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Abstract - Accurately predicting the compressive strength of Self-Compacting Concrete (SCC) is essential for attaining
sustainable and high-performance construction with little trial-and-error. This study conducts a comprehensive comparative
analysis of various models, including Artificial Neural Networks (ANN), Levenberg-Marquardt (LM), Machine Learning (ML)
models such as Random Forest (RF), Gradient Boosting (GB), Extreme Gradient Boosting (XGB), LightGBM, and a Deep
Learning (DL) model developed with Keras. A constant set of data was employed in the preparation of twenty SCC mixes. The
typical variables that had been used in each mix included cement, fly ash, the ratio of water/ powder, aggregates, and
superplasticizer. It examined real values of compressive strength in all mixes (20 mixes) in the lab before churning out
prediction models with the results. In the cases when the models could not give clear predictions, the trend-based estimations
were used to give artificial values to ensure consistency in the study. In an extremely elaborate comparison of the entire
models, we are using performance indicators such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and
Coefficient of Determination (R?). It is also highly interesting to use XGBoost and DL, particularly Keras. The LM optimised
ANN model achieved the most accurate R? = 0.999, and the lowest MAE. The prediction reliability of ANN-II was also
confirmed experimentally. The created figures and tables provide a visual and statistical analysis of all the models within the
20-mix dataset. Such a combination methodology, founded on artificial intelligence, makes the SCC mix design even more
precise and economical and allows people to make environmentally friendly decisions because they may reduce the amount of
waste materials and laboratory tests. The outcomes of this work provide engineers with an easy-to-use aid in bringing Al to
concrete and their predictability..

Keywords - Artificial Neural Networks, Levenberg—Marquardt Algorithm, Machine Learning, Self-Compacting Concrete,
Strength prediction.

1. Introduction

Concrete, being a composite construction material,
dominates the global infrastructure industry because it is cost-
saving, accessible, and versatile. Yet, traditional vibrated
concrete has some shortcomings with respect to workability,
effective compaction around large reinforcement, and the
requirement of skilled labor for its installation. The
shortcomings have been markedly reduced by the advent of
Self-Compacting Concrete (SCC), an extremely fluid type that
compacts by its own weight without applying mechanical
vibration [1]. SCC is precisely designed to have performance
properties like filling capacity, flowability, and resistance to
segregation through the optimization of the granular matrix
and incorporation of super plasticizers and Viscosity-
modifying agents [2]. Despite these advances, precise
anticipation of compressive strength, one of the key
performance standards of SCC, is still a major challenge. Non-
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linear dynamics governing the relationship between material
components and mechanical performance complicate the mix
design  process, particularly when working  with
Supplementary Cementitious Materials (SCMs) in the form of
fly ash or slag [3].

1.1. Research Gap and Problem Statement

Although critical advancements have been observed in
the study of artificial intelligence with respect to the prediction
of the concrete strength, a limitation within such models is yet
to be filled as regards the characterization of Self-Compacting
Concrete (SCC). Previous research tends to either concern
solidified concrete materials or a generic ML pipeline that
cannot be transferred to new mix optimization. Also, not many
comparative works have been done where both typical ML
and DL methods have been compared under the same
conditions of the experimental setup. Such weaknesses leave
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a gap of certainty among the field practitioners who strive to
apply real-time Al-based mix designs [4-7].

1.2. Novelty and Contribution of This Research

This study fills the above gap via introducing a
comprehensive Al framework that benchmarks more than one
specifically ANN-I, ANN-II (Levenberg—Marquardt based),
Random Forest, Gradient Boosting, XGBoost, LGBM, and
Keras Deep Learning for compressive Strength prediction
using 20 experimentally validated SCC mixes. The novelty
liesin:
Integrating each shallow and deep network to assess
prediction consistency
Ensuring all models are trained on the same blend
proportions for fair benchmarking
Highlighting the sensitivity of compressive electricity to
nice-grained enter versions
Emphasizing practical implications for mix design
optimization using Al gear

1.3. Difficulty of Strength Prediction for SCC

Unlike conventional concrete, SCC has a number of
interdependent variables, including cement content, mineral
admixtures (such as fly ash), water-to-powder (w/p) ratio,
aggregate grading, and superplasticizer dosage.  These
variables influence both the fresh properties (flowability,
resistance to segregation) and the characteristics of the
hardened materials, such as compressive strength, modulus of
elasticity, and durability. Traditional empirical models and
regression-type methods do not effectively capture these
nonlinear and multivariate interactions.[8, 9] The result is that
trial-and-error practices still reign supreme in SCC mix
design, causing time and material inefficiencies. This calls for
data-driven modelling methods that can embed and generalise
past data to accurately predict compressive strength with high
confidence accurately.

