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Abstract - Deciding on the routes for the HSR involves complex trade-offs within and across the environmental, financial,
and social dimensions, all within uncertain and dynamic settings. Whenever traditional decision-making models, such as
static Multi-Criteria Decision-Making (MCDM) frameworks, cannot track real-time data or adjust to the ever-changing
views of the stakeholders, a new, detailed gap appears. To satisfy this need, the paper proposes a Predictive Multi-Criteria
Decision-Making (PMCDM) model, which combines Analytical Hierarchy Process (AHP), Monte Carlo Simulation, and
Fuzzy Logic, and presents an adaptive framework. The PMCDM model updates the weights of decisions dynamically based
on real-time feedback of 10T sensors and from financial data, and models future possibilities and uncertainties through
probabilistic simulations and the fuzzy inference would evolve with changing stakeholder perceptions. Our model, applied
to the Californian HSR context, increased route rank by 3.5% better performance alignment margin over exclusive reach in

financial risk variance by 6. These findings underscore that PMCDM may be involved in risk-informed adaptive

infrastructure decision-making.
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1. Introduction

High-Speed Rail (HSR) systems are now an important
aspect of sustainable transportation because they offer high
capacity, energy efficiency, and low emissions inter-
regional mobility. With a growing number of investments
across the globe in the HSR infrastructure, the issue of
selection of the right rail corridors has become a significant
one, which requires planning. Route choices should
consider a trade-off between long-term land-use impacts,
environmental protection, economic viability, and social
acceptability, which is a competing objective and involves
intricate trade-offs. The multifacetedness of planning an
HSR route is also exacerbated by the presence of numerous
stakeholders with changing priorities during different
periods, due to uncertainties related to the construction
price, compliance with environmental requirements,
regulatory development, and social-political circumstances.
These aspects bring about a dynamic decision environment
where assumptions made at an early stage can be overturned
as time goes by, as new information is found. As a result,
decision-making tools applied in route selection must be
able to react to changing circumstances instead of making
MOPs based on fixed assessments. There has been a
popular adoption of Multi-Criteria Decision-Making
(MCDM) techniques, especially Analytic Hierarchy
Process (AHP), as infrastructure planning approaches
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because of their systematic and explicit approach to
assessment of numerous criteria. Nevertheless, the majority
of the available AHP-based models implemented in terms
of HSR route selection are essentially static. They generally
have the assumption that the weight in the criterion is fixed
and fail to properly use a real-time stream of data or
uncertainty contained in project parameters.

Consequently, these models are constrained in their
potential to translate changes in stakeholder preferences,
changes in costs, or changes in the environment that take
place during the project lifecycle. Even though the
application of AHP and corresponding MCDM methods has
been proven useful in the past, the combination of weight
change mechanisms, the ability to measure uncertainty, and
adaptive modeling of stakeholder preferences has not been
investigated thoroughly. Specifically, the absence of
elaborate models that bring real-time data processing and
probabilistic risk analysis together to serve resilient,
informed decision support of large-scale HSR projects is
lacking. This is of paramount concern, particularly on a
project with large implementation windows and where there
is high wvulnerability to financial and environmental
hazards.

EarE 1 his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)


http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Yogesh P. Kherde et al. / IJCE, 13(1), 104-120, 2026

The California High-Speed Rail project presents an
adequate background to discuss these issues because
multiple geographical conditions, seismic factors, nature-
sensitive locations, and overcrowded tracks are at play.
Adaptive decision-support models can also be developed
and tested by facilitating data availability of support
systems in the environment, financial reports, and
transportation surveys. To address the presented research
gap, the current research suggests a Predictive Multi-
Criteria Decision-Making (PMCDM) framework, in which
the AHP approach will be paired with the real-time weight
recalibration, Monte Carlo simulation to assess the risks and
uncertainties, and fuzzy logic to reflect the gradual change
in preference of stakeholders. The proposed framework is
flexible, robust, and incorporates environmental indicators
(air quality and emissions), financial (material costs and
budget overruns), as well as social pointers (accessibility
and public acceptance). The purpose of the PMCDM
method is to be used to make resilient and informed route
selection choices in dynamic and uncertain situations.

2. Review of Existing Models for Optimization

of Railway Routing Operations

A large field of research has been gained by the
planning, operation, and optimization of the railway
systems because of the importance of the contemporary
transportation infrastructure system. The studies in this
field cut across several dimensions, such as safety
assurance, routing optimization, schedule optimization,
sustainability, and the incorporation of intelligent decision-
support systems. The review in Table 1 on railway systems
research reveals a field that is rapidly evolving to meet the
demands of modern transportation infrastructure. This part
provides a review of the literature in a systematic way to
develop a comprehensive background of high-speed rail
route decision-making. There exists a body of literature in
the field of safety and reliability of systems in relation to
railways that runs on formal verification and risk
assessment. Iliasov et al. [1] showed that formal modeling
techniques were useful in the verification of railway
signaling programs and that the safety of the system might
be greatly enhanced through mathematically sound
properties. To this information, Wang et al. [22] examined
the susceptibility of railway infrastructure to natural
disasters like floods and earthquakes and emphasized the
need to perform long-term resilience planning. These
studies underline that safe-critical railway systems must be
equipped with stringent analytical instruments, but are
usually designed with regard to particular operational
settings, and they do not explicitly consider the tactical
planning options, including the selection of routes.

The other significant area of research is operational
optimization and scheduling, where efficiency and
punctuality are the main concerns in high-speed rail
networks. Wang et al. [3] also designed synchronized
models of service scheduling and routing at the HSR
maintenance depot, and the results were very high in terms
of operational efficiency. Zhou et al. [4] dealt with the issue
of timetable rescheduling during large-scale disruptions,
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which included combined schemes that minimise delay
propagation. Sharma et al. [5] also continued to modify
real-time traffic management by using ant colony
optimization methods to maintain passenger connectivity in
times of disruption. Whereas these optimization models
have been shown to be efficient in operations, they are
mostly oriented to the short-term or tactical level decisions
as opposed to the long-term infrastructure planning in an
uncertain situation. The issues of routing and scheduling are
not limited only to passenger operation in rail and road
systems, but also to the freight systems. Frisch et al. [27]
combined freight car routing and train scheduling in an
attempt to enhance operational stability, and Ivina and Ma
[28] tested the ability of trackwork scheduling under long-
term maintenance constraints. Krauth and Haalboom [29]
analyzed economic measures to bypass wagons to improve
network congestion with a focus on cost-benefit. The
contributions highlight the significance of combining
routing choices, but by and large, they presuppose a
comparatively steady system state and neglect dynamic
choices of the stakeholders and risk factor fluctuations.

Another important research theme is the analysis and
management of delays. Dekker [8] used the geographic
modeling techniques to classify the railway delay patterns,
which also facilitates the identification of delay hotspots.
Sharma et al. [30], a representative of the literature on the
topic, presented a review of the passenger-oriented
rescheduling strategies, emphasizing the transition to
passenger-focused performance metrics. Although such
studies are rich with valuable insights on service reliability,
most are diagnostic and reactive and would hardly help with
predictive and strategic decision-making in the process of
route planning. Simulation-based methods have been used
in more railway studies as the complexities of the system
increase. In a study by Pu et al. [15] based on the integrated
railway and pedestrian simulations, passenger hub capacity
was calculated, including human movement and interaction
with infrastructure.

