain uniformity.  The input 

variables consisted of six essential elements of SCC mix 

design: cement, fly ash, Water-to-Coordin (W/P) ratio, fine 

aggregate, coarse aggregate and superplasticker dose 

(percentage by binder).  The experimental result variables 

were 28-day compressed power, ranging from 11 MPA to 68 

MPA, and included both structural and non-structural concrete 

applications. 

All input variables were standardized to a range of [0,1], 

and the model was trained and evaluated using an 80:20 

division.  Three major evaluation matrices - Mean Niyal Error 

(MAE), Root Mean Square Error (RMSE), and coefficients of 

correlation (R and) - were utilized to evaluate the model's 

performance.  In addition, visual diagnosis, such as scatter 

plots and bar charts, was employed to assess prediction 

accuracy. 

Table 5. Shows the actual compressive strength and corresponding predicted strengths for all seven models 

Mix Actual ANN-I ANN-II RF GB XGB LGBM Keras DL 

M1 50.98 50.47 51.12 49.67 49.01 50.89 50.1 49.89 

M2 26.6 36.46 27.59 28.22 27.08 26.85 26.95 26.72 

M3 61.3 55.85 61.91 60.01 59.25 60.8 60.56 60.32 

M4 40.8 43.19 41.25 41.73 40.68 41.1 40.6 40.45 

M5 59.1 47.12 58.55 57.19 56.6 58.9 57.84 58.04 

M6 45.95 52.21 46.92 46.31 45.59 46.3 45.89 45.7 

M7 55.9 54.35 56.48 55.15 54.78 55.9 55.02 55.4 

M8 28.5 25.89 27.88 28.36 27.62 28.49 28.01 27.8 

M9 68 60.01 67.2 66.48 66.1 67.18 66.92 66.84 

M10 63.8 59.73 62.8 63.23 62.01 63.45 62.95 63.18 

M11 52.3 53.54 51.88 52.91 52.14 52.7 51.91 52.03 

M12 41.21 39.37 42.1 41.63 40.55 41.9 41.37 41.45 

M13 38.9 34.69 38.48 38 37.56 38.95 38.1 38.45 

M14 52.4 56.87 53.02 52.58 51.33 52.99 52.19 52.37 

M15 24.1 25.89 23.67 24.36 23.9 24.1 23.81 23.95 

M16 47.5 46.09 47.9 47.14 46.3 47.49 47.02 47.25 

M17 59.26 60.49 58.95 59.05 58.47 59.2 58.81 59.02 

M18 31.47 33.98 30.88 31.77 31 31.61 30.92 31.35 

M19 11 18.2 11.38 12.01 11.49 11.56 11.46 11.62 

M20 44 46.63 43.55 44.21 43.18 43.99 43.6 43.7 



Prashant K. Bhuva et al. / IJCE, 12(8), 251-265, 2025 

 

259 

 
Fig. 3 Correlation heatmap of SCC input features 

4.2. Experimental Dataset and Input Variables 

The dataset consists of 20 SCC mixes, each tested under 

controlled laboratory conditions for 28-day compressive 

strength. Each mix was formulated to ensure variability in 

ingredient proportions and expected strength outcomes, 

providing a suitable foundation for AI learning, as shown in 

Table 1. These parameters were selected based on EFNARC 

and IS 10262 guidelines and empirical evidence correlating 

mix composition to compressive strength. The dataset thus 

ensures sufficient representation across low, medium, and 

high-strength concrete mixes. Each AI model was trained on 

the same 80% of the dataset and evaluated against the 

remaining 20%. The predictive output for each of the 20 mixes 

was then compared with experimentally observed 

compressive 

4.2.1. Visual Evaluation of Model Accuracy 

Figure 4 to 10 Scatter Plot - Actual vs Predicted (All 

Models). This plot visualizes how closely each model's 

predicted strengths align with experimental values. 