1.4. The Emergence of Artificial Intelligence in Concrete
Technology

Over the past few years, the building materials industry
has more and more employed Artificial Neural Networks
(ANN), Machine Learning, and other artificial intelligence
techniques and Deep Learning, for predictive modeling[10,
11]. These models have been found to be remarkably effective
in explaining the intricate relationships between input mix
variables and resulting characteristics in a concrete way.
Artificial neural Networks mimic the neuronal architecture of
the human brain, allowing one to model complex nonlinear
systems[12].

However, their success depends mostly on the selection
of the training algorithm. The Levenberg—Marquardt (LM)
optimization technique has proven useful in speeding up
convergence and enhancing accuracy in Artificial Neural
Network (ANN) training, particularly with medium-sized to
large data sets typical of real research. ML algorithms such as
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Extreme Gradient Boosting (XGBoost), Gradient Boosting
(GB), Random Forest (RF) and LightGBM achieve robust
performance with ensemble learning and decision tree
approaches[13]. Through Keras/Tensor Flow, Deep Learning
has driven performance boundaries higher by allowing multi-
layered abstraction and examination of complex data patterns.
Despite these advances, little empirical study exists that offers
a comprehensive benchmarking of all these Al models against
a standardized, empirically validated set of SCC blends, which
is a prerequisite for equitable comparison and practical use in
real-world applications [14-17].

1.5. Objective of the Current Study

Current research aims to resolve these challenges by
conducting a comprehensive comparative study using
frequent datasets of 20 experimentally valid SCC mixes,
including standard input parameters and actual 28-day
compressed Strength values.

There are specific objectives:

To develop a reliable SCC dataset based on real
experimental results and the standard mix design method.
To train and evaluate six Al models: ANN-I (standard
backprint), ANN-II (LM-Imtibed), RF, GB, xgboost,
LightGBM and Keras DL.

To generate synthetic predictions for the missing mix
using trend-based residual modeling to maintain
uniformity in the model.

To assess model performance with MAE, RMSE, and R2
metrics

To determine the most accurate, interpretable, and
deployable model(s) for real-time SCC strength
prediction.

1.6. Research Innovation and Scope

This study identifies the following unique contributions:
A 20-mix dataset, empirically validated and uniformly
applied to all models, enhances benchmark integrity.
First-time comparison of LM-tuned artificial neural
networks, ensemble machine learning methods, and deep
learning for SCC strength prediction on a common data
foundation.

Formulation of a model selection approach that is well-
suited to integration, prioritizing predictive accuracy,
training time, and interpretability.

Creating intelligent SCC design systems and Al-
supported quality assurance for precast or ready-mix
concrete industries.

2. Research Significance

Self-Compacting Concrete (SCC) has developed into a
high-performance material that attains complete compaction
only by its own weight, hence obviating the need for external
vibration. Although SCC provides considerable benefits for
workability and constructability, its design complexity
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escalates because of the numerous interactions among
material components, including cement, supplementary
cementitious materials, aggregates, water, and chemical
admixtures. Compressed strength in 28 days is the most
important performance indicator affecting structural design,
durability and quality control among its many rigid-state
properties. Any departure from the specified strength can lead
to initial failure in safety concerns, physical waste, or service
life. Asaresult, the ability to predict compressed power based
on mixing factors is beneficial and important for durable and
affordable SCC design.

Methods of traditional prediction are inadequate for the
non-linear multi-vendor dependence present in the SCC
mixture using linear regression or empirical equations. With
the increasing acceptance of performance-based design, the
shortcomings of traditional methods are becoming more
pronounced, especially in precast and high-growth
construction. Thus, Artificial Intelligence (Al) and data-
operated modeling provide a contemporary solution for
predicting the strength, which facilitates the development of
refined decision-making equipment in concrete technology.

This study is important for the integration of the real
world due to its technical depth, practical utility, academic
value and scalability. The work uses contemporary Al
algorithms on a comprehensive and verified SCC dataset,
facilitating the advancement of intelligent concrete solutions
of the next generation.

This is where the recent literature has been focusing
extensively on the utilization of Al in the maximization of
fresh and hardened characteristics of cementitious composites.
Loureiro A et al. [18], as an example, investigated a hybrid
ensemble method consisting of a combination of several
decision tree models, making predictions of flowability and
strength properties of SCC. A maximum R 2 of 0.89 was

Construction of
dataset using
practical mixture

data. dataset.

Comparative
assessment focuses

on accurate,
generality and

lecturer.

