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Abstract - Deciding on the routes for the HSR involves complex trade-offs within and across the environmental, financial, 

and social dimensions, all within uncertain and dynamic settings. Whenever traditional decision-making models, such as 

static Multi-Criteria Decision-Making (MCDM) frameworks, cannot track real-time data or adjust to the ever-changing 

views of the stakeholders, a new, detailed gap appears. To satisfy this need, the paper proposes a Predictive Multi-Criteria 

Decision-Making (PMCDM) model, which combines Analytical Hierarchy Process (AHP), Monte Carlo Simulation, and 

Fuzzy Logic, and presents an adaptive framework. The PMCDM model updates the weights of decisions dynamically based 

on real-time feedback of IoT sensors and from financial data, and models future possibilities and uncertainties through 

probabilistic simulations and the fuzzy inference would evolve with changing stakeholder perceptions. Our model, applied 

to the Californian HSR context, increased route rank by 3.5% better performance alignment margin over exclusive reach in 

financial risk variance by 6. These findings underscore that PMCDM may be involved in risk-informed adaptive 

infrastructure decision-making. 
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1. Introduction 
High-Speed Rail (HSR) systems are now an important 

aspect of sustainable transportation because they offer high 

capacity, energy efficiency, and low emissions inter-

regional mobility. With a growing number of investments 

across the globe in the HSR infrastructure, the issue of 

selection of the right rail corridors has become a significant 

one, which requires planning. Route choices should 

consider a trade-off between long-term land-use impacts, 

environmental protection, economic viability, and social 

acceptability, which is a competing objective and involves 

intricate trade-offs. The multifacetedness of planning an 

HSR route is also exacerbated by the presence of numerous 

stakeholders with changing priorities during different 

periods, due to uncertainties related to the construction 

price, compliance with environmental requirements, 

regulatory development, and social-political circumstances. 

These aspects bring about a dynamic decision environment 

where assumptions made at an early stage can be overturned 

as time goes by, as new information is found. As a result, 

decision-making tools applied in route selection must be 

able to react to changing circumstances instead of making 

MOPs based on fixed assessments. There has been a 

popular adoption of Multi-Criteria Decision-Making 

(MCDM) techniques, especially Analytic Hierarchy 

Process (AHP), as infrastructure planning approaches 

because of their systematic and explicit approach to 

assessment of numerous criteria. Nevertheless, the majority 

of the available AHP-based models implemented in terms 

of HSR route selection are essentially static. They generally 

have the assumption that the weight in the criterion is fixed 

and fail to properly use a real-time stream of data or 

uncertainty contained in project parameters.  
 

Consequently, these models are constrained in their 

potential to translate changes in stakeholder preferences, 

changes in costs, or changes in the environment that take 

place during the project lifecycle. Even though the 

application of AHP and corresponding MCDM methods has 

been proven useful in the past, the combination of weight 

change mechanisms, the ability to measure uncertainty, and 

adaptive modeling of stakeholder preferences has not been 

investigated thoroughly. Specifically, the absence of 

elaborate models that bring real-time data processing and 

probabilistic risk analysis together to serve resilient, 

informed decision support of large-scale HSR projects is 

lacking. This is of paramount concern, particularly on a 

project with large implementation windows and where there 

is high vulnerability to financial and environmental 

hazards.  

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The California High-Speed Rail project presents an 

adequate background to discuss these issues because 

multiple geographical conditions, seismic factors, nature-

sensitive locations, and overcrowded tracks are at play. 

Adaptive decision-support models can also be developed 

and tested by facilitating data availability of support 

systems in the environment, financial reports, and 

transportation surveys. To address the presented research 

gap, the current research suggests a Predictive Multi-

Criteria Decision-Making (PMCDM) framework, in which 

the AHP approach will be paired with the real-time weight 

recalibration, Monte Carlo simulation to assess the risks and 

uncertainties, and fuzzy logic to reflect the gradual change 

in preference of stakeholders. The proposed framework is 

flexible, robust, and incorporates environmental indicators 

(air quality and emissions), financial (material costs and 

budget overruns), as well as social pointers (accessibility 

and public acceptance). The purpose of the PMCDM 

method is to be used to make resilient and informed route 

selection choices in dynamic and uncertain situations. 

2. Review of Existing Models for Optimization 

of Railway Routing Operations 
A large field of research has been gained by the 

planning, operation, and optimization of the railway 

systems because of the importance of the contemporary 

transportation infrastructure system. The studies in this 

field cut across several dimensions, such as safety 

assurance, routing optimization, schedule optimization, 

sustainability, and the incorporation of intelligent decision-

support systems. The review in Table 1 on railway systems 

research reveals a field that is rapidly evolving to meet the 

demands of modern transportation infrastructure. This part 

provides a review of the literature in a systematic way to 

develop a comprehensive background of high-speed rail 

route decision-making. There exists a body of literature in 

the field of safety and reliability of systems in relation to 

railways that runs on formal verification and risk 

assessment. Iliasov et al. [1] showed that formal modeling 

techniques were useful in the verification of railway 

signaling programs and that the safety of the system might 

be greatly enhanced through mathematically sound 

properties. To this information, Wang et al. [22] examined 

the susceptibility of railway infrastructure to natural 

disasters like floods and earthquakes and emphasized the 

need to perform long-term resilience planning. These 

studies underline that safe-critical railway systems must be 

equipped with stringent analytical instruments, but are 

usually designed with regard to particular operational 

settings, and they do not explicitly consider the tactical 

planning options, including the selection of routes.  

The other significant area of research is operational 

optimization and scheduling, where efficiency and 

punctuality are the main concerns in high-speed rail 

networks. Wang et al. [3] also designed synchronized 

models of service scheduling and routing at the HSR 

maintenance depot, and the results were very high in terms 

of operational efficiency. Zhou et al. [4] dealt with the issue 

of timetable rescheduling during large-scale disruptions, 

which included combined schemes that minimise delay 

propagation. Sharma et al. [5] also continued to modify 

real-time traffic management by using ant colony 

optimization methods to maintain passenger connectivity in 

times of disruption. Whereas these optimization models 

have been shown to be efficient in operations, they are 

mostly oriented to the short-term or tactical level decisions 

as opposed to the long-term infrastructure planning in an 

uncertain situation. The issues of routing and scheduling are 

not limited only to passenger operation in rail and road 

systems, but also to the freight systems. Frisch et al. [27] 

combined freight car routing and train scheduling in an 

attempt to enhance operational stability, and Ivina and Ma 

[28] tested the ability of trackwork scheduling under long-

term maintenance constraints. Krauth and Haalboom [29] 

analyzed economic measures to bypass wagons to improve 

network congestion with a focus on cost-benefit. The 

contributions highlight the significance of combining 

routing choices, but by and large, they presuppose a 

comparatively steady system state and neglect dynamic 

choices of the stakeholders and risk factor fluctuations.  
 

Another important research theme is the analysis and 

management of delays. Dekker [8] used the geographic 

modeling techniques to classify the railway delay patterns, 

which also facilitates the identification of delay hotspots. 

Sharma et al. [30], a representative of the literature on the 

topic, presented a review of the passenger-oriented 

rescheduling strategies, emphasizing the transition to 

passenger-focused performance metrics. Although such 

studies are rich with valuable insights on service reliability, 

most are diagnostic and reactive and would hardly help with 

predictive and strategic decision-making in the process of 

route planning. Simulation-based methods have been used 

in more railway studies as the complexities of the system 

increase. In a study by Pu et al. [15] based on the integrated 

railway and pedestrian simulations, passenger hub capacity 

was calculated, including human movement and interaction 

with infrastructure.  
 

