SSRG International Journal of Civil Engineering
ISSN: 2348-8352/ https://doi.org/10.14445/23488352/1JCE-V1312P114

VVolume 13 Issue 2, 186-207, February 2026
© 2026 Seventh Sense Research Group®

Original Article

Geotechnical Risk Assessment using Graph
Convolutional Networks and Hybrid LSTM-FEA Models
In Mega Highway Projects
Radhika S Thakre!, Uday P Waghe?, Yogesh P Kherde?, Rajesh M. Dhoble*, Mangesh P Bhorkar®, Amar Jain®

123pepartment of Civil Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, Maharashtra, India.
“Department of Civil Engineering, Priyadarshini College of Engineering, Nagpur, Maharashtra, India.
SDepartment of Civil Engineering, G H Raisoni College of Engineering, Nagpur, Maharashtra, India.
& Department of Civil Engineering, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune,
Maharashtra, India.

3Corresponding Author : ypkherde@ycce.edu

Received: 21 November 2025 Revised: 22 December 2025 Accepted: 23 January 2026 Published: 11 February 2026

Abstract - Mega highway projects are very sensitive to a number of geotechnical risks in the form of soil instability, seismic
events, and environmental change, leading to costly failures. The current risk assessment methods are not capable of integrating
the range of datasets—spatial data, temporal data, and real-time streams of data—and thus lack good levels of predictability,
combined with a lack of response time. Thus, with a view to addressing these barriers, we introduce the new concept of Big Data
Geotechnical Risk Assessment Model (BD-GRAM), which applies big data analytics and advanced machine learning algorithms
in order to better predict and mitigate geotechnical risks for different scenarios. BD-GRAM combines various methods adapted
to geotechnical data samples. The Graph Convolutional Networks (GCNs) are utilized for spatial and temporal data fusion,
where complex spatial dependencies and temporal variations in soil properties, as well as samples of seismic data, are
considered. GCNs, with the enhancement of attention mechanisms, have the ability to increase accuracy by as much as 20%
compared with the conventional methods. A hybrid model by combining LSTMs and FEA, misleading synergistic use of physical
laws, as well as temporal patterns of data pertaining to predictive accuracy, with an improvement of 25%. Near real-time
processing on Apache Kafka & Apache Spark enables near real-time continuous monitoring of risk with alerting on. SHAP
(Shapley Additive Explanations) ensures interpretability of the model outputs, as well as transparency of the factors driving the
risk predictions. Lastly, the system is scalable using GPU-accelerated TensorFlow to Run Masses of datasets & samples. This
fully integrated approach is optimized in this way to further enhance predictive accuracy and reduce false-positives and false-
negatives, enhancing the speed and response of geotechnical risk assessment responses in real time. BD-GRAM represents an
effective way to meet the early identification and mitigation of geotechnical challenges in a scalable data-driven manner for
improved resilience and safety of large-scale infrastructures in any given highway scenario.

Keywords - Big Data, Geotechnical Risk, Graph Convolutional Networks, Finite Element Analysis, Real-Time Monitoring.

1. Introduction

Mega highway infrastructure projects are inherently
vulnerable to substantial geotechnical risk because of their
enormous spatial extent, long service life, and sensitivity to
the state of the subsurface environment. The performance and
safety of such projects are drastically affected by the
mechanical and environmental behavior of ground and rock
systems, which are frequently characterized by high levels of
uncertainty and spatial variability [1-3]. Factors such as the
differential settlement, ground motion induced by earthquake,
fluctuations in groundwater levels, and instability of slopes
can have a significant impact on the structural integrity and
long-term serviceability. Consequently, good geotechnical
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risk assessment remains one of the most difficult issues in the
planning, construction, and operation of mega highway
corridors. Conventional risk assessment approaches in the
geotechnical field mostly depend on deterministic or
probabilistic techniques through localised geotechnical
investigation and historical records. While such techniques
have been able to capture relatively static conditions, they are
limited in temporal ability to capture complex interactions
between spatially distributed and temporally evolving
variables [4-6]. In particular, traditional methods have
problems in processing large-scale heterogeneous data
originating from multiple sources, such as in-situ sensors,
environmental monitoring systems, and seismic networks. As
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a result, predicting risks is often simplified, not reactive
enough, or inadequate for the prediction of rapidly changing
geotechnical hazards in dynamic environmental conditions.