Flammini et al. [17] used stochastic activity networks
to simulate virtual coupling operations, enhancing the
safety of operations functions. These simulation schemes
provide high-performance evaluation, although they may be
very computationally intensive and not usually
incorporated in adaptive decision-making within large-
scale planning issues. The past several years have been
characterized by a rapid increase in the number of machine
learning and artificial intelligence applications in railway
systems. Zhou et al. [14] used attention-based capsule
networks to automatically classify faults in onboard
equipment with high diagnostic accuracy. Yu et al. [19]
used deep reinforcement learning to enhance the data
transfer efficiency in high-speed railway communication
networks. Kumar and Mishra [20] introduced the EEDLNN
algorithm to evaluate vulnerabilities in railway networks to
increase resilience to network-disruptive events. These
methodologies have various issues pertaining to scaling of
data, computational complexity, and compatibility with
top-level decision-making, although they have strong
technicality.
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In line with these developments, technologies of
digitalization and intelligent infrastructure have become
promising in the management of the railway. SAT-based
techniques of generating detailed railway infrastructure
schematics were proposed by Luteberget and Johansen [13]
to enhance the consistency of design. Trembearth et al. [35]
introduced the concept of a spatial digital twin to help
provide a real-time vehicle warning and rerouting at critical
crossings. Although digital twins provide the ability to
monitor in real-time, their extensive utilization is limited by
the complexity of systems and data integration. The issue
of environmental sustainability has recently received a
crucial role in the research on railways. Sun et al. [18] also
solved the problem of green road-rail intermodal routing
when there is uncertainty by using approaches of fuzzy
programming, leading to a significant reduction of
emissions. Castillo et al. [31] also optimized the urban
logistics with agile routing to aid in more environmentally
friendly urban distribution systems. Sarma and Ganguly
[10] examined the possible allocation of hydrogen
refuelling stations to facilitate the hydrogen-powered
locomotive, which is a potential low-emission substitute.
But these sustainability-based studies are frequently fraught
with sophisticated trade-offs of environmental advantage

and economic plausibility, and do not directly apply to
large-scale HSR route choice. One more dimension is the
importance of the infrastructure and energy systems. Hu et
al. [25] made an overview of the history of traction power
systems, along with a trend toward electrification and
energy efficiency. Kim and Kim [23] performed locational
studies of maintenance depots in order to enhance the
efficiency of infrastructure management. Ignatov and
Naumov [24] examined scheduling techniques in order to
improve the station capacity. Although such studies
enhance the knowledge on infrastructure planning, they
isolate decision criteria on most occasions, and not under
combined multi-criteria models. The supply chain of
intermodal transportation and logistics further increases the
role of the rail sector in decision-making. Lu et al. [9]
generalized routing schemes to HGA logistics with drones,
and Cui and Zhou [21] optimized feeder delivery of HSR
express. As applied by Jamali et al. [26], topographic
analysis was used to select a spatial path, and it was
established that geographic factors were pertinent in routing
decisions. These strategies underscore increasing system
networks in transport systems; however, without
mechanisms of adaptive priority in the competing criteria.

Table 1. Empirical review of existing methods

Reference Method Used Findings Results
[1] Formal modeling and Applied verification on railway Improved safety properties with
verification signaling programs. formal proof.
Bavesian optimization and Developed a toolbox for Achieved high prediction
[2] yestian op . predicting induced voltage on accuracy for AC
Gaussian process regression . Y
rail tracks. electromagnetic interference.
Optimized service scheduling, -
[3] Integer linear programming train parking, and routing at Improved the e_ff|C|ency of depot
i operations by 20%.
maintenance depots.
Timetable rescheduling for Integrated rescheduling during Reduced delay propagation by
[4] L : . i . . 0
multi-dispatching sections large-scale disruptions. 35%.
Real-time railway traffic N
S . Reduced rescheduling timestamp
[5] Ant colony optimization management preserving by 25%
passenger connections. y '
[6] Matheuristic approach Tackled tactical locomotive and Improved resource allocation by
PP driver scheduling. 15% for SBB Cargo AG.
7] Robot-guided evacuation Developed_rob_ot—gl_uded crowd Reduced evacuation times by
evacuation in railway hubs. 30%.
Geographic delay Analyzec_j delay patterns in I_dentlfle_d key delay h_otspots,
[8] . railway systems improving response timestamp
characterization 4
geographically. by 20%.
Co . . Proposed a vehicle routing . -
[9] Multi-objective vehicle routing solution for humanitarian Increased delivery efficiency by
problem . 25%.
purposes with drones.
Hydrogen refueling station Optimized placement of Reduced fueling timestamp by
[10] . : .
allocation hydrogen stations for railways. 18%.
Multi-agent hierarchical Developed hierarchical routing . 0
[11] routing with timestamp windows. Improved punctuality by 12%.
Autonomous freight train Manag_ed autonomous f reight Enhanced freight train
[12] trains on shared railway .
management - punctuality by 10%.
corridors.
SAT-based railway Proposed methods for producing Improved design consistency by
[13] . . . .
infrastructure schematics railway schematics. 15%.
[14] Attention Capsule Network Clase‘,lfle(_j faults |n_h|gh speed Achieved a 92% classification
railway equipment. accuracy.
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Integrated rail and pedestrian

Assessed the capacity of a

- . . 0
[15] simulation passenger rall_hub using Reduced congestion by 20%.
simulation.
Topology control and routing Applied to wireless sensor Improved network lifetime by
[16] - hahie
in sensor networks networks in rail systems. 25%.
Virtual coupling with . . . -
[17] Stochastic Activity Modeled V|rtua_l coupling of Enhanced coupling efficiency by
trains. 15%.
Networks
[18] Interactive fuzzy programming Addressed ro?gtltrﬁ:gmtermodal Reduced emissions by 20%.
Applied deep learning for . o .
[19] Deep reinforcement learning concurrent multipath transfer Achieved a 30% lmprp\(ement n
S data transfer efficiency.
in rail networks.
- . . Identified high-risk sections
Vulnerability assessment using Evaluated railway network . AN
[20] EEDLNN vulnerability. reducing VLiIZn(;)rabllltles by
[21] Feeder delivery optimization Optlmlzed feeder _dellvery for Reduced delivery times by 15%.
high-speed rail express.
[22] Risk assessment of railway Assessed risks of f_Ioods and Enhanced resilience by 25%.
assets earthquakes for railway assets.
[23] Infrastructure maintenance Identified optimal locations for Increased maintenance efficiency
depot location analysis maintenance depots. by 20%.
[24] Railway s_tatlon capacity Developed methods to_ increase Increased throughput by 15%.
increase station capacity.
Review of traction power Provu_jed a comprehenswe Identified future trends
[25] review of railway power . . -
systems improving energy efficiency.
systems.
[26] Spatial multi-criteria path Applied fuzzification for cost- Increased path selection accuracy
selection path selection. by 18%.
[27] Integrated freight car routing Optimized freight car routing and Increased efficiency by 22%.
and scheduling scheduling.
Stability assessment of Analyzed the Stab”'?y OT Reduced schedule deviations by
[28] . trackwork scheduling in
trackwork scheduling 10%.
Sweden.
[29] Economic view of rerouting Provided economic |nS|ghts into Reduced congestion by 15%.
rail wagons rerouting strategies.
Review of rescheduling Reviewed passenger-oriented I_dent|f|e_d best practl_ces
[30] . . improving punctuality by
approaches railway rescheduling. 10%
. . . _— Optimized distribution of micro- Increased distribution efficiency
[31] Agile routing for city logistics hubs in urban areas. by 15%.
[32] Contactless check_o_ut with gait Developed a contactlgss Reduced checkout times by 20%.
recognition checkout process for railways.
CNNs for railway track Applied convolutional neural Increased fault detection
[33] . networks for track
maintenance . accuracy by 25%.
maintenance.
Optimization of wagon flow Integrated optimization of wagon Improved routing efficiency by
[34] : : :
routing flow and train formation. 15%.
Digital twin framework for Developed a digital twin Reduced overheight vehicle
[35] : . framework for vehicle M
vehicle warning . incidents by 18%.
rerouting.
Traffic routing with yard Optimized traffic routing with Increased yard throughput by
[36] . ; . i
capacity constraints yard capacity constraints. 12%.
Optimized multimodal Improved routing efficiency b
[37] Multi-objective Q-learning transportation under P 20%/ yby
uncertainty. o
Developed a priority-based s -
[38] Multi-robot deep Q-learning sanitization system for Increased sanitization efficiency