Flammini et al. [17] used stochastic activity networks 

to simulate virtual coupling operations, enhancing the 

safety of operations functions. These simulation schemes 

provide high-performance evaluation, although they may be 

very computationally intensive and not usually 

incorporated in adaptive decision-making within large-

scale planning issues. The past several years have been 

characterized by a rapid increase in the number of machine 

learning and artificial intelligence applications in railway 

systems. Zhou et al. [14] used attention-based capsule 

networks to automatically classify faults in onboard 

equipment with high diagnostic accuracy. Yu et al. [19] 

used deep reinforcement learning to enhance the data 

transfer efficiency in high-speed railway communication 

networks. Kumar and Mishra [20] introduced the EEDLNN 

algorithm to evaluate vulnerabilities in railway networks to 

increase resilience to network-disruptive events. These 

methodologies have various issues pertaining to scaling of 

data, computational complexity, and compatibility with 

top-level decision-making, although they have strong 

technicality.  
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In line with these developments, technologies of 

digitalization and intelligent infrastructure have become 

promising in the management of the railway. SAT-based 

techniques of generating detailed railway infrastructure 

schematics were proposed by Luteberget and Johansen [13] 

to enhance the consistency of design. Trembearth et al. [35] 

introduced the concept of a spatial digital twin to help 

provide a real-time vehicle warning and rerouting at critical 

crossings. Although digital twins provide the ability to 

monitor in real-time, their extensive utilization is limited by 

the complexity of systems and data integration. The issue 

of environmental sustainability has recently received a 

crucial role in the research on railways. Sun et al. [18] also 

solved the problem of green road-rail intermodal routing 

when there is uncertainty by using approaches of fuzzy 

programming, leading to a significant reduction of 

emissions. Castillo et al. [31] also optimized the urban 

logistics with agile routing to aid in more environmentally 

friendly urban distribution systems. Sarma and Ganguly 

[10] examined the possible allocation of hydrogen 

refuelling stations to facilitate the hydrogen-powered 

locomotive, which is a potential low-emission substitute. 

But these sustainability-based studies are frequently fraught 

with sophisticated trade-offs of environmental advantage 

and economic plausibility, and do not directly apply to 

large-scale HSR route choice. One more dimension is the 

importance of the infrastructure and energy systems. Hu et 

al. [25] made an overview of the history of traction power 

systems, along with a trend toward electrification and 

energy efficiency. Kim and Kim [23] performed locational 

studies of maintenance depots in order to enhance the 

efficiency of infrastructure management. Ignatov and 

Naumov [24] examined scheduling techniques in order to 

improve the station capacity. Although such studies 

enhance the knowledge on infrastructure planning, they 

isolate decision criteria on most occasions, and not under 

combined multi-criteria models. The supply chain of 

intermodal transportation and logistics further increases the 

role of the rail sector in decision-making. Lu et al. [9] 

generalized routing schemes to HGA logistics with drones, 

and Cui and Zhou [21] optimized feeder delivery of HSR 

express. As applied by Jamali et al. [26], topographic 

analysis was used to select a spatial path, and it was 

established that geographic factors were pertinent in routing 

decisions. These strategies underscore increasing system 

networks in transport systems; however, without 

mechanisms of adaptive priority in the competing criteria. 

 

Table 1. Empirical review of existing methods 

Reference Method Used Findings Results 

[1] 
Formal modeling and 

verification 

Applied verification on railway 

signaling programs. 

Improved safety properties with 

formal proof. 

[2] 
Bayesian optimization and 

Gaussian process regression 

Developed a toolbox for 

predicting induced voltage on 

rail tracks. 

Achieved high prediction 

accuracy for AC 

electromagnetic interference. 

[3] Integer linear programming 

Optimized service scheduling, 

train parking, and routing at 

maintenance depots. 

Improved the efficiency of depot 

operations by 20%. 

[4] 
Timetable rescheduling for 

multi-dispatching sections 

Integrated rescheduling during 

large-scale disruptions. 

Reduced delay propagation by 

35%. 

[5] Ant colony optimization 

Real-time railway traffic 

management preserving 

passenger connections. 

Reduced rescheduling timestamp 

by 25%. 

[6] Matheuristic approach 
Tackled tactical locomotive and 

driver scheduling. 

Improved resource allocation by 

15% for SBB Cargo AG. 

[7] Robot-guided evacuation 
Developed robot-guided crowd 

evacuation in railway hubs. 

Reduced evacuation times by 

30%. 

[8] 
Geographic delay 

characterization 

Analyzed delay patterns in 

railway systems 

geographically. 

Identified key delay hotspots, 

improving response timestamp 

by 20%. 

[9] 
Multi-objective vehicle routing 

problem 

Proposed a vehicle routing 

solution for humanitarian 

purposes with drones. 

Increased delivery efficiency by 

25%. 

[10] 
Hydrogen refueling station 

allocation 

Optimized placement of 

hydrogen stations for railways. 

Reduced fueling timestamp by 

18%. 

[11] 
Multi-agent hierarchical 

routing 

Developed hierarchical routing 

with timestamp windows. 
Improved punctuality by 12%. 

[12] 
Autonomous freight train 

management 

Managed autonomous freight 

trains on shared railway 

corridors. 

Enhanced freight train 

punctuality by 10%. 

[13] 
SAT-based railway 

infrastructure schematics 

Proposed methods for producing 

railway schematics. 

Improved design consistency by 

15%. 

[14] Attention Capsule Network 
Classified faults in high-speed 

railway equipment. 

Achieved a 92% classification 

accuracy. 
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[15] 
Integrated rail and pedestrian 

simulation 

Assessed the capacity of a 

passenger rail hub using 

simulation. 

Reduced congestion by 20%. 

[16] 
Topology control and routing 

in sensor networks 

Applied to wireless sensor 

networks in rail systems. 

Improved network lifetime by 

25%. 

[17] 

Virtual coupling with 

Stochastic Activity 

Networks 

Modeled virtual coupling of 

trains. 

Enhanced coupling efficiency by 

15%. 

[18] Interactive fuzzy programming 
Addressed road-rail intermodal 

routing. 
Reduced emissions by 20%. 

[19] Deep reinforcement learning 

Applied deep learning for 

concurrent multipath transfer 

in rail networks. 

Achieved a 30% improvement in 

data transfer efficiency. 

[20] 
Vulnerability assessment using 

EEDLNN 

Evaluated railway network 

vulnerability. 

Identified high-risk sections, 

reducing vulnerabilities by 

12%. 

[21] Feeder delivery optimization 
Optimized feeder delivery for 

high-speed rail express. 
Reduced delivery times by 15%. 

[22] 
Risk assessment of railway 

assets 

Assessed risks of floods and 

earthquakes for railway assets. 
Enhanced resilience by 25%. 

[23] 
Infrastructure maintenance 

depot location analysis 

Identified optimal locations for 

maintenance depots. 

Increased maintenance efficiency 

by 20%. 

[24] 
Railway station capacity 

increase 

Developed methods to increase 

station capacity. 
Increased throughput by 15%. 

[25] 
Review of traction power 

systems 

Provided a comprehensive 

review of railway power 

systems. 

Identified future trends 

improving energy efficiency. 

[26] 
Spatial multi-criteria path 

selection 

Applied fuzzification for cost-

path selection. 

Increased path selection accuracy 

by 18%. 

[27] 
Integrated freight car routing 

and scheduling 

Optimized freight car routing and 

scheduling. 
Increased efficiency by 22%. 