Recent progress in big data analytics and machine
learning has brought new opportunities for solving these
challenges. Techniques like deep learning, data fusion, and
high-performance computer-processing capability enable the
analysis of massive geotechnical and environmental datasets,
which provide better predictive possibilities. However, some
limits of currently available data-driven models: the first one
concerns the low capacity to render potential complex spatial
dependencies that exist in geotechnical systems, and the
second one regards the weak coupling with physics-based
models, which limits their reliability and interpretability.
And, still, many of these approaches are computationally
intensive and are not ideal for real-time risk assessment. This
lack of an integrated, scalable, and interpretable framework
that can fuse the spatiotemporal data without physical
modeling is an identified research gap in geotechnical risk
analysis for mega highway undertaking projects. To address
this gap, this study, in an effort to recommend an approach for
managing geotechnical risk by using advanced machine
learning, physics-based modeling, and real-time disaster data
processing, has proposed a Big Data-driven Geotechnical
Risk Assessment Model (BD-GRAM). The framework
utilizes Graph Convolutional Networks (GCNs) to model
spatial relationship between geotechnical entities, a Long
Short-Term Memory (LSTM) network to capture time
dependency relations, and Finite Element Analysis (FEA) to
include fundamental physical behavior of soil and structure
systems. By modeling geotechnical information in the form
of graph-structure data, BD-GRAM is successful in capturing
the complex spatial interactions that are unexpected by other
interpolation methods. Attention mechanisms in the GCN
architecture also help further to pick out important risk zones
by prioritizing locations and time intervals. The hybrid
combination of LSTM with FEA closes the gap between
purely data and a physics-based approach. While LSTM
models can learn changing patterns using historical and real-
time geotechnical data, the FEA component can provide
deterministic  information about stress  distribution,
deformation, and settlement behavior under different load and
environmental conditions. In addition to this, real-time data
ingestion and processing with Apache Kafka and Apache
Spark pave the way for continuous monitoring and quick risk
evaluation, which is a key requirement for reducing the
impact of sudden risks, such as landslides or earthquakes. The
incorporation of explainable artificial intelligence techniques,
such as SHAP, further promotes model transparency and
enables geotechnical engineers to make informed decisions.

Based on the identified research gap, the present study
focuses on the following capability: The capability of
integrated big data and deep learning frameworks in modeling
complex geotechnical risks. effectiveness, a hybrid physics-
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based and data-driven approach in improving risk prediction
accuracy. and the Feasibility of real-time, interpretable risk
assessment of mega highway infrastructure. In summary, BD-
GRAM provides an integrated and scalable, big data
analytics-based solution to geotechnical risk assessment
across a deep learning and physical modeling model in a real-
time platform. The proposed approach is designed to address
the shortcomings of current methodologies and to help make
mega-highway infrastructure systems safer and more
resilient.

1.1. Motivation and Contribution

This research is motivated by the pressing need for more
accurate and scalable geotechnical risk assessment methods
to be applied in real time to large infrastructure projects,
specifically for different highway scenarios. The available
approaches are relatively effective for localized or small-scale
projects, but they cannot address the complexity and
dynamism of mega highway projects where multiple
geotechnical factors interact over vast spatial areas and
extended timestamp durations. The typical geotechnical risk
models thus rely on static data and deterministic analyses that
do not capture the relative interaction between diversified
environmental, seismic, and soil conditions and the temporal
evolution of risks. However, great opportunities emerge from
the increased availability of real-time data from 10T sensors
and environmental monitoring systems that are much more
challenging for the current models to deal with. Therefore,
there is a key requirement for a robust data-driven approach
that combines real-time monitoring, machine learning, and
physical modeling to enhance predictive accuracy so that
associated risks are mitigated in time in mega projects of
infrastructure involved in highway scenarios.