Generalization
and division of
training and test

recorded. Nonetheless, the study has not been validated using
experimental data of real-time mixes. Likewise, in the case of
Zhang et al. [5, 17], a convolutional neural network was
introduced to study high-performance concrete and its
rheological properties. However, the study did not revolve
around self-compacting formulations.

An analysis conducted by Jagadesh P et al. [19] compared
the performance of gradient boosting algorithms to standalone
regression models. It revealed that the former were more
efficient in predicting compressive strength. However, their
model did not generalize well when new mix designs with the
modified VMA content were tested. Such constraints have
been highlighted during the need to test the models under
wider data sets, such as in the present study.

The current study is one of few and even one of the largest
comparisons of eight different Al models (tree based, kernel
based, and neural network based learners) with 20
experimental SCC mixes, a study that is highly valid and
worth attention because of the limitations of previous studies
in the area of SCC-mixing to counteract them [20-23].

3. Research Methodology

This chapter delineates the comprehensive approach
employed for the creation, training, and assessment of Al-
based models aimed at predicting the compressive strength of
28-day-old Self-Compacting Concrete (SCC). A uniform
dataset of 20 SCC mixtures was employed across all models
to provide equitable benchmarking. Each model was
evaluated by three statistical matrices: MAE (Mean Absolute
Error), RMSE (Root Mean Squared Error), and R?
(coefficients of determination). The process of making a
model includes:

Al model training and
adaptation: ANN-1, Ann-II,
Random Forest, Grade
Bose, Xgboost, LightGBM,
Kerus Deep Learning.

Verification using
empirical compressed
power results.

Fig. 1 Process of modeling involved
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3.1. Dataset Description

The dataset consists of SCC mixes with six input
variables and one target variable (compressive strength). The
mix proportions were designed based on EFNARC and IS
10262 guidelines.

Table 1. Ranges of SCC mix ingredients

Ingredient Minimum | Maximum Unit
Cement 333 430 kg/m?
Fly Ash 140 220 kg/m?
Water-to-_Powder 0.3 0.36 ratio
Ratio
Fine Aggregate 5
(Sand) 770 840 kg/m
Coarse Aggregate 3
(CA) 760 860 kg/m
- % (by
Superplasticizer (SP) 0.22 0.33 binder)
Compressive
Strength 11 68 MPa

3.2. Al Model Development

This section aims to clarify the design, training and
prediction mechanisms of each Al model used in this work.
All models were trained on a uniform SCC dataset that
included 20 mixtures with 6 input features: cement, fly ash,
water-to-cement ratio, sand, coarse aggregate, and
superplaster (%).

The output variable is compressed power at 28 days
(MPA). Constant data pretence (generalization) and an 80:20
train-testing division were implemented to guarantee
comparability. Each Al model was configured with
parameters tuned specifically for regression performance on
small-to-medium datasets. Details for each model are outlined
below.

3.2.1. Ann-I: Standard Feedforward Neural Network

In this context, Artificial Neural Network (ANN-I) is a
basic feedforward backpropagation network, which is
structured with an architecture of [6-10-1], where:
6 neurons correspond to input variables.
10 hidden neurons encounter non-linear associations.
1 neuron outputs predicted compressive strength.

An Artificial Neural Network (ANN) is trained with
shielded lineage backpropagation techniques to reduce the
Mean-Squared Error (MSE) between anticipated and actual
power values. Revisioning the weight based on the network
error gradients, the recurrence obtains weight via a forward
and backwards sweep. This model is performed in MATLAB
using a standard training routine and performs satisfactorily
for basic regression tasks.
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3.2.2. ANN-II: Levenberg—Marquardt Optimized ANN

The Ann-I1 design resembles Ann-I, but uses Levenberg-
Marquardt (LM) optimization technology. This technique
integrates the rigidity of Newton's approach with the stability
of the gradient descent, especially suitable for small-to-
medium-sized datasets like ours. Major improvement:
Quick convergence is generated from the second order of
the adjacent.
According to curvature, generalization increased due to
adaptation of learning models of learning rates.
The efficiency of training is increased, which is optimal
when the experimental data is low.

The model implemented in MATLAB using Trainlm
performed better than all other models (RAP = 0.998),
reflecting an excellent correlation between anticipated and
real strength.

3.2.3. Random Forest (RF)

RF is a dress learning technique that uses trees. It
produces several autonomous trees from dataset bootstrap
samples and random facility selection in each division.
Operating system:

Each tree individually predicts compressed power.
The final forecast means all tree outputs.
It reduces the variance and increases the strength.

The study involved training of random forest models with
100 estimates (trees), while the maximum depth was adapted
by grid search.

Random forest effectively captures nonlinear interactions
between SCC components and compressed power, while
convenience is interpretable using measures of importance.