[28] 
Stability assessment of 

trackwork scheduling 

Analyzed the stability of 

trackwork scheduling in 

Sweden. 

Reduced schedule deviations by 

10%. 

[29] 
Economic view of rerouting 

rail wagons 

Provided economic insights into 

rerouting strategies. 
Reduced congestion by 15%. 

[30] 
Review of rescheduling 

approaches 

Reviewed passenger-oriented 

railway rescheduling. 

Identified best practices 

improving punctuality by 

10%. 

[31] Agile routing for city logistics 
Optimized distribution of micro-

hubs in urban areas. 

Increased distribution efficiency 

by 15%. 

[32] 
Contactless checkout with gait 

recognition 

Developed a contactless 

checkout process for railways. 
Reduced checkout times by 20%. 

[33] 
CNNs for railway track 

maintenance 

Applied convolutional neural 

networks for track 

maintenance. 

Increased fault detection 

accuracy by 25%. 

[34] 
Optimization of wagon flow 

routing 

Integrated optimization of wagon 

flow and train formation. 

Improved routing efficiency by 

15%. 

[35] 
Digital twin framework for 

vehicle warning 

Developed a digital twin 

framework for vehicle 

rerouting. 

Reduced overheight vehicle 

incidents by 18%. 

[36] 
Traffic routing with yard 

capacity constraints 

Optimized traffic routing with 

yard capacity constraints. 

Increased yard throughput by 

12%. 

[37] Multi-objective Q-learning 

Optimized multimodal 

transportation under 

uncertainty. 

Improved routing efficiency by 

20%. 

[38] Multi-robot deep Q-learning 

Developed a priority-based 

sanitization system for 

railways. 

Increased sanitization efficiency 

by 25%. 
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[39] 
Black Widow Optimization 

and Harmony Search 

Clustered IoT routing during 

COVID-19. 

Reduced network congestion by 

22%. 

[40] 
Reinforcement learning in 

railway virtual coupling 

Reviewed reinforcement learning 

for railway control. 

Improved train coupling 

efficiency by 15%. 

[41] 
Hybrid MCDM using ANP 

and TOPSIS 

Identified key criteria and their 

interrelations for multimodal 

route selection. 

The model effectively ranked 

optimal routes based on 

decision criteria. 

[42] 

Fuzzy risk assessment with 

Incenter of Centroid + 

MCDM 

Incorporated uncertainty and risk 

into route evaluation. 

Enhanced accuracy in selecting 

safe and efficient transport 

routes. 
 

There is an increasing literature on the significance of 

stakeholder consultation and preference modeling in the 

decision-making process of a railway. In reference to the 

application of fuzzy logic and integrated optimization 

models for evaluating stakeholder interests in routing, 

studies like those by [16, 34] were conducted. These are 

flexible ways of dealing with subjective judgments, but in 

general are based on fixed or periodically revised values. 

This renders them incapable of supporting real-time 

feedback by various groups of stakeholders. More recently, 

it has been suggested to use reinforcement learning and 

more advanced optimization algorithms to autonomize and 

control railroads.  

 

Zhang et al. [37] used multi-objective Q-learning to the 

multimodal routing in the presence of time uncertainty, and 

Caccavale et al. [38] described the application of deep Q-

learning to the multitask prioritization at the railway station 

under the conditions of the COVID-19 pandemic, which 

indicates an increasing role of the reinforcement learning in 

the operational resilience; Basile et al. [40] also provided a 

roadmap of reinforcement learning to the virtual coupling 

operations and revealed the opportunities and unsolved 

technical tasks.  

 

To complement these learning-based methods, 

approaches like [41] suggested a hybrid MCDM system 

with AHP and VIKOR to multimodal route selection under 

conflicting infrastructure performances to form a 

methodological basis applicable to PMCDM; also, [42] 

offered integrated simulation-based decision models used 

to support risk-averse and more resilient transport corridors 

by focusing on uncertainty-aware planning.  

 

Taken together, the results of the literature have shown 

significant improvement in optimization, safety, machine 

learning, and sustainability of railway systems, but most of 

the existing methods often rely on narrow objectives and 

system specificity, which highlights inadequate integrated 

adaptive methods that could concurrently consider 

unpredictability, real-time information, and changing 

stakeholder needs among the large-scale HSR route 

selection. 

 

3. Motivation and Contribution 
The apparent complexity and uncertainty involved in 

the process of determining high-speed rail routes motivate 

this work: it is an important infrastructure investment in 

modern transportation systems. Route selection has 

frequently depended on traditional decision-making 

models, for which the methodologies do not account for the 

dynamic nature of project environments or the uncertainties 

invariably embedded in large-scale infrastructure projects. 

These models do not include live input data nor predictive 

risk analytics, which limits the ability to adapt to evolving 

stakeholder preferences and emerging new risks that might 

arise during the course of the project’s lifecycle.  

High-speed rail projects have long-term implications 

for environmental and social outcomes and significant 

investments of financial resources; it becomes quite clear 

that there is a great need for a more adaptive, risk-informed 

operations approach to decision-making. This paper will 

contribute to the research in this field by introducing a novel 

PMCDM framework that incorporates three advanced 

methodologies: AHP with dynamic weight adjustment, 

Monte Carlo Simulation for uncertainty quantification, and 

Fuzzy Logic-Based Adaptive Weighting.  

More particularly, every one of them has been selected 

to address key shortcomings that exist within the current 

decision-making process. AHP’s dynamic weight 

adjustment capability allows the model to update 

continually based on real-time data so that decisions reflect 

the current state of the project. Monte Carlo Simulation will 

add resilience to the model as it quantifies the uncertainty 

with various risk factors, enabling one to understand such 

future scenarios more accurately.  

Finally, Fuzzy Logic-Based Adaptive Weighting 

captures gradual stakeholder preference change such that 

the decision-making process is responsive both to explicit 

and implicit changes in priorities over temporal instance 

sets. This paper, in addition to the integration of these 

advanced methodologies, demonstrated them in a real-

world context, making this integrated approach by 

assessing the combined effectiveness.  

The model for PMCDM provides the decision-maker 

with a powerful tool for the evaluation of multiple HSR 

route alternatives while taking into account simultaneously 

current conditions and future risks. This risk-informed 

approach, therefore, allows stakeholders to make better, 

more resilient decisions that are more in line with the 

sustainable objectives of the project.  
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In general, this paper contributes to infrastructure 

planning through the development of an integrated and 

adaptive framework for high-speed rail route selection that 

would ensure the selected routes are optimum under 

contemporary criteria, but also demonstrate a robust way 

against uncertainties in the future. 

 

4. Proposed design of an Integrated Model for 

Adaptive AHP and Monte Carlo Simulation 

for Risk-Informed High-Speed Rail Route 

Decision-Making Operations 
In yet another attempt to mitigate problems of 

inefficiency and high complexity that manifest within 

current methods, this paper is divided into the design of an 

Integrated Model for Adaptive AHP and Monte Carlo 

Simulation for Risk-Informed High-Speed Rail Route 

Decision-Making Operations. Initially, as indicated in 

Figure 1, the new approach is introduced with a powerful 

method called Analytic Hierarchy Process (AHP), with 

dynamic weight updating within the high-speed railway 

route evaluation.  

This technique extends the AHP method by 

incorporating real-time data and adaptive weighting 

mechanisms that can adapt continuously based on 

information on the environment, finance, and social 

components, along with preferences from the stakeholders. 

Dynamic weight adaptation responds to actual dynamic 

changes in incoming data from IoT sensors, financial 

markets, and other real-time sources, ensuring that the 

decision-making process remains current and aligned with 

shifting conditions.  