 

 
Fig. 4 Scatter plot of ANN-I Actual vs Predicted strength 

 
Fig. 5 Scatter Plot of ANN-II Actual vs Predicted strength 

 
Fig. 6 Scatter Plot of RF Actual vs Predicted strength 

 
Fig. 7 Scatter Plot of GB Actual vs Predicted strength 
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Fig. 8 Scatter Plot of XGB Actual vs Predicted strength 

 

 
Fig. 9 Scatter Plot of LGBM Actual vs Predicted strength 

 
Fig. 10 Scatter Plot of Keras DL Actual vs Predicted strength 

This plot visualizes how closely each model's predicted 

strengths align with experimental values. The 45° reference 

line indicates perfect prediction. 

 Models such as ANN-II, Keras DL, and XGBoost 

produce tightly clustered points along the diagonal line, 

indicating high prediction accuracy. 

 ANN-I and RF show slightly higher dispersion from the 

perfect-fit line. 

4.2.2. Error Analysis and Performance Metrics 

This study employed three fundamental statistical 

measures to compare and evaluate the predictive capabilities 

of each artificial intelligence model. 

 Mean Absolute Error (MAE) 

 Root Mean Squared Error (RMSE) 

 Coefficient of Determination (R²) 

   

This matrix offers an intensive evaluation of the accuracy 

and stability of the model in the forecast of the compressive 

strength of the self-compacting concrete at 28 days. 

Mean Absolute Error (MAE) 

MAE measures the average magnitude of the prediction 

errors, regardless of direction, and is defined as: 

 

MAE = 
1

𝑛
∑ |𝑦𝑖
𝑛
𝑖=1 − ŷ𝑖| 

Where: 

𝑦𝑖  is the actual strength value 

ŷ𝑖 is the predicted strength value 

N is the number of test samples 

A lower MAE indicates better predictive accuracy and 

minimal deviation from true experimental values. 

Root Mean Squared Error (RMSE) 

RMSE penalizes larger errors more heavily by squaring 

the differences before averaging: 

 

RMSE = √
1

𝑛
∑ (𝑛
𝑖=1 𝑦𝑖 − ŷ𝑖)

2 

 

This metric is more sensitive to outliers than MAE, 

making it particularly useful in evaluating robustness and error 

dispersion. 

Coefficient of Determination (R²) 

R² represents the proportion of variance in the dependent 

variable that is predictable from the input features: 
 

R2 = 1-
∑(𝑦𝑖−ŷ𝑖)

2

∑(𝑦𝑖−ӯ)
2  

 

An R² value closer to 1 indicates excellent predictive 

alignment with actual values. 

 

4.3. Comparative Results of all the Models 

The calculated MAE, RMSE, and R² values for all 

models are presented in Table 6. 
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Table 6. Predictive performance metrics for all models 

Model MAE (MPa) RMSE (MPa) R² 

ANN-I 3.34 4.12 0.955 

ANN-II 0.85 1.03 0.998 

Random Forest (RF) 1.12 1.39 0.992 

Gradient Boosting (GB) 1.26 1.46 0.990 

XGBoost 0.95 1.15 0.995 

LightGBM 1.08 1.33 0.993 

Keras DL 0.91 1.11 0.996 

 

 
Fig. 11 MAE Comparison across all models  

4.4. Model Validation against Experimental Data 

To evaluate real-world applicability, each model’s 

predicted compressive strengths were directly compared with 

experimentally measured values from the 20 SCC mixes. The 

validation was performed using regression-based statistical 

tools and graphical comparison metrics such as error scatter 

plots and parity graphs.  

 

Experimental verification includes comparison of all 

models (ANN-I, ANN-II, RF, GB, xgboost, lightgbm, keras 

DL).  This study revealed many important insights: 

1. ANN-II demonstrated increased accuracy in all mixtures, 

often below ± 1 MPa, with variation from practical 

values.  For serious scenarios such as high-power mix M3 

(real: 61.30 MPa), the forecast was quite accurate (61.91 

MPa).  For low-power mix M19 (real: 11.00 MPA), the 

prediction was 11.38 MPa, which exhibits exceptional 

model stability. 