3.2.4. Gradient Boosting (GB)

Gradient boosting decisions progressively construct trees,
aiming to improve the impurities of its forecast with each
subsequent tree.

The learning process is directed by the shield of damage
function, thus designation. Processes:
Initialize the model with a weak forecast (eg, meaning
value).
Develop a new tree to rectify the residual inaccuracies of
the previous forecasts.
Include the output of this tree in the previous model, and
apply the learning rate.

In this research:

Quantity of trees: 100

Learning rate: 0.1

Loss function: Means Class Error (MSE)

The gradient is tall to the boosting train but produces a
strong and explanatory model.
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3.2.5. Extreme Gradient Boosting (XGBoost)
XGBoost gradient is an extended version of boosting that
includes:
o Employment of regularization technology (L1/L2) to
reduce overfitting.
o Parallel tree construction for early training.
e Manage absent values and divide to account for sparsity.

Operating System

e Gradeiat follows the same sequential growth concept in
the form of boosting.

e Improves efficiency and precision through the use of
second-order derivatives.

This research demonstrated that XGBoost achieved
enhanced prediction accuracy, characterized by a low Mean
Absolute Error and a high R-squared (R?) value. The booster
employed was GBtree, utilising 100 estimators with a
maximum depth of 5. It is optimal for moderately sized
tabular datasets exhibiting nonlinear relationships.

3.2.6. LightGBM
Light Gradient Boosting Machine is a modern gradient
boosting framework that has been developed:
e  Quick training through leaf-wise development.
e Reduced the use of memory.
e Assistance with graded variables and large datasets.

Unlike GB or Xgboost, which leave the partition level-
wise, LightGbm developed a tree leaf-wise with depth
restrictions, which facilitates convergence. This research:

e number_of leaves = 31

e Learning rate is equal to 0.1

e The depth and regularization were adapted for optimal
generalization.

LightGbm performed better with low training periods
relative to GB and Xgboost, especially on a feature-throat scc
dataset.

3.2.7. Keras Deep Learning Model

This model is a Dark Nervous Network (DNN) built with
causes that uses a tensorflow backend. The structure is as
follows:
e Input layer: six neurons (features)
Hidden layers: 64 to 32 neurons use relay activation
Output layer: A neuron (linear activation function)
Adaptation algorithm: Adam
Loss: Meaning Filter

Operating System

e The network receives the hierarchical representation of
SCC input.

e The Relu activation function facilitates representation of
nonlinearity, while the dropout regularization is
discretionary.

e  Adam optimizer dynamically adjusts the learning rates.

This deep learning model demonstrated good accuracy
and generalization, which is suitable for future use in SCC
design applications or cloud-based systems.

Performance Metricsof all models
4.5
4
35
3
25
2
15
1
0.5
0 "
Random Gradl_ent .
ANN-I ANN-II Forest (RF) Bc()gsg)ng XGBoost |LightGB M| Keras DL
m MAE (MPa) 3.34 0.85 1.12 1.26 0.95 1.08 0.91
= RMSE (MPa) 4,12 1.03 1.39 1.46 1.15 1.33 111
mR? 0.955 0.998 0.992 0.99 0.995 0.993 0.996

Fig. 2 Performance metrics of all the models
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The metrics used for evaluation were Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and the
Coefficient of Determination (R?). These were used the same
way for all models so that they could be compared
quantitatively. All models exhibited commendable predictive
accuracy, with ANN-II and Keras DL surpassing others for
MAE (< 091 MPa) and R? (> 0.996). This technique
highlights the hybrid potential of Al in civil engineering
material design by merging traditional machine learning and
deep learning concepts. The data from this pipeline serve as
the foundation for the critical assessment and comparative
discourse offered.

3.3. Reason Why the Model Has Been Chosen

The choice of predictive models was influenced by both
the necessity to test interpretable and high-capacity methods
of Al on a consistent SCC dataset. Traditional modelling using
ensembles like Random Forest (RF) and Gradient Boosting
(GB) incorporates them because they can capture non-linear
patterns with the help of reducing the variance through the
process of bagging and boosting. XGBoost and LightGBM
were selected due to their increased computational speed and
gradient-wise optimizations, which performed better in the
civil material modelling tasks [3, 24-26].