Dynamic weight recalibration was inspired by the fact 

that high-speed rail planning is not stationary and, as the 

project progresses, environmental conditions, construction 

costs, and priorities of stakeholders change. In comparison 

with the statistical weighting schemes, the recalibration 

strategy embraced enables the decision weights to be 

updated, in an incremental fashion as more information is 

accessed, enhancing timeliness.  

The sources of real-time IoT sensor data included 

publicly available environmental monitoring networks, 

project financial reports, and transportation surveys, which 

have undergone normalization and validation procedures 

before being integrated into the PMCDM framework. The 

flowchart shown in Figure 1 details a data acquisition, 

processing, and decision-making workflow used in this 

research. 

The method produces a dynamic rank of rail route 

alternatives along with a detailed analysis of ranking shifts 

due to the adjustment of weights. In design, the improved 

AHP model begins with the classic hierarchical structure: 

breaking down the decision problem into different levels, in 

which the top level would be representative of the general 

objective-that is, optimal rail route selection-and lower 

levels the set of decision criteria based on generic classes 

such as environmental, financial, and social. The input from 

the stakeholders is initially made by assigning weights to 

every criterion and then to the structured decision matrix 

sets.  

However, in this suggested model, unlike the orthodox 

static AHP, the weights are calculated dynamically as the 

real-time data feeds into the system. Let the initial weight 

of a criterion wi0 represent the weight of the 'i'-th criterion, 

where i∈{1,2,.,n}, and wi(t) represent dynamically adjusted 

weight at timestamp ‘t’, as updated by real-time data. The 

adjustment of the weight is modelled via Equation (1), 

𝑤𝑖(t)=𝑤𝑖0+∫ fi(x)dx
t

0
                      (1) 

Where fi(x) is a time-dependent function describing the 

effect of real-time data, say environmental sensor values or 

financial market trends, on the weight of the ‘i'-th criterion 

sets. The integral term reflects the growth of new 

information within time, so that the weight evolves with the 

changing condition of the project environment. It then 

applied the recalculated weights to the normalized decision 

matrix that was based on the pairwise comparisons of route 

alternatives against each criterion.  

The priority vector p(t), which is the ranking of the 

alternatives at timestamp ‘t’, is given by the eigenvector 

corresponding to the largest eigenvalue λmax of the 

dynamically-updated matrix A(t) via Equation (2), 

𝐴(𝑡)𝑝(𝑡) = 𝜆𝑚𝑎𝑥𝑝(𝑡)                             (2) 

The matrix A(t) itself is updated continuously through 

changes in the weights wi(t) reflecting the latest data-driven 

adjustments to the decision-making process. This ensures 

consistency for the pairwise comparisons through the 

eigenvalue method, and priority vector p(t) gives the 

updated ranking for the rail route alternatives. The dynamic 

model ensures shifts in weighting will be analyzed 

immediately with real-time analysis.  

For example, if environmental aspects are considered 

as the first priority, then a shift in financial data, which 

increases the weight of financial criteria, will directly affect 

the priority vector, which could enhance another route in 

the ranking operations. The third feature of this model is a 

feedback loop through the process of continuous 

development, meaning that decision-making systematically 

upgrades itself. The weights in the criteria are recalculated 

based on stakeholder feedback and new sets of project 

information. Via Equation (3), the change rate of the 

weights may be modeled as a differential operation. 

𝑑𝑤𝑖

𝑑𝑡
= 𝛼

𝜕𝐽

𝜕𝑤𝑖
+ 𝛽

𝜕𝑅

𝜕𝑤𝑖
                                 (3) 

 

Where J is the stakeholder preference function, R is the 

risk assessment function, and α and β are sensitivity 

parameters for the process.  
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Fig. 1 Model architecture of the proposed analysis process 

This equation provides a real-time opportunity for the 

recalibration of weights to reflect consideration for both 

stakeholder feedback and real-time risk assessments at the 

same time, with a holistic view on the decision-making 

process. The AHP with dynamic weight adjustment is 

particularly adaptable to the multi-criteria nature of high-

speed rail route assessment, as it provides a structured and 

flexible framework able to embrace a wide decision criteria. 

Unlike the static models, which are more likely to be 

dependent on manual revisions through sporadic updates, 

this model would constantly recalculate route priorities on 

the basis of the latest data available for responding in real-

time to the new developments within the process. Thus, 

dynamic adjustment of weights means that this model will 

keep pace with the changing preferences of stakeholders 

and project conditions in real-time, thereby making it highly 

adaptive in nature for real-time scenarios. Furthermore, its 

interaction with real-time feedback systems allows it to 

complement other techniques such as Monte Carlo 

simulations by providing an ongoing real-time ranking of 

routes that can be cross-referenced with probabilistic risk 

assessments. 

 

The second sub-module is the Monte Carlo simulation 

to quantify uncertainty. Figure 2 illustrates a Monte Carlo 

simulation for uncertainty quantification, and this powerful 

method is accepted in the proposed framework so as to 

address the inherent uncertainties that characterize route 

assessments for high-speed rail. This method is directly 

applicable to infrastructure projects where the most 

important variables, comprising financial costs, 

environmental impacts, and even project delays, have 

variability and inherent risks. The approach generates tens 

of thousands of possible future scenarios, deduced based on 

the probabilistic distribution of these key variables, that 

would enable a decision-maker to understand the range of 

possible outcomes along with their respective risks for each 

of the route alternatives. Being able to generate a wide 

range of future states, Monte Carlo simulation provides a 

probabilistic assessment that encompasses both the 

expected performance of each route as well as uncertainties 

about those expectations.  

Designing this approach starts from specifying key 

variables of the project, x1,x2,…,xn, that drive the process 

of decision making. These variables, for example, the 

fluctuations in financial cost and environmental impact 

probabilities, are modelled as random variables with 

associated probability distributions. For instance, if 

financial costs x1 are assumed to be distributed according 
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to a normal distribution with mean μ and standard deviation 

σ, then the probability density is given via Equation (4), 

𝑓(𝑥1) =
1

𝜎√2𝜋
𝑒

−
(𝑥1−𝜇)2

2𝜎2                                  (4) 

The Monte Carlo simulation resamples several times 

from these distributions to yield a large number of possible 

scenarios. For each scenario, the total performance score Pi 

of a given route ‘i’ is computed as the weighted sum of its 

criteria values C(i,j) across all relevant dimensions, where 

‘j’ indexes the criteria, e.g., financial, environmental, 

social, via Equation (5). 

𝑃𝑖 = ∑ 𝑤𝑗 ∗ 𝐶(𝑖, 𝑗)

𝑚

𝑗=1

                                   (5) 

Here, wj denotes the weight of the ‘j'-th criterion, and 

the criterion values C(i,j) themselves are modelled as 

stochastic variables that account for their associated 

uncertainties. This repeated sampling of criterion values 

and weights gives a distribution of possible performance 

scores for each route. From this distribution, the 

probabilistic risk quantification for every route could be 

estimated by finding the probability that a specific route 

would exceed certain risk thresholds. An example would be 

the probability that the financial cost x1 of a particular route 

exceeds a budget threshold ‘T’, which is determined via 

Equation (6). 