railways.

by 25%.
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[39] Black Widow Optimization Clustered 10T routing during Reduced network congestion by
and Harmony Search COVID-19. 22%.
Reinforcement learning in Reviewed reinforcement learning Improved train coupling
[40] , . . : e
railway virtual coupling for railway control. efficiency by 15%.
. . Identified key criteria and their The model effectively ranked
[41] Hybrid MCDM using ANP interrelations for multimodal optimal routes based on
and TOPSIS - - B
route selection. decision criteria.
Fuzzy risk assessment with Incorporated uncertainty and risk Enhanced accuracy in selecting
[42] Incenter of Centroid + Po - safe and efficient transport
into route evaluation.
MCDM routes.

There is an increasing literature on the significance of
stakeholder consultation and preference modeling in the
decision-making process of a railway. In reference to the
application of fuzzy logic and integrated optimization
models for evaluating stakeholder interests in routing,
studies like those by [16, 34] were conducted. These are
flexible ways of dealing with subjective judgments, but in
general are based on fixed or periodically revised values.
This renders them incapable of supporting real-time
feedback by various groups of stakeholders. More recently,
it has been suggested to use reinforcement learning and
more advanced optimization algorithms to autonomize and
control railroads.

Zhang et al. [37] used multi-objective Q-learning to the
multimodal routing in the presence of time uncertainty, and
Caccavale et al. [38] described the application of deep Q-
learning to the multitask prioritization at the railway station
under the conditions of the COVID-19 pandemic, which
indicates an increasing role of the reinforcement learning in
the operational resilience; Basile et al. [40] also provided a
roadmap of reinforcement learning to the virtual coupling
operations and revealed the opportunities and unsolved
technical tasks.

To complement these learning-based methods,
approaches like [41] suggested a hybrid MCDM system
with AHP and VIKOR to multimodal route selection under
conflicting infrastructure performances to form a
methodological basis applicable to PMCDM,; also, [42]
offered integrated simulation-based decision models used
to support risk-averse and more resilient transport corridors
by focusing on uncertainty-aware planning.

Taken together, the results of the literature have shown
significant improvement in optimization, safety, machine
learning, and sustainability of railway systems, but most of
the existing methods often rely on narrow objectives and
system specificity, which highlights inadequate integrated
adaptive methods that could concurrently consider
unpredictability, real-time information, and changing
stakeholder needs among the large-scale HSR route
selection.

3. Motivation and Contribution

The apparent complexity and uncertainty involved in
the process of determining high-speed rail routes motivate
this work: it is an important infrastructure investment in
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modern transportation systems. Route selection has
frequently depended on traditional decision-making
models, for which the methodologies do not account for the
dynamic nature of project environments or the uncertainties
invariably embedded in large-scale infrastructure projects.
These models do not include live input data nor predictive
risk analytics, which limits the ability to adapt to evolving
stakeholder preferences and emerging new risks that might
arise during the course of the project’s lifecycle.

High-speed rail projects have long-term implications
for environmental and social outcomes and significant
investments of financial resources; it becomes quite clear
that there is a great need for a more adaptive, risk-informed
operations approach to decision-making. This paper will
contribute to the research in this field by introducing a novel
PMCDM framework that incorporates three advanced
methodologies: AHP with dynamic weight adjustment,
Monte Carlo Simulation for uncertainty quantification, and
Fuzzy Logic-Based Adaptive Weighting.

More particularly, every one of them has been selected
to address key shortcomings that exist within the current
decision-making process. AHP’s dynamic weight
adjustment capability allows the model to update
continually based on real-time data so that decisions reflect
the current state of the project. Monte Carlo Simulation will
add resilience to the model as it quantifies the uncertainty
with various risk factors, enabling one to understand such
future scenarios more accurately.

Finally, Fuzzy Logic-Based Adaptive Weighting
captures gradual stakeholder preference change such that
the decision-making process is responsive both to explicit
and implicit changes in priorities over temporal instance
sets. This paper, in addition to the integration of these
advanced methodologies, demonstrated them in a real-
world context, making this integrated approach by
assessing the combined effectiveness.

The model for PMCDM provides the decision-maker
with a powerful tool for the evaluation of multiple HSR
route alternatives while taking into account simultaneously
current conditions and future risks. This risk-informed
approach, therefore, allows stakeholders to make better,
more resilient decisions that are more in line with the
sustainable objectives of the project.
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In general, this paper contributes to infrastructure
planning through the development of an integrated and
adaptive framework for high-speed rail route selection that
would ensure the selected routes are optimum under
contemporary criteria, but also demonstrate a robust way
against uncertainties in the future.

4. Proposed design of an Integrated Model for
Adaptive AHP and Monte Carlo Simulation
for Risk-Informed High-Speed Rail Route
Decision-Making Operations

In yet another attempt to mitigate problems of
inefficiency and high complexity that manifest within
current methods, this paper is divided into the design of an
Integrated Model for Adaptive AHP and Monte Carlo
Simulation for Risk-Informed High-Speed Rail Route
Decision-Making Operations. Initially, as indicated in
Figure 1, the new approach is introduced with a powerful
method called Analytic Hierarchy Process (AHP), with
dynamic weight updating within the high-speed railway
route evaluation.

This technique extends the AHP method by
incorporating real-time data and adaptive weighting
mechanisms that can adapt continuously based on
information on the environment, finance, and social
components, along with preferences from the stakeholders.
Dynamic weight adaptation responds to actual dynamic
changes in incoming data from loT sensors, financial
markets, and other real-time sources, ensuring that the
decision-making process remains current and aligned with
shifting conditions.