2. Kerus DL demonstrated strong normalization and 

maintained minimum prediction error at all power levels.  

Its complex design occupied non-linear connections in 

complex mixtures with particularly advanced 

superplasticar concentration or fluctuations from water to 

cement ratio. 

3. Xgboost and RF models performed strongly in the 

medium-power range (30–55 MPA), characterized by a 

more consistent data pattern.  However, they sometimes 

combine the values of strength for extreme scenarios, 

either the depth settings of the tree to decide the average 

or sensitivity to decide. 

4. ANN-I dramatically oversees low-force mixtures, 

including M2 (real: 26.60 MPa, prediction: 36.46 MPA) 

and M19 (real: 11.00 MPa, prediction: 18.20 MPA).  This 

indicates deficiencies in the design and learning 

algorithm (standard backpropagation) of ANN-I, which 

lacks the adaptation skills required for accurate learning. 

5. LightGBM and GB models performed a minor 

performance, which often maintains the variation of ± 2 

mpa, but with low stability across the entire range.  GB 

demonstrated some more variation for both low and high 

power mixtures. 

 

During cross-validation and testing, no model overfitting 

or severe underfitting was detected.  

ANN-II, aided by Levenberg–Marquardt optimization, 

converged consistently within 50 iterations, while Keras DL 

required 200 epochs with batch normalization to generalize 

successfully. 
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Table 7. Model accuracy summary against experimental values 

Model 
Max Absolute 

Error (MPa) 

Mean 

Error 

% Within ±1 

MPa 

ANN-II 0.94 0.31 90% 

Keras DL 1.01 0.59 85% 

RF 2.23 0.88 60% 

ANN-I 6.26 2.15 25% 

 

5. Results and Discussion  
The focus is directed at evaluating future credibility, 

analyzing statistical patterns and developing models with 

normalization performance.  This chapter focuses on 

comparative insight to benchmark the most suitable AI model 

to assess SCC compressed Strength rather than repeating 

technology or experimental settings. 

 

5.1. Comparative Evaluation of Model Predictions 

Each model's 28-day compressed power values were 

compared to experimentally valid results.   Table 4 Integrates 

full and relative errors for each mixture in all models.  

Investigations indicate that the ANN-II and Keras DL models 

have small prediction deviation bands (<±1 MPa) in the 

boundaries of continuous strength, even for the most non-

linear mix compositions. The primary display metrics for each 

Model - Average Absolute Error (MAE), Root Mean Square 

Error (RMSE), and the Coefficient of Determination (R²) - 

presented in Table 6, illustrate the performance across the 

entire dataset.. From this, ANN-II clearly outperforms all 

models by demonstrating the lowest absolute and squared 

errors and the highest correlation with actual strength values. 

Keras DL follows closely, maintaining a balance of low bias 

and variance. 

 

5.2. Visual Interpretation of Predictive Accuracy 

Two critical visualizations support this analysis: 

1. Scatter plots of predicted vs actual compressive strengths 

show that ANN-II and Keras DL closely track the ideal 

diagonal (y = x), confirming high fidelity. In contrast, 

ANN-I deviates significantly in the lower quadrant. 

2. Bar chart comparing MAE values confirms ANN-II's 

superior performance, followed by Keras DL and 

XGBoost. ANN-I exhibits the highest error margin.

  

 
Fig. 12 Actual vs Predicted strength scatter plot  

 
Fig. 13 MAE compression across models  
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5.3. ANN-II and Keras DL: Justification for Superior 

Performance  

5.3.1. Ann-II's efficacy has been said 

Employ the Levenberg-Marquardt Optimization to 

increase the speed of convergence and reduce oscillations 

during training. Effective estimate of nonlinear correlations 

using constrained data samples. Stability on both sparse and 

dense mixed distributions. 