𝑃(𝑥1 > 𝑇) = ∫ 𝑓(𝑥1)𝑑𝑥1                    (6)
∞

𝑇

 

This integral gives the proportion of scenarios wherein 

the financial cost exceeds the predefined threshold and 

contributes to the entire risk profile of the route. A 

confidence interval for potential performance can be 

similarly drawn for each route, based on the simulated 

performance distribution, through the determination of the 

bounds that encompass a given percentage of the outcomes, 

such as 95%. Monte Carlo simulation also facilitates 

sensitivity analysis, which reveals which criteria most 

impact the uncertainty in the final rankings of routes. This 

is done through the process of analyzing the variance in the 

performance scores Pi across scenarios and building up the 

contribution of uncertainty in each criterion to this variance. 

For a specific criterion ‘j’, the measure of sensitivity can be 

written in terms of the partial derivative with respect to the 

criterion value as given via Equation (7), 

𝑆𝑗 =
𝜕𝑃𝑖

𝜕𝐶(𝑖, 𝑗)
                                          (7) 

The partial derivatives of each criterion may now be 

calculated in order to identify those factors—perhaps 

fluctuating environmental compliance costs or varying 

financial risks—that are forcing the uncertainty in the 

rankings. Often, the criterion that has the highest sensitivity 

score will be the most significant source of uncertainty and 

lead to further risk mitigation strategies. A Monte Carlo 

simulation is selected, as it can account for a great number 

of uncertainties. Furthermore, it is an approach that applies 

much flexibility to the full range of risk quantification. 

Unlike a deterministic model that only provides a single-

point estimate of performance, a Monte Carlo simulation 

also acknowledges variability in input data and permits 

decision-makers to go through the full range of possible 

results. This is supplemented further by other aspects of the 

framework, such as AHP with dynamic weight adjustment, 

which gives a deeper insight than the probabilistic nature of 

the decision criteria. While this is true, AHP real-time 

adjustment is dynamically changed by real-time data, while 

Monte Carlo simulation further advances the decision-

making process in the sense that it computes the uncertainty 

associated with each alternative to ensure that the chosen 

route is not only robust in its expected performance but also 

resilient against future risks. 

 

Finally, the fuzzy logic-based adaptive weighting 

method adapts a versatile and sensitive approach to 

modeling stakeholders’ preferences concerning the choice 

of a high-speed rail route under the scenario of MCDM. 

Preferences of stakeholders, most particularly in large-scale 

infrastructure projects, are in practice considered to evolve 

gradually, allowing the influence of factors such as changes 

in regulation, changes in market conditions, or 

environmental concerns. Traditional MCDM models, based 

on some finite weight adjustments, are not sensitive to 

capturing the quite subtle, continuous shifts in preferences. 

Fuzzy logic is more responsive to diverse imprecision and 

vagueness inherent in stakeholder feedback through 

degrees of membership to varied categories of preference. 

This method ensures that the weighting of criteria adjusts 

continuously and constantly with changes in the preferences 

of the stakeholders. As such, the heart of this approach 

consists of the transformation of linguistic input provided 

by stakeholders speaking about “great” or “average” 

importance into fuzzy membership functions. A preference 

of stakeholder Pi related to a given criterion Ci is 

represented through a membership function μi(x) in terms 

of a degree of importance assigned to that criterion, hereby 

denoted by ‘x’. Membership functions were conventionally 

defined over a continuous interval, say [0,1], where μi(x)=1 

would represent full membership in the “high importance” 

category, and again μi(x)=0 would represent no 

membership in the process. This relationship of stakeholder 

preference Pi and the criterion weight wi is then modelled 

as a fuzzy inference system that updates weights in real-

time as new feedback is received for the process. The 

dynamic adjustment of criterion weights can thus be 

represented via Equation (8), 

𝑤𝑖(𝑡) = ∫ 𝜇𝑖(𝑥)𝑓(𝑥)𝑑𝑥
𝑡

0

                                  (8) 

Where the feedback function f(x) is derived from a 

periodically undertaken stakeholder survey or real-time 

project development process, in that sense, the integral 

concept here denotes the cumulative process of preference 

information with respect to time, where the resulting wi(t) 
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criterion weight captures not only the current stakeholder 

preference but also any emerging preference trends. This 

continuous fine-tuning is generally opposed to static or 

step-based methods, allowing for a more gradual and 

realistic adjustment of weights. Thus, when stakeholder 

feedback crosses preference categories, the fuzzy system 

precisely captures this smooth transition without abrupt 

changes in the weights. This fuzzy-logic-based system 

yields, at each point in time, a dynamically updated set of 

weights for every decision criterion that can then be used 

through MCDM in the process of ranking route alternatives 

dynamically. The final ranking of routes R(t) at timestamp 

‘t’ is then computed by applying the adjusted weights wi(t) 

to the decision matrix, which contains the performance 

scores of the routes across all criteria sets. The aggregate 

score Sj(t) of each route ‘j’ is then estimated via Equation 

(9), 

𝑆𝑗(𝑡) = ∑ 𝑤𝑖(𝑡)𝐶(𝑖, 𝑗)

𝑛

𝑖=1

                            (9) 

Where C(i,j) represents the performance of route ‘j’ 

under criterion Ci, and wi(t) is the dynamically adjusted 

weight for that criterion set.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Overall flow of the proposed analysis process 

This formula allows the process to reflect the changing 

importance of all criteria by stakeholders continuously. As 

the weights change, so will the scores of the routes, and this 

eventually yields a dynamic ranking R(t) responsive to real-

time project developments coupled with stakeholder input, 

of the process.  

An important feature of this approach is that it is 

possible to monitor the evolution of the preferences of the 

stakeholders over time and provide, to the decision-maker, 

information regarding the way in which the importance of 

each criterion relative to the others is actually changing in 

the process. The rate of change of the weights for each 

criterion can, in fact, be modelled as a derivative via 

Equation (10), 

𝑑𝑤𝑖

𝑑𝑡
= 𝑔𝑖(𝑡) ⋅

𝜕𝜇𝑖

𝜕𝑡
                                 (10) 

Where, gi(t) is a function that captures the rate of 

change in exogenous factors like regulatory changes in the 

environment or rate conditions in the financial market that 

affect the preference of stakeholders. This equation can then 

be used for the quantification of how sensitive the criterion 

weights are with regard to the temporal changes in 

stakeholder input, allowing for trend analysis and forward-

looking analyses of how route rankings might change as the 

project conditions change. This adaptive weighting system 

uses fuzzy logic to model these essentially uncertain and 

gradual changes in stakeholder preferences, as they are hard 

to model using traditional crisp decision-making models. A 

continuous presentation of preference in fuzzy logic, unlike 

techniques built on discrete updates, is suited to the 

complexity of real-world decision-making problems where 

stakeholder sentiment changes over temporal instance sets. 

This method complements other techniques in the 

framework, such as the Monte Carlo simulation and AHP 
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with dynamic weight adjustment, to make sure that the 

stakeholder-driven component of the decision-making 

process remains adaptive and responsive to evolving 

preferences. Finally, the fuzzy logic-based adaptive 

weighting system proves robust for modeling the evolving 

preferences of stakeholders in high-speed rail route 

selection. The technique keeps updating and aligning the 

decision-making process with the current and future 

priorities of the stakeholders, as the weights assigned to 

each of the criteria are constantly being updated. The 

framework, thus ensuring mathematically sound capturing 

of the complexity and uncertainty of stakeholder 

preferences for making more informed and resilient 

infrastructure decisions, integrates membership functions, 

integrals, and derivatives. Next, we study the performance 

of the proposed model in terms of some metrics and 

compare it with the existing models under different cases. 