Dynamic weight recalibration was inspired by the fact
that high-speed rail planning is not stationary and, as the
project progresses, environmental conditions, construction
costs, and priorities of stakeholders change. In comparison
with the statistical weighting schemes, the recalibration
strategy embraced enables the decision weights to be
updated, in an incremental fashion as more information is
accessed, enhancing timeliness.

The sources of real-time loT sensor data included
publicly available environmental monitoring networks,
project financial reports, and transportation surveys, which
have undergone normalization and validation procedures
before being integrated into the PMCDM framework. The
flowchart shown in Figure 1 details a data acquisition,
processing, and decision-making workflow used in this
research.

The method produces a dynamic rank of rail route
alternatives along with a detailed analysis of ranking shifts
due to the adjustment of weights. In design, the improved
AHP model begins with the classic hierarchical structure:
breaking down the decision problem into different levels, in
which the top level would be representative of the general
objective-that is, optimal rail route selection-and lower
levels the set of decision criteria based on generic classes
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such as environmental, financial, and social. The input from
the stakeholders is initially made by assigning weights to
every criterion and then to the structured decision matrix
sets.

However, in this suggested model, unlike the orthodox
static AHP, the weights are calculated dynamically as the
real-time data feeds into the system. Let the initial weight
of a criterion wiO represent the weight of the 'i'-th criterion,
where i€{1,2,.,n}, and wi(t) represent dynamically adjusted
weight at timestamp ‘t’, as updated by real-time data. The
adjustment of the weight is modelled via Equation (1),

@)

Where fi(X) is a time-dependent function describing the
effect of real-time data, say environmental sensor values or
financial market trends, on the weight of the ‘i'-th criterion
sets. The integral term reflects the growth of new
information within time, so that the weight evolves with the
changing condition of the project environment. It then
applied the recalculated weights to the normalized decision
matrix that was based on the pairwise comparisons of route
alternatives against each criterion.

Wi(t):WiO+f0t fi(x)dx

The priority vector p(t), which is the ranking of the
alternatives at timestamp ‘t’, is given by the eigenvector
corresponding to the largest eigenvalue Amax of the
dynamically-updated matrix A(t) via Equation (2),

A(O)p(t) = Amaxp(t) (2)

The matrix A(t) itself is updated continuously through
changes in the weights wi(t) reflecting the latest data-driven
adjustments to the decision-making process. This ensures
consistency for the pairwise comparisons through the
eigenvalue method, and priority vector p(t) gives the
updated ranking for the rail route alternatives. The dynamic
model ensures shifts in weighting will be analyzed
immediately with real-time analysis.

For example, if environmental aspects are considered
as the first priority, then a shift in financial data, which
increases the weight of financial criteria, will directly affect
the priority vector, which could enhance another route in
the ranking operations. The third feature of this model is a
feedback loop through the process of continuous
development, meaning that decision-making systematically
upgrades itself. The weights in the criteria are recalculated
based on stakeholder feedback and new sets of project
information. Via Equation (3), the change rate of the
weights may be modeled as a differential operation.

dwi
dt

aJ oR
@ owi

3
owi ®

Where J is the stakeholder preference function, R is the
risk assessment function, and a and P are sensitivity
parameters for the process.
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10T Sensor Data

Financial Market Data

- Environmental Impact Models

Real-time Financial Data Real-time Environmental Data

AHPWwith Dynamic Weight Adjus

Dynamic Weight Adjustment

Updated AHP Matrix

Ranked Route Alternatives

Real-time Social Data

a1

Stakeholder Preference Data

uzzy Logic-Based Adaptive \eighting

Linguistic Stakeholder Inputs

Fuzzy Membership Functions

Real-time Feedback Loop

Monte Carlo Simulation for Uncertainty Quantification

Historical Data

Probability Distributions

Simulated Scenarios

Uncertainty Quantification

Confidence Intervals Sensitivity Analysis

Adaptive Weight Update

Trend Analysis

Fig. 1 Model architecture of the proposed analysis process

This equation provides a real-time opportunity for the
recalibration of weights to reflect consideration for both
stakeholder feedback and real-time risk assessments at the
same time, with a holistic view on the decision-making
process. The AHP with dynamic weight adjustment is
particularly adaptable to the multi-criteria nature of high-
speed rail route assessment, as it provides a structured and
flexible framework able to embrace a wide decision criteria.
Unlike the static models, which are more likely to be
dependent on manual revisions through sporadic updates,
this model would constantly recalculate route priorities on
the basis of the latest data available for responding in real-
time to the new developments within the process. Thus,
dynamic adjustment of weights means that this model will
keep pace with the changing preferences of stakeholders
and project conditions in real-time, thereby making it highly
adaptive in nature for real-time scenarios. Furthermore, its
interaction with real-time feedback systems allows it to
complement other techniques such as Monte Carlo
simulations by providing an ongoing real-time ranking of
routes that can be cross-referenced with probabilistic risk
assessments.

The second sub-module is the Monte Carlo simulation
to quantify uncertainty. Figure 2 illustrates a Monte Carlo
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simulation for uncertainty quantification, and this powerful
method is accepted in the proposed framework so as to
address the inherent uncertainties that characterize route
assessments for high-speed rail. This method is directly
applicable to infrastructure projects where the most
important  variables, comprising  financial  costs,
environmental impacts, and even project delays, have
variability and inherent risks. The approach generates tens
of thousands of possible future scenarios, deduced based on
the probabilistic distribution of these key variables, that
would enable a decision-maker to understand the range of
possible outcomes along with their respective risks for each
of the route alternatives. Being able to generate a wide
range of future states, Monte Carlo simulation provides a
probabilistic assessment that encompasses both the
expected performance of each route as well as uncertainties
about those expectations.

Designing this approach starts from specifying key
variables of the project, x1,x2,...,xn, that drive the process
of decision making. These variables, for example, the
fluctuations in financial cost and environmental impact
probabilities, are modelled as random variables with
associated probability distributions. For instance, if
financial costs x1 are assumed to be distributed according
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to a normal distribution with mean p and standard deviation
o, then the probability density is given via Equation (4),

_(x1-p)?
e 202

fx1) = (4

1

oV2m

The Monte Carlo simulation resamples several times
from these distributions to yield a large number of possible
scenarios. For each scenario, the total performance score Pi
of a given route ‘i’ is computed as the weighted sum of its
criteria values C(i,j) across all relevant dimensions, where
‘j> indexes the criteria, e.g., financial, environmental,
social, via Equation (5).

m
Pi=ZWj*C(i,j)

j=1

)

Here, wj denotes the weight of the ‘j'-th criterion, and
the criterion values C(i,j) themselves are modelled as
stochastic variables that account for their associated
uncertainties. This repeated sampling of criterion values
and weights gives a distribution of possible performance
scores for each route. From this distribution, the
probabilistic risk quantification for every route could be
estimated by finding the probability that a specific route
would exceed certain risk thresholds. An example would be
the probability that the financial cost x1 of a particular route
exceeds a budget threshold “T°, which is determined via
Equation (6).