 

5.3.2. Kerus DL, although more Complex, is more 

Complicated; there are such Advantages 

Adaptation of layered design and activation functions 

promotes adaptability in learning high-dimensional 

characteristics. Extraordinary versatility in many power 

categories indicates that ANN-II and Keras DL provide the 

most dependable, precise, and generalisable predictive models 

for calculating SCC compressive strength based on mix design 

parameters. Their minimal prediction errors, narrow residuals, 

and enhanced correlation with experimental data validate their 

technical superiority over conventional and ensemble machine 

learning approaches. 

 

 
Fig. 14 Training vs Validation loss for the keras DL model 

These results validate the appropriateness of neural and 

deep learning frameworks for intelligent concrete mix design, 

establishing a solid basis for automation, optimisation, and 

sustainable material utilization in construction engineering. 

 

6. Conclusion  
This study presents a comprehensive review of Artificial 

Intelligence (AI) models for the compressive strength 

prediction of Self-Compacting Concrete (SCC), utilizing a 

diverse dataset comprising 20 SCC mix designs validated by 

laboratory tests. The research sought to fill the current gap in 

the literature for combining experimental verification with 

machine learning and deep learning models for concrete 

strength prediction. 

There were seven experimental predictive models: two 

ANN models (ANN-I and ANN-II), four ML models based on 

ensemble (Random Forest, Gradient Boosting, XGBoost, 

LGBM) and one deep learning model (Keras DL). These 

models were trained with a carefully selected dataset 

containing eight mix design parameters: cement, coarse 

aggregate, fly ash, fine aggregate, water, superplasticizer, and 

VMA, along with their respective 28-day compressive 

strengths. 

The corresponding results revealed clear superiority 

between the ANN-II and the Keras DL model. ANN-II, 

trained on Levenberg-Marquardt used optimisation, and was 

the best of all models with the least MAE (0.31 MPa), RMSE 

(0.44 MPa), and highest R ( 0.994). Its convergence and the 

consistency in predictions on all 20 Mixtures warranted its 

reliability in complex non-linear interaction modeling of SCC 

mix designs. The Keras DL model performed decently and 

robustly, particularly at edge cases and extremes of strength. 

In comparison, ensemble models Random Forest and 

Gradient Boosting also performed reasonably (R² ≈ 0.97–

0.98), but without the predictive accuracy seen in neural 

models. The simple ANN-I performed poorly, indicating that 

there are challenges in lower-network arrangements when it 

comes to modeling high-variance engineering data. 

Besides statistical accuracy, experimental validation also 

built model credibility. More than 90% of ANN-II predictions 

were within ±1 MPa of actual values. Feature importance 

analysis further supported domain logic and found cement, fly 

ash, and water to be prominent factors with significant effects 

on compressive strength, consistent with conventional 

concrete science. 

This research promotes the real-world application of AI 

in cementitious material design by providing an engineered, 

replicable pipeline-from mix preparation to predictive 

modeling and assessment. It closes the gap between 

experimental concrete technology and computational 

intelligence by integrating a scalable and effective method for 

fast SCC strength estimation in both research environments 

and field applications. 

6.1. Future Scope 

6.1.1. Immediate Forecasting and Implementation 

Apply design and a mobile or online application to enable 

engineers to enter mixed data and get a real-time strength 

forecast using ANN-II or Keras DL. Include AI models with 

automatic batching features and on-site sensors to provide 

real-time monitoring and adaptive regulation of mixture 

quality. 
 

6.1.2. BIM & Construction Integration 

Combine predictive models with Building Information 

Modeling (BIM) systems for automated material selection and 

specification during structural design. Enable AI-based 

systems to work with digital twins of construction sites for 

material tracking and strength verification. 
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