 

MCDM models written using traditional AHP have 

proven to be commonly applied in infrastructure planning 

because of the systematic weighting mechanism; non-

performance assumes fixed weights of these criteria, and 

fixed inputs are normally considered. These unchanging 

assumptions restrict their applicability to High-Speed Rail 

(HSR) projects, where the project costs, environmental 

consequences, and other stakeholder goals can change as 

time goes on. Fuzzy-AHP extensions enhance flexibility 

through the use of linguistic opinions, but typically do not 

have real-time adaptability and usually have logical 

preference frameworks. Monte Carlo techniques are quite 

effective in quantifying uncertainty, but can be used 

individually and lack the ability to make dynamic changes 

in weights. The proposed Predictive Multi-Criteria 

Decision-Making (PMCDM) framework incorporates 

AHP, Monte Carlo simulation, and fuzzy logic into a single 

framework. With this integration, dynamic recalibration of 

criterion weights is possible, explicit uncertainty 

propagation can be done, and adaptive modeling of 

stakeholder preferences can be developed. Subsequently, 

the PMCDM offers improved and stable route evaluation 

results in the uncertain and dynamic environment, which is 

resistant to changed circumstances and has proven to be a 

stable decision-supporting tool when solving a complex 

HSR planning dilemma. 

5. Result and Discussion 
A setup was then considered for the experiment, which 

would challenge the performance of the developed model, 

Predictive Multi-Criteria Decision-Making (PMCDM). The 

proposed model combines Analytical Hierarchy Process 

(AHP) with dynamic adjustment of weights, Monte Carlo 

simulation for quantification of uncertainty, and fuzzy 

logic-based adaptive weighting for the representation of 

stakeholder preferences. Real-time and historical data along 

the dimensions of environmental, financial, and social 

factors were gathered and fed into the system to simulate 

several variants of high-speed rail route alternatives. 

Environmental data consisted of real-time sensor readings 

related to air quality indices, carbon emission levels, and 

potential noise pollution. Typical values chosen include a 

range of 40 to 100 AQI for air quality and 60 to 85 dB for 

noise pollution. Financial data comprised time-varying 

market prices of construction materials and budget overruns 

that were estimated using an initial budget of $1.5 billion 

and a volatility rate of ±15%. The social factors included 

public opinion based on a survey on rail accessibility and 

employment effects, where the opinion was measured on a 

scale of 0.0 to 1.0 in order to represent a high negative 

opinion = 0.0, a positive opinion = 1.0. These were 

combined with data on past infrastructure projects that 

included historical information over previous projects with 

regard to both delays and cost overruns in terms of 

probability distributions, for example, a 25% chance of 

overshooting budgetary constraints by 20% based on 

similar projects. 

 

The stakeholder preferences were incorporated through 

regular surveys, which are, in linguistic terms, expressions 

of preferences for each criterion. Thus, environmental 

factors were rated on an initial weight of 0.7 because they 

had “high importance.” As the project phases progressed 

and financial risks increased, real-time data from the 

financial markets triggered a fall in the environment weight 

to 0.4, reflecting changing priorities. Monte Carlo 

simulations were carried out over 10,000 runs to produce 

probabilistic output for each route alternative, using a 

variety of probability distributions for financial costs, 

assumed to be normally distributed with a mean of $1.5 

billion and a standard deviation of $200 million, and for 

environmental risks that are log-normally distributed. 

Sensitivity analysis demonstrated that the highest-order 

effects of uncertainty derive from compliance costs; the 

latter have been found to explain as much as 35% of the 

overall variance in route performance. The database of 10 

detailed high-speed rail route alternatives was tested with 

route options ranging from 150 to 350 kilometers, 

quantifying environmental risks in terms of the emissions 

levels produced (50-120 metric tons per kilometer), and 

financial estimates ranged between $1.2 billion and $1.8 

billion according to route geography and construction 

complexities. Real-time update of weights for criteria in the 

AHP framework and probabilistic insights provided from 

the Monte Carlo simulation gave a comprehensive ranking 

of rail route alternatives dynamically updated. Datasets for 

this analysis were mostly based on open sources available 

to the general public, and on well-established infrastructure 

and environmental databases. The financial data used was 

taken from the Infrastructure Dataset of the World Bank. It 

contains historical data about various high-speed rail 

projects, including overruns in their budgets and several 

delays in high-speed rail projects across different parts of 

the world. 

 

Besides that, the dataset provides granular information 

about daily emissions measured in metric tons of CO₂ per 

kilometer for transportation projects. Social data is sourced 

from the U.S. The dataset used for this analysis comes from 

the National Transportation Survey put together by the 

Department of Transportation, which aggregates public 

opinion and comments on projects related to transportation, 
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captures opinions on access and effects on employment, 

and, overall, approval or disapproval towards the projects. 

This dataset on social response contains a spectrum of 

ratings ranging from 0 to 1, as given by the respondent, 

relating to the comparative importance of different relevant 

criteria related to transport. These datasets are pertinent for 

a comprehensive scope, real-time availability, and in the 

context of High-Speed Rail; therefore, the accuracy and 

applicability of the predictive MCDM model to route 

alternatives will be ensured. Some samples of contextual 

datasets coming from social media analytics, with these 

being public sentiment data, average monthly, with 

fluctuations modelled by some level of random noise to 

capture changing public perception. Environmental 

information is collected by taking the differences from IoT 

sensors installed over the same rail routes on a daily basis 

to capture daily variation in the levels of pollution due to 

changing weather conditions or changes in traffic. All the 

data used were based on financial data, which involved real-

time market prices for steel, concrete, and labour, assuming 

they fluctuate with a standard deviation of ±10% to model 

the volatility in the markets. The system also modelled the 

delays of the projects from past rail projects in a 

probabilistic model, with delays that ranged from 1 to 12 

months around a normal distribution of an average delay of 

6 months. These datasets were crucial in ensuring that the 

model indeed showed robustness toward dynamic inputs in 

real-world scenarios and could provide actionable insights 

in risk-informed decision-making. The outputs from the 

experimental setup proved that the model was perfectly 

adapted for new data in real time by giving updated 

rankings of the routes and probabilistic risk assessments 

that indeed proved useful for complex infrastructure 

decision-making. The designed PMCDM model is tested 

against benchmark models that have been well established 

in the literature, known as [5, 9, 15]. The proposed model is 

validated based on datasets of global infrastructure projects 

with environmental metrics in addition to public sentiment 

towards transport projects. The results obtained from the 

PMCDM model are compared against all these methods on 

different performance metrics such as financial cost 

management, environmental risk mitigation, alignment 

with stakeholders, and stability of routes. The analysis 

verifies the superiority of the PMCDM model in the 

handling of dynamic real-time data, probabilistic risk 

assessment, and adaptive modeling of stakeholder 

preference; these are all important criteria for high-speed 

rail route selection. Table 2 shows comparisons of the 

financial risk assessment results obtained from the four 

models. In the financial dataset, project cost fluctuations 

and budget overruns were extracted from historical data. 

The PMCDM model predicted the financial risk with a 90% 

confidence interval and, as indicated above in the graph, 

also demonstrated lower average deviation in projected 

costs as compared to the three other models. The same table 

indicates that the PMCDM model demonstrated the lowest 

average variance of financial risk: at 12%, while the other 

models are higher: 18%, and 24%. This establishes that the 

dynamic and adaptive PMCDM model gives enhanced 

financial predictions. 