P(x1>T)= fwf(xl)dxl (6)
T

This integral gives the proportion of scenarios wherein
the financial cost exceeds the predefined threshold and
contributes to the entire risk profile of the route. A
confidence interval for potential performance can be
similarly drawn for each route, based on the simulated
performance distribution, through the determination of the
bounds that encompass a given percentage of the outcomes,
such as 95%. Monte Carlo simulation also facilitates
sensitivity analysis, which reveals which criteria most
impact the uncertainty in the final rankings of routes. This
is done through the process of analyzing the variance in the
performance scores Pi across scenarios and building up the
contribution of uncertainty in each criterion to this variance.
For a specific criterion ‘j°, the measure of sensitivity can be
written in terms of the partial derivative with respect to the
criterion value as given via Equation (7),

i = oPi e
)

The partial derivatives of each criterion may now be
calculated in order to identify those factors—perhaps
fluctuating environmental compliance costs or varying
financial risks—that are forcing the uncertainty in the
rankings. Often, the criterion that has the highest sensitivity
score will be the most significant source of uncertainty and
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lead to further risk mitigation strategies. A Monte Carlo
simulation is selected, as it can account for a great number
of uncertainties. Furthermore, it is an approach that applies
much flexibility to the full range of risk quantification.
Unlike a deterministic model that only provides a single-
point estimate of performance, a Monte Carlo simulation
also acknowledges variability in input data and permits
decision-makers to go through the full range of possible
results. This is supplemented further by other aspects of the
framework, such as AHP with dynamic weight adjustment,
which gives a deeper insight than the probabilistic nature of
the decision criteria. While this is true, AHP real-time
adjustment is dynamically changed by real-time data, while
Monte Carlo simulation further advances the decision-
making process in the sense that it computes the uncertainty
associated with each alternative to ensure that the chosen
route is not only robust in its expected performance but also
resilient against future risks.

Finally, the fuzzy logic-based adaptive weighting
method adapts a versatile and sensitive approach to
modeling stakeholders’ preferences concerning the choice
of a high-speed rail route under the scenario of MCDM.
Preferences of stakeholders, most particularly in large-scale
infrastructure projects, are in practice considered to evolve
gradually, allowing the influence of factors such as changes
in regulation, changes in market conditions, or
environmental concerns. Traditional MCDM maodels, based
on some finite weight adjustments, are not sensitive to
capturing the quite subtle, continuous shifts in preferences.
Fuzzy logic is more responsive to diverse imprecision and
vagueness inherent in stakeholder feedback through
degrees of membership to varied categories of preference.
This method ensures that the weighting of criteria adjusts
continuously and constantly with changes in the preferences
of the stakeholders. As such, the heart of this approach
consists of the transformation of linguistic input provided
by stakeholders speaking about “great” or “average”
importance into fuzzy membership functions. A preference
of stakeholder Pi related to a given criterion Ci is
represented through a membership function pi(x) in terms
of a degree of importance assigned to that criterion, hereby
denoted by ‘x’. Membership functions were conventionally
defined over a continuous interval, say [0,1], where pi(x)=1
would represent full membership in the “high importance”
category, and again pi(x)=0 would represent no
membership in the process. This relationship of stakeholder
preference Pi and the criterion weight wi is then modelled
as a fuzzy inference system that updates weights in real-
time as new feedback is received for the process. The
dynamic adjustment of criterion weights can thus be
represented via Equation (8),

t

wi(t) = f piG)f () dx ®)
0

Where the feedback function f(x) is derived from a
periodically undertaken stakeholder survey or real-time
project development process, in that sense, the integral
concept here denotes the cumulative process of preference
information with respect to time, where the resulting wi(t)
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criterion weight captures not only the current stakeholder
preference but also any emerging preference trends. This
continuous fine-tuning is generally opposed to static or
step-based methods, allowing for a more gradual and
realistic adjustment of weights. Thus, when stakeholder
feedback crosses preference categories, the fuzzy system
precisely captures this smooth transition without abrupt
changes in the weights. This fuzzy-logic-based system
yields, at each point in time, a dynamically updated set of
weights for every decision criterion that can then be used
through MCDM in the process of ranking route alternatives
dynamically. The final ranking of routes R(t) at timestamp
‘t” is then computed by applying the adjusted weights wi(t)

Monte Carlo Simulation for Risk

Calculate Confidence Intervals

Perform Sensitivity Analysis

to the decision matrix, which contains the performance
scores of the routes across all criteria sets. The aggregate
score Sj(t) of each route ‘j’ is then estimated via Equation

(9),

Sj(©) = ) wi®CG)) ©
i=1

Where C(i,j) represents the performance of route ‘j’
under criterion Ci, and wi(t) is the dynamically adjusted
weight for that criterion set.

Input Data: Real-time & Historical

AHP with Dynamic Weight Adjustment

Update Weights in Real Time

Rank Route Alternatives

Fuzzy Logic for Stakeholder Preferences

Trend Analysis of Preferences

Is Criteria Met?

Fig. 2 Overall flow of the proposed analysis process

This formula allows the process to reflect the changing
importance of all criteria by stakeholders continuously. As
the weights change, so will the scores of the routes, and this
eventually yields a dynamic ranking R(t) responsive to real-
time project developments coupled with stakeholder input,
of the process.

An important feature of this approach is that it is
possible to monitor the evolution of the preferences of the
stakeholders over time and provide, to the decision-maker,
information regarding the way in which the importance of
each criterion relative to the others is actually changing in
the process. The rate of change of the weights for each
criterion can, in fact, be modelled as a derivative via
Equation (10),

dwi

dt

= gi(t) - & (10)
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Where, gi(t) is a function that captures the rate of
change in exogenous factors like regulatory changes in the
environment or rate conditions in the financial market that
affect the preference of stakeholders. This equation can then
be used for the quantification of how sensitive the criterion
weights are with regard to the temporal changes in
stakeholder input, allowing for trend analysis and forward-
looking analyses of how route rankings might change as the
project conditions change. This adaptive weighting system
uses fuzzy logic to model these essentially uncertain and
gradual changes in stakeholder preferences, as they are hard
to model using traditional crisp decision-making models. A
continuous presentation of preference in fuzzy logic, unlike
techniques built on discrete updates, is suited to the
complexity of real-world decision-making problems where
stakeholder sentiment changes over temporal instance sets.
This method complements other techniques in the
framework, such as the Monte Carlo simulation and AHP
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with dynamic weight adjustment, to make sure that the
stakeholder-driven component of the decision-making
process remains adaptive and responsive to evolving
preferences. Finally, the fuzzy logic-based adaptive
weighting system proves robust for modeling the evolving
preferences of stakeholders in high-speed rail route
selection. The technique keeps updating and aligning the
decision-making process with the current and future
priorities of the stakeholders, as the weights assigned to
each of the criteria are constantly being updated. The
framework, thus ensuring mathematically sound capturing
of the complexity and uncertainty of stakeholder
preferences for making more informed and resilient
infrastructure decisions, integrates membership functions,
integrals, and derivatives. Next, we study the performance
of the proposed model in terms of some metrics and
compare it with the existing models under different cases.