The applied aspects of this research are a Big Data
Geotechnical Risk Assessment Model (BD-GRAM), which
presents a new paradigm for geotechnical risk management.
The proposed model unifies at least three state-of-the-art
techniques: Graph Convolutional Networks (GCNs) to fuse
spatiotemporal data at the fusion level, a hybrid Long Short-
Term Memory (LSTM) and Finite Element Analysis (FEA)
structure to integrate information from both data-driven and
physics-based methods, and Apache Kafka and Apache Spark
architectures to represent real-time data processing. Each of
these is targeted specifically for geotechnical risk assessment
on very large projects-for example, to deal with spatial and
temporal dependencies, integrate data streams in real time,
and present interpretable risk predictions that lead directly to
actionable decisions. BD-GRAM also improves the
transparency and trustworthiness of the prediction, so that
geotechnical engineers may better make decisions to mitigate
risk. Scalability of the model, made possible by distributed
computing frameworks like TensorFlow, allows it to process
such enormous datasets, typical of mega projects, and
provides the model as a robust, practical tool in modern
infrastructure projects for different highway scenarios.
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2. Review of Existing Models for Optimization

of Highway Construction Scenarios

A huge number of natural hazards in geotechnical
engineering can be predicted with a precise amount of risk
mitigation regarding landslides, soil instability, and seismic
activity, as it ensures the safety and longevity of infrastructure
projects in various highway scenarios. In recent years,
research has focused on applying the most advanced machine
learning techniques and probabilistic models, plus
geotechnical simulations, to achieve higher predictive
accuracy and provide more actionable insights across
different scenarios. In this review of 40 papers, some insights
are gained into the current state of methodologies of
geotechnical risk assessment: key findings, strengths, and
limitations across a wide range of studies for different
scenarios. A clear trend that is apparent in the literature is that
machine learning models are increasingly being utilized for
the prediction of risk and early warning systems. Take a case
on fuzzy-based approaches to machine learning demonstrated
by Zhou et al. [1], and it effectively established early warning
systems on a soft rock slope instability, proving that it
improves the identification of risk by 15%. Moreover, CNNs
have been utilized for disaster prediction in complex slope
environments, for example, Yin et al. [27] reported an
improvement in accuracy of 20% with respect to traditional
techniques. The models are good at processing large high-
dimensional datasets and identifying patterns that may not be
easily found by conventional geotechnical methods.

However, most of the effectiveness is constrained by the
availability and quality of the data sets, with many machine
learning approaches requiring extensive, high-resolution data
sets in order to perform effectively. Most studies have this
limitation in that they rely on data availability; uncertainty in
the collection of data usually reduces the accuracy of
prediction or increases false positives and negatives.
Probabilistic models are increasingly being used in evaluating
geotechnical risks with uncertain inputs beyond machine
learning. For instance, Bayesian networks have been applied
by Benachenhou et al. [3], who have been employed in
decision improvement regarding geotechnical risk evaluation.
Such models will predict better, with quantification of
uncertainty and having prior knowledge to make more robust
inferences in sparse or partially incomplete data.

However, the kinds of computational complexities and
extensive calibration to be achieved are probably a bias that
needs to be further considered and developed. Recently,
several other research studies have focused on uncertainty
reduction strategies in site characterization and risk
assessment. Some examples of such studies include those
carried out by Sivakumar Babu [7] and Oluwatuyi et al. [8].
These studies focus on reducing the uncertainty to enhance
the reliability of the predictions of risks, especially for those
categorized as risky, like landslide-prone regions. Although
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effective, these methods often require comprehensive site-
specific data, which usually makes them less applicable in
regions where such data collection is difficult. Various studies
have also exploited the use of remote sensing and geospatial
technologies in monitoring risk and hazard. Macciotta and
Hendry [2] applied remote sensing techniques to landslide
monitoring in Western Canada, achieving a 20%
improvement in detection accuracy. Al-Rawabdeh et al. [19]
incorporated the Open Street Map (OSM) data and Weighted
Linear Combination (WLC) techniques into landslide hazard
modeling, which enhanced the accurate identification of
hazardous zones by 18%. The remote sensing technologies
offer the possibility of continuous monitoring over large
areas, making them good sources of data for risk assessment.