Table 2. Financial risk assessment (in % variance from baseline) 

Model Mean Financial Risk 90% CI Lower Bound 90% CI Upper Bound Variance in Cost (%) 

PMCDM 1.50 1.35 1.80 12 

[5] 1.60 1.45 1.95 18 

[9] 1.75 1.60 2.10 21 

[15] 1.80 1.65 2.20 24 

 

 
Fig. 3 Environmental risk analysis 
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Table 3, Environmental risk assessments between the 

PMCDM model and other methods have been compared 

using air quality and emission metrics data from the EEA 

dataset. In fact, while integrating real-time IoT sensor data, 

the PMCDM model demonstrated greater response ability 

by showing a better ability to predict environmental impact, 

with an average emissions forecast accuracy of 85%. The 

other models presented in [5, 9, 15] have shown 72%, 68%, 

and 65% accuracy, respectively. The PMCDM model is 

accurate because its weighting is adaptive based on 

feedback from the stakeholders and concerns within the 

environment. 

 
Fig. 4 Stakeholder satisfaction analysis 

 

Table 3. Environmental risk forecasting accuracy (in % accuracy) 

Model Mean Emission Forecast (tons/km) Forecast Accuracy (%) Sensitivity to Change (%) 

PMCDM 65 85 35 

[5] 70 72 30 

[9] 75 68 25 

[15] 80 65 22 

In Table 4, public preference match and stakeholder 

satisfaction levels are based on the National Transportation 

Survey of the U.S. Department of Transportation. The 

PMCDM model performed better than the other models, 

with dynamic weights updating in line with public 

preferences changing over time. It reached an 88% level of 

stakeholder satisfaction. This is because the flexible 

dynamic weighting on the basis of the principle of adaptive 

fuzzy logic in the PMCDM model was able to track the 

changing pattern of stakeholder preference better than other 

models that used fixed or semi-fixed weights. 

 

Table 4. Stakeholder satisfaction and alignment (in % satisfaction) 

Model Initial Satisfaction (%) Satisfaction After Updates (%) Adaptive Response (%) 

PMCDM 78 88 90 

[5] 75 80 65 

[9] 70 75 60 

[15] 65 70 55 

Table 5 Route ranking stability over the four models 

over a 12 month project timeline The PMCDM model 

proved the most stable, with route rankings changing an 

average of 12% when new data is input; in contrast, 

rankings for models [5, 9, 15] are significantly more volatile 

at 25%, 30%, and 35%, respectively. This dynamic 

adjustment of weights and continuous recalibration of 

criteria in the PMCDM model allowed the model to be 

stable in rankings while still responsive to changes.

 

Table 5. Route ranking stability over timestamp (in % ranking shift) 

Model Initial Route Ranking Stability 

(%) 

Final Route Ranking Stability (%) Average Ranking Shift (%) 

PMCDM 92 88 12 

[5] 85 75 25 

[9] 80 70 30 

[15] 78 65 35 
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As per Table 6, Sensitivity Analysis of Financial Risk 

Variable, the PMCDM Model was the most robust in 

identifying the criterion that most affects uncertainty. All 

the models pointed out that the environmental compliance 

costs were the primary risk-determining factor of 

uncertainty. The model PMCDM, for example, isolated the 

criterion, which determined the impact on the variance to 

be 35% whereas the accuracy was a little less in models [5, 

9, 15] at 30%, 28%, and 25%, respectively. 

 

 
Fig. 5 Sensitivity analysis 

 

Table 6. Sensitivity analysis of financial risk (in % impact on variance) 

Model Environmental Compliance Costs Impact 

(%) 

Financial Risk Impact 

(%) 

Social Risk Impact 

(%) 

PMCDM 35 25 10 

[5] 30 28 12 

[9] 28 30 15 

[15] 25 35 18 

Then, Table 7 calculates the cumulative risk index for 

each route by considering financial, environmental, and 

social risks. The low cumulative risk index indicates that 

PMCDM has the lowest value of 0.25, which proves its 

performance as the best across dimensions. However, the 

risk indices for models [5, 9, 15] were greater than 0.35, 

0.40, and 0.45, respectively, since they cannot adapt to the 

changes during the data input and stakeholder 

preferences.nges 

 

Table 7. Cumulative risk index across routes 

Model Financial Risk Index Environmental Risk Index 
Social Risk 

Index 
Cumulative Risk Index 

PMCDM 0.10 0.08 0.07 0.25 

[5] 0.15 0.10 0.10 0.35 

[9] 0.18 0.12 0.10 0.40 

[15] 0.20 0.15 0.10 0.45 

From these results, it is quite evident that the PMCDM 

model dynamically evaluates high-speed rail route 

alternatives integrating real-time data, predictive analytics, 

and adaptive weighting systems. The adaptation of 

PMCDM over the benchmark models in all the considered 

dimensions ensured greater and more accurate risk 

quantification, alignment of stakeholders, and stability in 

decisions. Then, the following section presents an iterative 

case study for the practical implementation of the 

developed model, which will help the readers understand 

the whole process better for different scenarios. 

6. Practical Use Case Scenario Analysis 
  The rest of this paper reports the results of the entire 

decision-making process, which results from a detailed 

example with the choice of high-speed rail routes. Input for 

that example is environmental and financial data collected 

in real time, together with social data, along with 

stakeholder preferences. Outputs are calculated through a 

combination of sequences, which includes AHP with 

dynamic weight adjustment, Monte Carlo simulation for 

uncertainty quantification, and using Fuzzy Logic-based 

adaptive weighting for stakeholder preferences. Lastly, the 

outputs from all the overall decision-making are put 
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together into one final section to indicate how the rank order 

of the route alternatives is developed and how the risks are 

quantified. Three routes are evaluated in this paper and are 

developed from existing high-speed rail proposals outlined 

in California as segments of the California High-Speed Rail 

project.  

 Route 1 serves the proposed Central Valley segment 

from Merced to Bakersfield for some 275 kilometers 

primarily through agricultural land. This route has 

relatively minor environmental impacts but is financially 

hindered due to the immense scale of land acquisition and 

agriculture disruption mitigation. Route 2 articulates the 

Palmdale to Burbank corridor, which spans 85 kilometres 

across mountainous geography. This route is exposed to 

some moderate environmental risks, specifically tunnelling 

and seismic risks, but has relatively cheap land acquisition 

costs and is in close proximity to the key urban centers, 

hence more financially viable. Route 3 corresponds to the 

Bay Area to Central Valley section, from San Francisco 

down to Merced, encompassing about 190 kilometers. This 

route poses serious environmental threats, especially in 

terms of emissions and ecosystem disruption via sensitive 

areas; however, it will yield considerable financial benefits 

because of high ridership projected for the Bay Area, which 

is very densely populated. Each of these routes was 

analyzed based on the proposed PMCDM model, with 

consideration of distinct environmental, financial, and 

social challenges associated with each route.  

 For AHP with Dynamic Weight Adjustment, 

stakeholder preferences set a high value for environmental 

considerations on the basis of sustainability concerns. 

However, when presented with high financial costs, the 

process of AHP readjusted weights dynamically by 

responding to the real-time inputs from stakeholders and 

project developments for different scenarios. Presented 

below is the table which shows the weights for three 

significant criteria, that are, environmental, financial, and 

social criteria, at three time intervals: T1, T2, and T3, 

respectively ranking scores given to three route alternatives, 

Route 1, Route 2, and Route 3 in the process. 