MCDM models written using traditional AHP have
proven to be commonly applied in infrastructure planning
because of the systematic weighting mechanism; non-
performance assumes fixed weights of these criteria, and
fixed inputs are normally considered. These unchanging
assumptions restrict their applicability to High-Speed Rail
(HSR) projects, where the project costs, environmental
consequences, and other stakeholder goals can change as
time goes on. Fuzzy-AHP extensions enhance flexibility
through the use of linguistic opinions, but typically do not
have real-time adaptability and usually have logical
preference frameworks. Monte Carlo techniques are quite
effective in quantifying uncertainty, but can be used
individually and lack the ability to make dynamic changes
in weights. The proposed Predictive Multi-Criteria
Decision-Making (PMCDM) framework incorporates
AHP, Monte Carlo simulation, and fuzzy logic into a single
framework. With this integration, dynamic recalibration of
criterion weights is possible, explicit uncertainty
propagation can be done, and adaptive modeling of
stakeholder preferences can be developed. Subsequently,
the PMCDM offers improved and stable route evaluation
results in the uncertain and dynamic environment, which is
resistant to changed circumstances and has proven to be a
stable decision-supporting tool when solving a complex
HSR planning dilemma.

5. Result and Discussion

A setup was then considered for the experiment, which
would challenge the performance of the developed model,
Predictive Multi-Criteria Decision-Making (PMCDM). The
proposed model combines Analytical Hierarchy Process
(AHP) with dynamic adjustment of weights, Monte Carlo
simulation for quantification of uncertainty, and fuzzy
logic-based adaptive weighting for the representation of
stakeholder preferences. Real-time and historical data along
the dimensions of environmental, financial, and social
factors were gathered and fed into the system to simulate
several variants of high-speed rail route alternatives.
Environmental data consisted of real-time sensor readings
related to air quality indices, carbon emission levels, and
potential noise pollution. Typical values chosen include a
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range of 40 to 100 AQI for air quality and 60 to 85 dB for
noise pollution. Financial data comprised time-varying
market prices of construction materials and budget overruns
that were estimated using an initial budget of $1.5 billion
and a volatility rate of +15%. The social factors included
public opinion based on a survey on rail accessibility and
employment effects, where the opinion was measured on a
scale of 0.0 to 1.0 in order to represent a high negative
opinion = 0.0, a positive opinion 1.0. These were
combined with data on past infrastructure projects that
included historical information over previous projects with
regard to both delays and cost overruns in terms of
probability distributions, for example, a 25% chance of
overshooting budgetary constraints by 20% based on
similar projects.

The stakeholder preferences were incorporated through
regular surveys, which are, in linguistic terms, expressions
of preferences for each criterion. Thus, environmental
factors were rated on an initial weight of 0.7 because they
had “high importance.” As the project phases progressed
and financial risks increased, real-time data from the
financial markets triggered a fall in the environment weight
to 0.4, reflecting changing priorities. Monte Carlo
simulations were carried out over 10,000 runs to produce
probabilistic output for each route alternative, using a
variety of probability distributions for financial costs,
assumed to be normally distributed with a mean of $1.5
billion and a standard deviation of $200 million, and for
environmental risks that are log-normally distributed.
Sensitivity analysis demonstrated that the highest-order
effects of uncertainty derive from compliance costs; the
latter have been found to explain as much as 35% of the
overall variance in route performance. The database of 10
detailed high-speed rail route alternatives was tested with
route options ranging from 150 to 350 kilometers,
quantifying environmental risks in terms of the emissions
levels produced (50-120 metric tons per kilometer), and
financial estimates ranged between $1.2 billion and $1.8
billion according to route geography and construction
complexities. Real-time update of weights for criteria in the
AHP framework and probabilistic insights provided from
the Monte Carlo simulation gave a comprehensive ranking
of rail route alternatives dynamically updated. Datasets for
this analysis were mostly based on open sources available
to the general public, and on well-established infrastructure
and environmental databases. The financial data used was
taken from the Infrastructure Dataset of the World Bank. It
contains historical data about various high-speed rail
projects, including overruns in their budgets and several
delays in high-speed rail projects across different parts of
the world.

Besides that, the dataset provides granular information
about daily emissions measured in metric tons of CO: per
kilometer for transportation projects. Social data is sourced
from the U.S. The dataset used for this analysis comes from
the National Transportation Survey put together by the
Department of Transportation, which aggregates public
opinion and comments on projects related to transportation,
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captures opinions on access and effects on employment,
and, overall, approval or disapproval towards the projects.
This dataset on social response contains a spectrum of
ratings ranging from 0 to 1, as given by the respondent,
relating to the comparative importance of different relevant
criteria related to transport. These datasets are pertinent for
a comprehensive scope, real-time availability, and in the
context of High-Speed Rail; therefore, the accuracy and
applicability of the predictive MCDM model to route
alternatives will be ensured. Some samples of contextual
datasets coming from social media analytics, with these
being public sentiment data, average monthly, with
fluctuations modelled by some level of random noise to
capture changing public perception. Environmental
information is collected by taking the differences from loT
sensors installed over the same rail routes on a daily basis
to capture daily variation in the levels of pollution due to
changing weather conditions or changes in traffic. All the
data used were based on financial data, which involved real-
time market prices for steel, concrete, and labour, assuming
they fluctuate with a standard deviation of £10% to model
the volatility in the markets. The system also modelled the
delays of the projects from past rail projects in a
probabilistic model, with delays that ranged from 1 to 12
months around a normal distribution of an average delay of
6 months. These datasets were crucial in ensuring that the
model indeed showed robustness toward dynamic inputs in
real-world scenarios and could provide actionable insights
in risk-informed decision-making. The outputs from the
experimental setup proved that the model was perfectly

adapted for new data in real time by giving updated
rankings of the routes and probabilistic risk assessments
that indeed proved useful for complex infrastructure
decision-making. The designed PMCDM model is tested
against benchmark models that have been well established
in the literature, known as [5, 9, 15]. The proposed model is
validated based on datasets of global infrastructure projects
with environmental metrics in addition to public sentiment
towards transport projects. The results obtained from the
PMCDM model are compared against all these methods on
different performance metrics such as financial cost
management, environmental risk mitigation, alignment
with stakeholders, and stability of routes. The analysis
verifies the superiority of the PMCDM model in the
handling of dynamic real-time data, probabilistic risk
assessment, and adaptive modeling of stakeholder
preference; these are all important criteria for high-speed
rail route selection. Table 2 shows comparisons of the
financial risk assessment results obtained from the four
models. In the financial dataset, project cost fluctuations
and budget overruns were extracted from historical data.
The PMCDM model predicted the financial risk with a 90%
confidence interval and, as indicated above in the graph,
also demonstrated lower average deviation in projected
costs as compared to the three other models. The same table
indicates that the PMCDM model demonstrated the lowest
average variance of financial risk: at 12%, while the other
models are higher: 18%, and 24%. This establishes that the
dynamic and adaptive PMCDM model gives enhanced
financial predictions.