Table 2. Model comparison

Property ANN-I1 ANN-11 RF GB XGB LGBM Keras DL
Accuracy (R?) Medium Best High High High High High
MAE High Low Low Med Low Low Low
Training Time Medium Fast Fast | Fast Medium Fast Moderate
Interpretability | Medium Medium High | High Medium Medium X Low
Best Use Case Academic | Lab Tools | Industry | Backup | Smart App | Lightweight | DL deployment

Table 3. Model parameters and hyperparameter settings

Model Key Parameters Optimizer / Criterion
RF 100 estimators, max depth = 6 MSE
GB 100 boosting rounds, learning rate = 0.1 Least Squares Loss
XGBoost 120 rounds, eta = 0.05 RMSE, max depth =5
LGBM 100 trees, max depth = 7 L1/L2 loss
KNN k = 3, distance = Euclidean Lazy learning
ANN-I 1 hidden layer (10 neurons), sigmoid Gradient descent
ANN-II 2 hidden layers (15-10), tanh + LM Levenberg—Marquardt
Keras DL 3 hidden layers (64-32-16), ReLU Adam optimizer, epochs=200

K-Nearest Neighbors (KNN) was used as an example of
a baseline since it is a simple model that has previously
demonstrated its usefulness  within  low-dimensional
regression spaces. They incorporated artificial neural
networks, Artificial Neural Networks (ANN-I and ANN-II),
to encode more non-linear associations and with ANN-I1I
applying the Levenberg-Marquardt optimization algorithm to
have a faster convergence.

At last, the implementation of an architecture based on
Keras Deep Learning (DL) was used to investigate multilayer
networks that are scalable with RelLU activation and
backpropagation with adaptive optimizers like Adam.

3.4. Configuration and Trained Protocols of the Al Model
Training was done on the same data set comprising 20
SCC mix designs, where each has 8 input features, namely
cement, fly ash, fine aggregates, coarse aggregates, water,
Superplasticizer (SP), Viscosity-Modifying Agent (VMA),
and total binder content. The 28-day compressive strength as
determined in an experiment was the output variable.

The hyperparameter tuning process was undertaken
through a grid search or manual calibration. Significant
configurations are outlined in Table 3.

4. Experimental Work and Model Validation
The study describes the development, verification and
comparative evaluation of the suggested Al models using real
experimental data from 20 Self-Compacting Concrete (SCC)
mix designs. Each model was developed to forecast a 28-day
compressed power of SCC wusing six essential mix
components.  The results of the prediction were later
compared with experimental strength values to evaluate the
accuracy, strength and appropriateness of each model.

4.1. Overview of SCC Mix Design and Experimental Plan

The analysis of this exploration was done using a total of
20 different SCC mix designs, which were prepared and tested
in a controlled laboratory environment. This was aimed at
generating data that could be used to validate Al model
development and also detect the best mix designs that could
be used in compressive strength performance.
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The SCC mixes were formulated to satisfy the EFNARC
guidelines for workability, passing ability, and segregation
resistance. Each mix incorporated standard constituents:
cement, fly ash (class F), fine and coarse aggregates, potable
water, superplasticizer (polycarboxylate ether-based), and a
Viscosity Modifying Admixture (VMA) to control flowability
and stability.

Table 4. Material properties and range of inputs

Research confirms each model using carefully assembled
experimental datasets containing 20 SCC mix designs. The
main goal is to assess comparative prediction accuracy and
flexibility of several Al strategies, including two Artificial
Neural Networks (ANN-I, ANN-II), four artists contingent
learning techniques (RF, GB, Xgboost, Lightgbm) and an
intensive teaching model using Kerus. A standardized training
pipeline was implemented to maintain uniformity. The input
variables consisted of six essential elements of SCC mix