However, these methods are limited by their inability to
capture subsurface conditions in most cases; this is critical for
a  comprehensive  geotechnical risk  evaluation.
Also, Bozkurt and Akbas [12] applied finite element analysis
in order to mitigate risks posed by deep excavations with a
10% reduction in excavation-related failures. Silveira et al.
[6] applied FEA, along with quantitative risk analysis, to
highway rock slopes and achieved a 22% decrease in false
positives in risk assessment.

The FEA is a powerful tool to be used in simulating
geotechnical behavior under varied load conditions for a
detailed analysis of the soil-structure interaction. One of the
most significant limitations of FEA is its high computational
cost, especially in large-scale infrastructure projects. Besides,
the FEA models are highly sensitive to the input parameters,
such as soil properties and boundary conditions, requiring
them to be perfectly calibrated and validated against real-
world samples of data. One potential way of overcoming such
restrictions is the hybrid model that brings together data-
driven techniques with physics-based simulations.

Das and Singh [5] applied such a hybrid technique for the
stability of cut slope along the national highway in India,
whereas Liu et al. [29] used a similar technique in assessing
large deformation risks in the loess tunnel to enhance the
accuracy of predictions by as much as 16%. These hybrid
models take advantage of the best features of machine
learning and FEA, considering more accurate forecasting
capabilities with lower computational costs. However, several
issues remain regarding effective integration, as the physics-
based parts of the model should be applicable across a broad
range of geotechnical conditions. Considering sustainability
and resilience, many studies have understood how these
concepts might be incorporated into geotechnical risk
assessment. Reddy et al. [14] introduced a new paradigm
concerning the sustainability of geotechnical solutions;
resilience metrics should be incorporated into geotechnical
designs. This is particularly valid in the contexts mentioned
above about environmental volatility brought on by climate
change. Kumar and Parihar [26] also discussed the
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sustainability of waste foundry sand in geotechnical
applications, to establish the possibility of decreasing material

toward more sustainable geotechnical engineering, but still
lack practical implementation rules and standards to be

waste generated

in any project and enhancing its

sustainability. These methods are a few important strides

Table 1. Empirical review of existing methods

adopted in real projects for various scenarios in highways.

Reference Method Used Findings Results Limitations
[1] Fuzzy-Based Machine egw:,;za;g;q;ggg rfgék Improved risk Limited applicability to
Learning y sloges identification by 15%. different rock types.
Used remote sensing to Enhanced detection Inability to assess dee
[2] Remote Sensing monitor landslides in y b
accuracy by 20%. subsurface movements.
Western Canada.
. . Improved decision- . .
[3] Bayesian Networks App|l(?d Baye5|_an netw_orks making accuracy by Requwes. extensive data
for highway viaduct risk. 18% for reliable results.
Debris Flow Risk Assessed debris flow risk |dentified .h'gh'”Sk High cor_nputatlonal
[4] o zones with 92% complexity for large
Assessment along a major highway.
accuracy. datasets.
Analvzed cut slopes in a Provided practical Limited to slope
[5] Geotechnical Insights nalyzed P . recommendations to stability; lacks real-time
national highway in India. - T
reduce slope failures. monitoring.
Developed a quantitative Reduced false positives Lack of real-time
[6] Rockfall Risk Analysis system for highway rock in rockfall risk by 22%. adaptation fo_r changing
slopes. conditions.
N . Analyzed geotechnical Increased confidence in High uncertainty in
[7] Reliability ar_1d Risk risks using probabilistic failure probability areas with sparse data
Analysis
methods. assessments. samples.
. Requires high-quality
. . Propgsed strategles_for_ Reduced uncertainty by baseline data for
[8] Uncertainty Reduction | uncertainty reduction in site b )
o 12% in risk assessment. effective
characterization. . .
implementation.
Earthquake Damage Modeled earthquake Predicted structural Inability to model soil-
[9] Aq g damage for highway failure with 87% structure interactions in
ssessment . !
bridges. accuracy. detail.
Semi-Quantitative Risk Developed risk assessment Enhanced tunnel failure Limited predictive
[10] methodology for tunnel o power for long-term
Assessment h predictions by 18%.
design. tunnel performance.
Applied geotechnical Improved landslide High cost and
[11] PS-InSAR Risk Analysis characterization and PS- prediction accuracy by complexity of PS-
INSAR for landslide risk. 25%. INSAR data processing.
Achieved a reduction in High computational
[12] Finite Element Analysis USEd.FEA for deep_ excavation-related resources are required
excavation risk analysis. : .
failures by 10%. for large excavations.
Seismic Response Assessed the impact of soil | Improved understanding | Limited to specific soil
[13] A P variability on bridge of seismic-induced conditions in the study
nalysis L ; .
seismic response. bridge damage. region.
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Sustainability in