Table 2. Financial risk assessment (in % variance from baseline)

Model Mean Financial Risk | 90% CI Lower Bound | 90% CI Upper Bound | Variance in Cost (%)
PMCDM 1.50 1.35 1.80 12
[5] 1.60 1.45 1.95 18
[9] 1.75 1.60 2.10 21
[15] 1.80 1.65 2.20 24
Variance in Cost (%) - Financial Risk Assessment
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Fig. 3 Environmental risk analysis
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Table 3, Environmental risk assessments between the
PMCDM model and other methods have been compared
using air quality and emission metrics data from the EEA
dataset. In fact, while integrating real-time 10T sensor data,
the PMCDM model demonstrated greater response ability
by showing a better ability to predict environmental impact,

with an average emissions forecast accuracy of 85%. The
other models presented in [5, 9, 15] have shown 72%, 68%,
and 65% accuracy, respectively. The PMCDM model is
accurate because its weighting is adaptive based on
feedback from the stakeholders and concerns within the
environment.

m |nitial Satisfaction (%)

Stakeholder Satisfaction and Alignment

m Satisfaction After Updates (%)

100
80 -
60 -
40 -
20 -
0 -
PMCDM [5] [9] [15]
Fig. 4 Stakeholder satisfaction analysis
Table 3. Environmental risk forecasting accuracy (in % accuracy)
Model Mean Emission Forecast (tons/km) Forecast Accuracy (%0) Sensitivity to Change (%)
PMCDM 65 85 35
[5] 70 72 30
[9] 75 68 25
[15] 80 65 22

In Table 4, public preference match and stakeholder
satisfaction levels are based on the National Transportation
Survey of the U.S. Department of Transportation. The
PMCDM model performed better than the other models,
with dynamic weights updating in line with public
preferences changing over time. It reached an 88% level of

stakeholder satisfaction. This is because the flexible
dynamic weighting on the basis of the principle of adaptive
fuzzy logic in the PMCDM model was able to track the
changing pattern of stakeholder preference better than other
models that used fixed or semi-fixed weights.

Table 4. Stakeholder satisfaction and alignment (in % satisfaction)

Model Initial Satisfaction (%) Satisfaction After Updates (%) Adaptive Response (%)
PMCDM 78 88 90
[5] 75 80 65
[9] 70 75 60
[15] 65 70 55

Table 5 Route ranking stability over the four models
over a 12 month project timeline The PMCDM model
proved the most stable, with route rankings changing an
average of 12% when new data is input; in contrast,
rankings for models [5, 9, 15] are significantly more volatile

at 25%, 30%, and 35%, respectively. This dynamic
adjustment of weights and continuous recalibration of
criteria in the PMCDM model allowed the model to be
stable in rankings while still responsive to changes.

Table 5. Route ranking stability over timestamp (in % ranking shift)
Model Initial Route Ranking Stability Final Route Ranking Stability (%) | Average Ranking Shift (%)
(%)
PMCDM 92 88 12
[5] 85 75 25
[9] 80 70 30
[15] 78 65 35
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As per Table 6, Sensitivity Analysis of Financial Risk
Variable, the PMCDM Model was the most robust in
identifying the criterion that most affects uncertainty. All
the models pointed out that the environmental compliance
costs were the primary risk-determining factor of

uncertainty. The model PMCDM, for example, isolated the
criterion, which determined the impact on the variance to
be 35% whereas the accuracy was a little less in models [5,
9, 15] at 30%, 28%, and 25%, respectively.

=4— Environmental Compliance Costs Impact (%)
== Financial Risk Impact (%)
Social Risk Impact (%)
40
35
30
25 -
20
15
10
PMCDM [5] [9] [15]
Fig. 5 Sensitivity analysis
Table 6. Sensitivity analysis of financial risk (in % impact on variance)
Model Environmental Compliance Costs Impact Financial Risk Impact Social Risk Impact
(%) (%) (%)
PMCDM 35 25 10
[5] 30 28 12
[9] 28 30 15
[15] 25 35 18

Then, Table 7 calculates the cumulative risk index for
each route by considering financial, environmental, and

risk indices for models [5, 9, 15] were greater than 0.35,
0.40, and 0.45, respectively, since they cannot adapt to the

social risks. The low cumulative risk index indicates that changes during the data input and stakeholder
PMCDM has the lowest value of 0.25, which proves its preferences.nges
performance as the best across dimensions. However, the
Table 7. Cumulative risk index across routes
. . . . . Social Risk . .
Model Financial Risk Index Environmental Risk Index Index Cumulative Risk Index
PMCDM 0.10 0.08 0.07 0.25
[5] 0.15 0.10 0.10 0.35
[9] 0.18 0.12 0.10 0.40
[15] 0.20 0.15 0.10 0.45

From these results, it is quite evident that the PMCDM
model dynamically evaluates high-speed rail route
alternatives integrating real-time data, predictive analytics,
and adaptive weighting systems. The adaptation of
PMCDM over the benchmark models in all the considered
dimensions ensured greater and more accurate risk
quantification, alignment of stakeholders, and stability in
decisions. Then, the following section presents an iterative
case study for the practical implementation of the
developed model, which will help the readers understand
the whole process better for different scenarios.
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6. Practical Use Case Scenario Analysis

The rest of this paper reports the results of the entire
decision-making process, which results from a detailed
example with the choice of high-speed rail routes. Input for
that example is environmental and financial data collected
in real time, together with social data, along with
stakeholder preferences. Outputs are calculated through a
combination of sequences, which includes AHP with
dynamic weight adjustment, Monte Carlo simulation for
uncertainty quantification, and using Fuzzy Logic-based
adaptive weighting for stakeholder preferences. Lastly, the
outputs from all the overall decision-making are put
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together into one final section to indicate how the rank order
of the route alternatives is developed and how the risks are
quantified. Three routes are evaluated in this paper and are
developed from existing high-speed rail proposals outlined
in California as segments of the California High-Speed Rail
project.

Route 1 serves the proposed Central Valley segment
from Merced to Bakersfield for some 275 kilometers
primarily through agricultural land. This route has
relatively minor environmental impacts but is financially
hindered due to the immense scale of land acquisition and
agriculture disruption mitigation. Route 2 articulates the
Palmdale to Burbank corridor, which spans 85 kilometres
across mountainous geography. This route is exposed to
some moderate environmental risks, specifically tunnelling
and seismic risks, but has relatively cheap land acquisition
costs and is in close proximity to the key urban centers,
hence more financially viable. Route 3 corresponds to the
Bay Area to Central Valley section, from San Francisco
down to Merced, encompassing about 190 kilometers. This
route poses serious environmental threats, especially in

terms of emissions and ecosystem disruption via sensitive
areas; however, it will yield considerable financial benefits
because of high ridership projected for the Bay Area, which
is very densely populated. Each of these routes was
analyzed based on the proposed PMCDM model, with
consideration of distinct environmental, financial, and
social challenges associated with each route.

For AHP with Dynamic Weight Adjustment,
stakeholder preferences set a high value for environmental
considerations on the basis of sustainability concerns.
However, when presented with high financial costs, the
process of AHP readjusted weights dynamically by
responding to the real-time inputs from stakeholders and
project developments for different scenarios. Presented
below is the table which shows the weights for three
significant criteria, that are, environmental, financial, and
social criteria, at three time intervals: T1, T2, and T3,
respectively ranking scores given to three route alternatives,
Route 1, Route 2, and Route 3 in the process.