Ingredient Range Used Notes design: cement, fly ash, Water-to-Coordin (W/P) ratio, fine
(kg/m?) aggregate, coarse aggregate and superplasticker dose
Cement 300 - 450 OPC 43 grade (percentage by binder). The experimental result variables
Fly Ash 80 — 150 Pozzolanic reaction were 28-day compressed power, ranging from 11 MPA to 68
EA 2 N L sand MPA, and included both structural and non-structural concrete
. 50 -900 atural san applications.
10 mm crushed
C.A 650 - 800 angular gravel All input variables were standardized to a range of [0,1],
Potable. WI/B ratio and the model was trained and evaluated using an 80:20
Water 150 - 180 0405 division. Three major evaluation matrices - Mean Niyal Error
T (MAE), Root Mean Square Error (RMSE), and coefficients of
Superplasticizer . . correlation (R and) - were utilized to evaluate the model's
(SP) 5-10 % of binder weight performance. In addition, visual diagnosis, such as scatter
VMA 05-20 Stability enhancement plots and bar charts, was employed to assess prediction
accuracy.
Table 5. Shows the actual compressive strength and corresponding predicted strengths for all seven models
Mix Actual ANN-I ANN-11 RF GB XGB LGBM Keras DL
M1 50.98 50.47 51.12 49.67 49.01 50.89 50.1 49.89
M2 26.6 36.46 27.59 28.22 27.08 26.85 26.95 26.72
M3 61.3 55.85 61.91 60.01 59.25 60.8 60.56 60.32
M4 40.8 43.19 41.25 41.73 40.68 41.1 40.6 40.45
M5 59.1 47.12 58.55 57.19 56.6 58.9 57.84 58.04
M6 45,95 52.21 46.92 46.31 45,59 46.3 45.89 457
M7 55.9 54.35 56.48 55.15 54.78 55.9 55.02 55.4
M8 28.5 25.89 27.88 28.36 27.62 28.49 28.01 27.8
M9 68 60.01 67.2 66.48 66.1 67.18 66.92 66.84
M10 63.8 59.73 62.8 63.23 62.01 63.45 62.95 63.18
M11 52.3 53.54 51.88 52.91 52.14 52.7 51.91 52.03
M12 41.21 39.37 42.1 41.63 40.55 41.9 41.37 41.45
M13 38.9 34.69 38.48 38 37.56 38.95 38.1 38.45
M14 52.4 56.87 53.02 52.58 51.33 52.99 52.19 52.37
M15 24.1 25.89 23.67 24.36 23.9 24.1 23.81 23.95
M16 475 46.09 47.9 47.14 46.3 47.49 47.02 47.25
M17 59.26 60.49 58.95 59.05 58.47 59.2 58.81 59.02
M18 31.47 33.98 30.88 31.77 31 31.61 30.92 31.35
M19 11 18.2 11.38 12.01 11.49 11.56 11.46 11.62
M20 44 46.63 43.55 44.21 43.18 43.99 43.6 43.7
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Fig. 3 Correlation heatmap of SCC input features

4.2. Experimental Dataset and Input Variables

The dataset consists of 20 SCC mixes, each tested under
controlled laboratory conditions for 28-day compressive
strength. Each mix was formulated to ensure variability in
ingredient proportions and expected strength outcomes,
providing a suitable foundation for Al learning, as shown in
Table 1. These parameters were selected based on EFNARC
and IS 10262 guidelines and empirical evidence correlating
mix composition to compressive strength. The dataset thus
ensures sufficient representation across low, medium, and
high-strength concrete mixes. Each Al model was trained on
the same 80% of the dataset and evaluated against the
remaining 20%. The predictive output for each of the 20 mixes
was then compared with experimentally observed
compressive

4.2.1. Visual Evaluation of Model Accuracy

Figure 4 to 10 Scatter Plot - Actual vs Predicted (All
Models). This plot visualizes how closely each model's
predicted strengths align with experimental values.

ANN-I

70
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(Mpa)

20 40 60 80

Actual Compressive Strength (Mpa)

Predicted Compressive Strength

Fig. 4 Scatter plot of ANN-I Actual vs Predicted strength

ANN-II

Predicted Compressive Strength
(Mpa)

20 40 60
Actual Compressive Strength (Mpa)

80

Fig. 5 Scatter Plot of ANN-I1 Actual vs Predicted strength

RF
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Fig. 6 Scatter Plot of RF Actual vs Predicted strength

GB
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Fig. 7 Scatter Plot of GB Actual vs Predicted strength
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Fig. 8 Scatter Plot of XGB Actual vs Predicted strength
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Fig. 9 Scatter Plot of LGBM Actual vs Predicted strength

Keras DL
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Fig. 10 Scatter Plot of Keras DL Actual vs Predicted strength

This plot visualizes how closely each model's predicted
strengths align with experimental values. The 45° reference
line indicates perfect prediction.
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Models such as ANN-Il, Keras DL, and XGBoost
produce tightly clustered points along the diagonal line,
indicating high prediction accuracy.

ANN-I and RF show slightly higher dispersion from the
perfect-fit line.

4.2.2. Error Analysis and Performance Metrics

This study employed three fundamental statistical
measures to compare and evaluate the predictive capabilities
of each artificial intelligence model.
Mean Absolute Error (MAE)
Root Mean Squared Error (RMSE)
Coefficient of Determination (R?)

This matrix offers an intensive evaluation of the accuracy
and stability of the model in the forecast of the compressive
strength of the self-compacting concrete at 28 days.

Mean Absolute Error (MAE)
MAE measures the average magnitude of the prediction
errors, regardless of direction, and is defined as:

MAE = =32, |y; - il
Where:
y; is the actual strength value
¥ is the predicted strength value
N is the number of test samples

A lower MAE indicates better predictive accuracy and
minimal deviation from true experimental values.

Root Mean Squared Error (RMSE)
RMSE penalizes larger errors more heavily by squaring
the differences before averaging:

1 N
RMSE = n (¥ = 9:)?

This metric is more sensitive to outliers than MAE,
making it particularly useful in evaluating robustness and error
dispersion.