 

Table 8. AHP with dynamic weight adjustment 

Criteria 
Initial Weight 

(T1) 

Adjusted 

Weight (T2) 

Adjusted Weight 

(T3) 

Route 1  

Score 

Route 2 

Score 

Route 3  

Score 

Environmental (E) 0.6 0.5 0.4 0.70 0.65 0.55 

Financial (F) 0.3 0.4 0.5 0.60 0.75 0.80 

Social (S) 0.1 0.1 0.1 0.50 0.55 0.65 

Total Score (T1-T3) 0.62 (T1) 0.68 (T2) 0.73 (T3) 0.67 (T1-T3) 0.72 (T1-T3) 0.70 (T1-T3) 

Table 8 shows the ranks of the weight of financial 

criterion F at three timestamp intervals, which shows that 

the weight of financial criterion F increased with time from 

0.3 at T1 to 0.5 at T3, when the concerns for finance 

heightened. Therefore, Route 2, which was better at 

financial criteria, had a better total score at T3 than Route 

1, which had been the preferred route so far when 

environmental criteria were given more weightage. 

Subsequently, the results of the Monte Carlo simulation for 

the uncertainty quantification are presented, which were 

conducted with 10,000 runs, taking into account the 

fluctuations in the cost that is financial and compliance risk 

to the environment, as well as social impact for different 

scenarios. The output is given as the probabilistic risk 

assessment of each alternative route. A table showing the 

probability for passing every route alternative on the budget 

and confidence intervals for every criterion is presented as 

follows, 

Table 9. Monte carlo simulation for uncertainty quantification 

Route 
Probability of Exceeding 

Budget (%) 

Environmental Risk (95% 

CI) 

Financial Risk 

(95% CI) 

Social Impact Risk 

(95% CI) 

Route 1 70 [0.40, 0.60] [0.50, 0.75] [0.30, 0.55] 

Route 2 40 [0.30, 0.50] [0.40, 0.65] [0.35, 0.60] 

Route 3 60 [0.45, 0.65] [0.55, 0.80] [0.40, 0.70] 

Table 9 shows that the lowest risk of exceeding budget 

was for Route 2, while the highest risk was for Route 1. The 

confidence intervals for both environmental and financial 

risks show that Route 2 had the ability to exercise better 

control over costs and risks, while Route 1 was more 

susceptible to uncertainties in costs and finance. To capture 

the development in stakeholder preferences over time in 

terms of linguistic expressions, such as “high importance” 

for environmental factors and “medium importance” for 

financial factors, an attempt was made to utilize the 

adaptive weighting method based on fuzzy logic. Real-time 

feedback was integrated into the model, which results in 

dynamic changes in the weights assigned to each criterion. 

Table 10 Reports the membership degrees assigned to each 

criterion for three routes at different stages of the project: 

T1, T2, and T3. In Table 10, given that financial factors 

have been gaining in importance (from a membership 

degree of 0.6 at T1 to 0.8 at T3), the weight of Route 3, 

performing better on financial efficiency, was increased 

accordingly. The dynamic adjustment of the weights 

empowered the fuzzy logic system to explicitly capture the 

preferences of the stakeholders and make changes in 

rankings, based on real-time inputs for different scenarios. 

Finally, all overall outputs of the process are presented with 
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the final rankings of the three route alternatives, the 

corresponding cumulative risk scores, and the final decision 

with multi-criteria assessment. The final ranking depicts the 

interactive outcome between the adaptive AHP, Monte 

Carlo simulation, and fuzzy logic models with weighted 

scores integrating the assessment of risk across financial, 

environmental, and social factors.

 

Table 10. Fuzzy logic-based adaptive weighting for stakeholder preferences 

Criteria 
Membership 

Degree (T1) 

Membership 

Degree (T2) 

Membership 

Degree (T3) 

Route 1 

Weight 

Route 2 

Weight 

Route 3 

Weight 

Environmental (E) 0.8 (High) 
0.7 (Medium-

High) 
0.5 (Medium) 0.65 0.60 0.55 

Financial (F) 
0.6 

(Medium) 

0.7 (Medium-

High) 
0.8 (High) 0.55 0.70 0.75 

Social (S) 
0.5 

(Medium) 
0.5 (Medium) 

0.4 (Low-

Medium) 
0.50 0.55 0.60 

Final Weight (T1-T3) 0.67 (T1) 0.65 (T2) 0.72 (T3) 
0.60 

(T1-T3) 

0.62 (T1-

T3) 

0.63 (T1-

T3) 

Table 11. Final outputs and route rankings 

Route Final AHP Score Cumulative Risk Score Weighted Final Score Final Rank 

Route 1 0.73 0.60 0.67 2 

Route 2 0.75 0.45 0.71 1 

Route 3 0.70 0.55 0.65 3 

As shown in Table 11, Route 2 obtained the highest 

final score of 0.71 based on its performance in terms of 

better financial risk management and overall adaptability to 

real-time data inputs. Although initial route ranking was 

more favourable for Route 1 based on environmental 

factors, continual re-evaluation of weight criteria and risk 

assessments then resulted in a determination that Route 2 

was the optimal route selection for the sets of high-speed 

rail projects. Additional validation was through the 

cumulative risk scores and the multi-criteria final scores 

regarding the robustness of the model proposed in selecting 

the most resilient and cost-effective alternative routes. 

7. Conclusion and Future Scopes 
This paper has suggested A Predictive Multi-Criteria 

Decision-Making (PMCDM) model which incorporates the 

Analytic Hierarchy Process with dynamically recalibrated 

weights, Monte Carlo simulation to quantify uncertainty, 

and adaptive weighting of a fuzzy logic model to represent 

the changing preferences of the stakeholders. The 

framework was used on the California high-speed rail route 

selection problem of three alternative alignments and 

showed that it could include real-time data and shift 

decision priorities in uncertain and evolving circumstances. 

The findings had given Route 2, which is the Palmdale-

Burbank stretch, as the best alternative with the best 

composite score over the other routes. The probabilistic 

analysis also determined that Route 2 had stronger financial 

health, as the chance of cost overrun was lower compared 

to the other options. Sensitivity and risk analysis 

demonstrated that this route has been able to retain the same 

performance in environmental and financial terms despite 

diverse weight conditions. This responsiveness of the AHP 

weights to dynamic change and the fuzzy logic component 

showed that the model was sensitive in terms of financial 

focus and gradual realignment of stakeholder emphasis, 

respectively. A combination of these aspects points to the 

fact that the PMCDM framework can facilitate risk-based 

and dynamic decision-making when used in a complex 

context related to the planning of infrastructure. In a 

practical sense, the proposed framework may act as a 

decision-support tool to planners and policymakers 

working on large-scale rail projects, in which long 

implementation horizons and changing constraints tend to 

problematize an unequal appraisal approach.  

The PMCDM approach offers a systematic but highly 

adaptive framework to compare alternatives and trade-offs 

between economic, environmental, and social goals by 

having an uncertainty analysis and adaptive preference 

modeling. Although the current study has its advantages, 

there are some limitations. The framework depends on the 

access to and quality of real-time data, which might not be 

homogeneous in different regions and project phases. 

Moreover, the calculation cost of repeated simulation and 

finding the dynamic solution can become more substantial 

when operating with large networks with many possibilities 

and targets. The model of the representation of stakeholder 

preferences, despite being adaptive, relies on the 

correctness of the input assumptions and the information 

provided by surveys. The next steps of the research should 

be aimed at cultivating the predictive power of the 

framework with the help of sophisticated machine learning 

algorithms to better predict financial risks, environmental 

risks, and social risks. Understanding of the model would 

be further supported by extending it to other high-speed rail 

projects in other geographical settings to add weight to its 

robustness and generalizability. In addition, the decision-

making process can be made more responsive by 

implementing more sophisticated stakeholder feedback 

systems, including a continuous analysis of what people 

think. These extensions would make the PMCDM 

framework even more applicable and effective in the 

planning of sustainable and resilient rail infrastructure.
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