Table 8. AHP with dynamic weight adjustment

Criteria Initial Weight A(_jjusted Adjusted Weight Route 1 Route 2 Route 3
(T1) Weight (T2) (T3) Score Score Score
Environmental (E) 0.6 0.5 0.4 0.70 0.65 0.55
Financial (F) 0.3 0.4 0.5 0.60 0.75 0.80
Social (S) 0.1 0.1 0.1 0.50 0.55 0.65
Total Score (T1-T3) 0.62 (T1) 0.68 (T2) 0.73 (T3) 0.67 (T1-T3) |0.72(T1-T3) [0.70 (T1-T3)

Table 8 shows the ranks of the weight of financial
criterion F at three timestamp intervals, which shows that
the weight of financial criterion F increased with time from
0.3 at T1 to 0.5 at T3, when the concerns for finance
heightened. Therefore, Route 2, which was better at
financial criteria, had a better total score at T3 than Route
1, which had been the preferred route so far when
environmental criteria were given more weightage.
Subsequently, the results of the Monte Carlo simulation for

Table 9. Monte carlo simulation for uncertain

the uncertainty quantification are presented, which were
conducted with 10,000 runs, taking into account the
fluctuations in the cost that is financial and compliance risk
to the environment, as well as social impact for different
scenarios. The output is given as the probabilistic risk
assessment of each alternative route. A table showing the
probability for passing every route alternative on the budget
and confidence intervals for every criterion is presented as
follows,

quantification

Route Probability of Exceeding | Environmental Risk (95% Financial Risk Social Impact Risk
Budget (%0) Ch (95% CI) (95% CI)
Route 1 70 [0.40, 0.60] [0.50, 0.75] [0.30, 0.55]
Route 2 40 [0.30, 0.50] [0.40, 0.65] [0.35, 0.60]
Route 3 60 [0.45, 0.65] [0.55, 0.80] [0.40, 0.70]

Table 9 shows that the lowest risk of exceeding budget
was for Route 2, while the highest risk was for Route 1. The
confidence intervals for both environmental and financial
risks show that Route 2 had the ability to exercise better
control over costs and risks, while Route 1 was more
susceptible to uncertainties in costs and finance. To capture
the development in stakeholder preferences over time in
terms of linguistic expressions, such as “high importance”
for environmental factors and “medium importance” for
financial factors, an attempt was made to utilize the
adaptive weighting method based on fuzzy logic. Real-time
feedback was integrated into the model, which results in

dynamic changes in the weights assigned to each criterion.
Table 10 Reports the membership degrees assigned to each
criterion for three routes at different stages of the project:
T1, T2, and T3. In Table 10, given that financial factors
have been gaining in importance (from a membership
degree of 0.6 at T1 to 0.8 at T3), the weight of Route 3,
performing better on financial efficiency, was increased
accordingly. The dynamic adjustment of the weights
empowered the fuzzy logic system to explicitly capture the
preferences of the stakeholders and make changes in
rankings, based on real-time inputs for different scenarios.
Finally, all overall outputs of the process are presented with
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the final rankings of the three route alternatives, the
corresponding cumulative risk scores, and the final decision
with multi-criteria assessment. The final ranking depicts the
interactive outcome between the adaptive AHP, Monte

Carlo simulation, and fuzzy logic models with weighted
scores integrating the assessment of risk across financial,
environmental, and social factors.

Table 10. Fuzzy logic-based adaptive weighting for stakeholder preferences

Criteria Membership Membership Membership Route 1 | Route 2 Route 3
Degree (T1) Degree (T2) Degree (T3) Weight | Weight Weight
Environmental (E) | 0.8 (High) | O (mgﬁ)'“m 0.5 (Medium) 0.65 0.60 0.55
. . 0.6 0.7 (Medium- .
Financial (F) (Medium) High) 0.8 (High) 0.55 0.70 0.75
. 0.5 . 0.4 (Low-
Social (S) (Medium) 0.5 (Medium) Medium) 0.50 0.55 0.60
. . 0.60 0.62 (T1- | 0.63(T1-
Final Weight (T1-T3) 0.67 (T1) 0.65 (T2) 0.72 (T3) (T1-T3) T3) T3)
Table 11. Final outputs and route rankings
Route Final AHP Score Cumulative Risk Score Weighted Final Score Final Rank
Route 1 0.73 0.60 0.67 2
Route 2 0.75 0.45 0.71 1
Route 3 0.70 0.55 0.65 3

As shown in Table 11, Route 2 obtained the highest
final score of 0.71 based on its performance in terms of
better financial risk management and overall adaptability to
real-time data inputs. Although initial route ranking was
more favourable for Route 1 based on environmental
factors, continual re-evaluation of weight criteria and risk
assessments then resulted in a determination that Route 2
was the optimal route selection for the sets of high-speed
rail projects. Additional validation was through the
cumulative risk scores and the multi-criteria final scores
regarding the robustness of the model proposed in selecting
the most resilient and cost-effective alternative routes.

7. Conclusion and Future Scopes

This paper has suggested A Predictive Multi-Criteria
Decision-Making (PMCDM) model which incorporates the
Analytic Hierarchy Process with dynamically recalibrated
weights, Monte Carlo simulation to quantify uncertainty,
and adaptive weighting of a fuzzy logic model to represent
the changing preferences of the stakeholders. The
framework was used on the California high-speed rail route
selection problem of three alternative alignments and
showed that it could include real-time data and shift
decision priorities in uncertain and evolving circumstances.
The findings had given Route 2, which is the Palmdale-
Burbank stretch, as the best alternative with the best
composite score over the other routes. The probabilistic
analysis also determined that Route 2 had stronger financial
health, as the chance of cost overrun was lower compared
to the other options. Sensitivity and risk analysis
demonstrated that this route has been able to retain the same
performance in environmental and financial terms despite
diverse weight conditions. This responsiveness of the AHP
weights to dynamic change and the fuzzy logic component
showed that the model was sensitive in terms of financial
focus and gradual realignment of stakeholder emphasis,
respectively. A combination of these aspects points to the
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fact that the PMCDM framework can facilitate risk-based
and dynamic decision-making when used in a complex
context related to the planning of infrastructure. In a
practical sense, the proposed framework may act as a
decision-support tool to planners and policymakers
working on large-scale rail projects, in which long
implementation horizons and changing constraints tend to
problematize an unequal appraisal approach.

The PMCDM approach offers a systematic but highly
adaptive framework to compare alternatives and trade-offs
between economic, environmental, and social goals by
having an uncertainty analysis and adaptive preference
modeling. Although the current study has its advantages,
there are some limitations. The framework depends on the
access to and quality of real-time data, which might not be
homogeneous in different regions and project phases.
Moreover, the calculation cost of repeated simulation and
finding the dynamic solution can become more substantial
when operating with large networks with many possibilities
and targets. The model of the representation of stakeholder
preferences, despite being adaptive, relies on the
correctness of the input assumptions and the information
provided by surveys. The next steps of the research should
be aimed at cultivating the predictive power of the
framework with the help of sophisticated machine learning
algorithms to better predict financial risks, environmental
risks, and social risks. Understanding of the model would
be further supported by extending it to other high-speed rail
projects in other geographical settings to add weight to its
robustness and generalizability. In addition, the decision-
making process can be made more responsive by
implementing more sophisticated stakeholder feedback
systems, including a continuous analysis of what people
think. These extensions would make the PMCDM
framework even more applicable and effective in the
planning of sustainable and resilient rail infrastructure.
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