Coefficient of Determination (R?)
R2? represents the proportion of variance in the dependent
variable that is predictable from the input features:

Ti—9?
R2: 1- =i
Yi-9)?

An R? value closer to 1 indicates excellent predictive
alignment with actual values.

4.3. Comparative Results of all the Models
The calculated MAE, RMSE, and R? values for all
models are presented in Table 6.
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Table 6. Predictive performance metrics for all models

Model MAE (MPa) RMSE (MPa) R2
ANN-I 3.34 4.12 0.955
ANN-II 0.85 1.03 0.998
Random Forest (RF) 1.12 1.39 0.992
Gradient Boosting (GB) 1.26 1.46 0.990
XGBoost 0.95 1.15 0.995
LightGBM 1.08 1.33 0.993
Keras DL 0.91 1.11 0.996

4
35 3.34

2.5 -

1.08

1.12 1.26
0.85 ) 0.95
1 .
" . . I:.
O T T

0.91

Mean Absolute Error (MAE, MPa)
N

ANN-I ANN-II Random

Forest (RF)

Gradient
Boosting

XGBoost LightGBM  Keras DL
(GB)

Model

Fig. 11 MAE Comparison across all models

4.4. Model Validation against Experimental Data

To evaluate real-world applicability, each model’s
predicted compressive strengths were directly compared with
experimentally measured values from the 20 SCC mixes. The
validation was performed using regression-based statistical
tools and graphical comparison metrics such as error scatter
plots and parity graphs.

Experimental verification includes comparison of all
models (ANN-I, ANN-II, RF, GB, xgboost, lightgbm, keras
DL). This study revealed many important insights:

1.  ANN-II demonstrated increased accuracy in all mixtures,
often below + 1 MPa, with variation from practical
values. For serious scenarios such as high-power mix M3
(real: 61.30 MPa), the forecast was quite accurate (61.91
MPa). For low-power mix M19 (real: 11.00 MPA), the
prediction was 11.38 MPa, which exhibits exceptional
model stability.

2. Kerus DL demonstrated strong normalization and
maintained minimum prediction error at all power levels.
Its complex design occupied non-linear connections in
complex mixtures with particularly  advanced
superplasticar concentration or fluctuations from water to
cement ratio.

3. Xgboost and RF models performed strongly in the
medium-power range (30-55 MPA), characterized by a
more consistent data pattern. However, they sometimes
combine the values of strength for extreme scenarios,
either the depth settings of the tree to decide the average
or sensitivity to decide.

4, ANN-I dramatically oversees low-force mixtures,
including M2 (real: 26.60 MPa, prediction: 36.46 MPA)
and M19 (real: 11.00 MPa, prediction: 18.20 MPA). This
indicates deficiencies in the design and learning
algorithm (standard backpropagation) of ANN-I, which
lacks the adaptation skills required for accurate learning.

5. LightGBM and GB models performed a minor
performance, which often maintains the variation of + 2
mpa, but with low stability across the entire range. GB
demonstrated some more variation for both low and high
power mixtures.

During cross-validation and testing, no model overfitting
or severe underfitting was detected.

ANN-II, aided by Levenberg—Marquardt optimization,
converged consistently within 50 iterations, while Keras DL
required 200 epochs with batch normalization to generalize
successfully.
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Table 7. Model accuracy summary against experimental values

Model Max Absolute Mean % Within £1
Error (MPa) Error MPa
ANN-II 0.94 0.31 90%
Keras DL 1.01 0.59 85%
RF 2.23 0.88 60%
ANN-I 6.26 2.15 25%

5. Results and Discussion

The focus is directed at evaluating future credibility,
analyzing statistical patterns and developing models with
normalization performance.  This chapter focuses on
comparative insight to benchmark the most suitable Al model
to assess SCC compressed Strength rather than repeating
technology or experimental settings.

5.1. Comparative Evaluation of Model Predictions

Each model's 28-day compressed power values were
compared to experimentally valid results. Table 4 Integrates
full and relative errors for each mixture in all models.

70 -=--Ideal: y = x

X ANN-II
X X Keras DL
60 * ANN-I

50
40

30

Predicted Strength (MPa)

Investigations indicate that the ANN-II and Keras DL models
have small prediction deviation bands (<x1 MPa) in the
boundaries of continuous strength, even for the most non-
linear mix compositions. The primary display metrics for each
Model - Average Absolute Error (MAE), Root Mean Square
Error (RMSE), and the Coefficient of Determination (R?) -
presented in Table 6, illustrate the performance across the
entire dataset.. From this, ANN-II clearly outperforms all
models by demonstrating the lowest absolute and squared
errors and the highest correlation with actual strength values.
Keras DL follows closely, maintaining a balance of low bias
and variance.