Proposed sustainability and

Identified key
sustainability metrics

Lack of practical

[14] Geotechnical resilience in geotechnical for geotechnical implementation
Engineering design. projects for different guidelines.
highway scenarios.
Rock Instability Assessed rock instability Provided a quantitative '-"T"ted SCope In
[15] Quantitative Risk risks in Tiirkive assessment reducing handling dynamically
ye. risk by 15%. changing conditions.
. Developed 2D soil cross- Enhanced model Limited application in
Geotechnical : : o - . L
[16] Characterization sections for risk analysis in precision for risk areas with limited
the Kashmir Basin. profiling by 10%. borehole data samples.
Integrated change detection | Reduced false negatives | High data dependency
[17] Slope Assessment with slope risk in slope failures by for change detection
management. 20%. accuracy.
Geomatics-Based Applied geomatics for Reduced project costs Limited flexibility in
[18] Highway Route optimal highway route by 12% with optimized rapidly changing
Selection selection. routes. environments.
. Modeled landslide hazards Improved landslide High sensitivity to
Landslide Hazard - ; ; S
[19] Modelin along a highway using hazard zone weight allocation in
g WLC. identification by 18%. WLC.
. Analyzed geotechnical Identified high-risk Lack of predictive
[20] Earthquake Territory findings from a major zones for future power for subsequent
Assessment AR
earthquake in Tirkiye. earthquakes. events.
GI1S-Based Disaster Risk Used GIS. for post- Enhanced disaster risk Requires extensive GIS
[21] earthquake disaster risk in R data processing
Assessment . visualization by 22%. L
China. capabilities.
. . . . Limited to specific
[22] Foundry Sand Suitability Q_uan_tl_fled geotechnical Iden_tlfled potent_lal for waste types and
suitability of waste sands. | sustainable material use. -
compositions.
Conducted stability - . .
[23] Stability Analysis analysis for rock slopes in Increas_ed_ slope stability L'm't?d mtegrf_atlo_n of
T predictions by 14%. real-time monitoring.
urkey.
Ecological Risk Assessed ecological risks Identified critical zones L|_m|ted to facolo_glcal
[24] . . ; impacts, ignoring
Assessment from highway construction. with 92% accuracy. . .
geotechnical risks.
Used geospatial S -
Geospatial Hazard technologies for hazard Ir_nproved urban Limited in its ability to
[25] - - planning through hazard assess underground
Evaluation assessment in urban 2T
. visualization. hazards.
planning.
S Reviewed the sustainability | Demonstrated potential L_ack of lmplemen_tatlon
Sustainability in . - in real-world projects
[26] of waste foundry sand in for significant waste : .
Foundry Sands . L . for different highway
geotechnical applications. reduction. .
scenarios.
Achieved a 20% High computational
[27] CNN for Slope Disasters Used CNNs for slope improvement in disaster demand for large

disaster prediction.

prediction accuracy.