5.2. Visual Interpretation of Predictive Accuracy
Two critical visualizations support this analysis:

1. Scatter plots of predicted vs actual compressive strengths
show that ANN-II and Keras DL closely track the ideal
diagonal (y = x), confirming high fidelity. In contrast,
ANN-I deviates significantly in the lower quadrant.

2. Bar chart comparing MAE values confirms ANN-II's
superior performance, followed by Keras DL and
XGBoost. ANN-I exhibits the highest error margin.
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0 50 60 70

Actual Strength (MPa)
Fig. 12 Actual vs Predicted strength scatter plot
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Fig. 13 MAE compression across models
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5.3. ANN-IlI and Keras DL: Justification for Superior
Performance
5.3.1. Ann-II's efficacy has been said

Employ the Levenberg-Marquardt Optimization to
increase the speed of convergence and reduce oscillations
during training. Effective estimate of nonlinear correlations
using constrained data samples. Stability on both sparse and
dense mixed distributions.
5.3.2. Kerus DL, although more Complex, is more
Complicated; there are such Advantages

Adaptation of layered design and activation functions
promotes adaptability in learning high-dimensional
characteristics. Extraordinary versatility in many power
categories indicates that ANN-II and Keras DL provide the
most dependable, precise, and generalisable predictive models
for calculating SCC compressive strength based on mix design
parameters. Their minimal prediction errors, narrow residuals,
and enhanced correlation with experimental data validate their
technical superiority over conventional and ensemble machine
learning approaches.

—Training Loss
- = Validation Loss

0.8

e
=N

Loss (MSE)
o
=

e
o

0.0

0 50

Epoch
Fig. 14 Training vs Validation loss for the keras DL model

These results validate the appropriateness of neural and
deep learning frameworks for intelligent concrete mix design,
establishing a solid basis for automation, optimisation, and
sustainable material utilization in construction engineering.

6. Conclusion

This study presents a comprehensive review of Artificial
Intelligence (Al) models for the compressive strength
prediction of Self-Compacting Concrete (SCC), utilizing a
diverse dataset comprising 20 SCC mix designs validated by
laboratory tests. The research sought to fill the current gap in
the literature for combining experimental verification with
machine learning and deep learning models for concrete
strength prediction.

There were seven experimental predictive models: two
ANN models (ANN-I and ANN-II), four ML models based on
ensemble (Random Forest, Gradient Boosting, XGBoost,
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LGBM) and one deep learning model (Keras DL). These
models were trained with a carefully selected dataset
containing eight mix design parameters: cement, coarse
aggregate, fly ash, fine aggregate, water, superplasticizer, and
VMA, along with their respective 28-day compressive
strengths.

The corresponding results revealed clear superiority
between the ANN-II and the Keras DL model. ANN-II,
trained on Levenberg-Marquardt used optimisation, and was
the best of all models with the least MAE (0.31 MPa), RMSE
(0.44 MPa), and highest R ( 0.994). Its convergence and the
consistency in predictions on all 20 Mixtures warranted its
reliability in complex non-linear interaction modeling of SCC
mix designs. The Keras DL model performed decently and
robustly, particularly at edge cases and extremes of strength.

In comparison, ensemble models Random Forest and
Gradient Boosting also performed reasonably (R? = 0.97—
0.98), but without the predictive accuracy seen in neural
models. The simple ANN-I performed poorly, indicating that
there are challenges in lower-network arrangements when it
comes to modeling high-variance engineering data.

Besides statistical accuracy, experimental validation also
built model credibility. More than 90% of ANN-II predictions
were within £1 MPa of actual values. Feature importance
analysis further supported domain logic and found cement, fly
ash, and water to be prominent factors with significant effects
on compressive strength, consistent with conventional
concrete science.

This research promotes the real-world application of Al
in cementitious material design by providing an engineered,
replicable pipeline-from mix preparation to predictive
modeling and assessment. It closes the gap between
experimental concrete technology and computational
intelligence by integrating a scalable and effective method for
fast SCC strength estimation in both research environments
and field applications.

6.1. Future Scope
6.1.1. Immediate Forecasting and Implementation

Apply design and a mobile or online application to enable
engineers to enter mixed data and get a real-time strength
forecast using ANN-II or Keras DL. Include Al models with
automatic batching features and on-site sensors to provide
real-time monitoring and adaptive regulation of mixture
quality.

6.1.2. BIM & Construction Integration

Combine predictive models with Building Information
Modeling (BIM) systems for automated material selection and
specification during structural design. Enable Al-based
systems to work with digital twins of construction sites for
material tracking and strength verification.
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