datasets.
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Seismic Risk Developed a prioritization Identified critical Lacks the flexibility to
[28] L framework for seismic risk hotspots with 85% handle rapidly changing
Prioritization L
hotspots. accuracy. seismic events.
[29] Tunnel Deformation Assessed large deformation | Improved deformation | Limited applicability to
Risk risks in loess tunnels. risk predictions by 16%. non-loess regions.
Early Road Planning Developed a hazard risk Impr_oved decwlor_w- Limited scope for long-
[30] framework for early road making accuracy in .
Hazard Assessment . term hazard adaptation.
planning. early stages by 10%.
3D Modeling in Proposed 3D modeling Enhanced anchor High reliance on high-
[31] G eling using incomplete data for stability predictions by quality initial data
eoengineering o
anchor engineering. 18%. samples.
Acoustic Positioning in Deve]gpgd a 3D acoustic Improved positioning High noise levels can
[32] Underground Robotics positioning system for accuracy by 20% degrade accurac
g underground robots. yoy ' 9 Y
Used LSTM and AdaBoost Requires extensive
LSTM-Based Life for remaining life Improved life prediction quir
[33] e e : training data for
Prediction prediction in geotechnical accuracy by 22%. .
effective results.
structures.
ngelo_ped a polymer Increased force Limited application in
. optical fiber-based force ; I .
[34] Force Sensor Analysis ; detection sensitivity by high-temperature
sensor for geotechnical h
o 15%. environments.
applications.
Used 3D predictive Enhanced sianal-to- High computational cost
[35] Seismic Data Filtering filtering for seismic data . 0 519 for large seismic
- noise ratio by 18%.
analysis. datasets.
Temperature-Induced Developed a model for Imoroved levelin Limited to specific
[36] P . temperature effect-induced P g hydrostatic leveling
Error Modeling ) . accuracy by 20%.
errors in leveling systems. systems.
. Proposed an efficient . High complexity in
[37] Electroma_gnetlc method for 3D transient Increa}sgd computational parameter tuning for
Modeling . : efficiency by 25%.
electromagnetic modeling. accurate results.
i 1 1 0,
Achievement Prediction Applled deep Iear_nlr)g f(_)r Achleved a 23./0 Limited by the quality
[38] . . achievement prediction in improvement in .
Using Deep Learning - N of input features.
educational systems. prediction accuracy.
Piezoelectric Geocables Developed a sensor- Improved landslide Limited sensor
[39] for Landslide enabled geocable for detection sensitivity by durability in extreme
Monitoring landslide monitoring. 18%. conditions.
Deep Learning for Used deep learning for the . . High computational
S : : S Improved inversion demands for large
[40] Seismic Waveform high-resolution seismic -
| - 4 . accuracy by 20%. seismic datasets &
nversion inversion process. samples

Table 1 summarizes a vast range of methodologies and
approaches intended to improve geotechnical risk assessment
for many infrastructure projects. A quantitative comparison
of existing approaches indicates that individual machine
learning, probabilistic, remote sensing, and FEA-based
methods report performance improvements between 10 and
25% but are limited in their use by static data use, high
computational cost, or lack of real-time capability. Hybrid
models reach moderate accuracy (up to 16-18%) but are
hindered by poor scalability and low interpretability. In
contrast to that, BD-GRAM combines graph-based spatial
learning, time modeling, physics-based simulation, and real-
time data streaming in a unified framework. This integration
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allows for better sensitivity for risk, continued updating, and
results in interpreted predictions across large-scale highway
networks.

The research seems to indicate that, from the machine
learning models to probabilistic frameworks, finite element
analysis, and various hybrid approaches, such advanced
approaches can be useful in reducing uncertainty and in
increasing prediction accuracy to guide decision makers much
better. Results are also a testament to the added value
achieved by means of the inclusion of real-time data,
especially remote sensing and geospatial technologies, in
geotechnical models that increase their capabilities in
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monitoring risk under dynamic conditions. However, there
are still many challenges present, most of which are related to
data accessibility, the process intensity for computation
purposes, and the complicated integration of many different
methodologies into coherent models. Good promises have
been shown in the identification of patterns by machine
learning models on complex geotechnical datasets, but
primary limitations remain in the quality and
comprehensiveness of the data. Indeed, such machine
learning models like fuzzy logic and CNN can dramatically
improve the accuracy of the prediction, but default often
results in poor performance due to a lack of granular and site-
specific data. Alternative solutions to sparse data concerns are
found in probabilistic models, including Bayesian networks
and methods for uncertainty reduction, as described by
Benachenhou et al. [3] and Oluwatuyi et al. [8].

However, high computational complexities associated
with these models act as a hindrance to the general
applicability of this method, mainly in developing regions
where computational power is limited. This includes remote
sensing and geospatial technologies at the time of integration,
and it is an area where geotechnical risk monitoring can be
well expanded through continuous, large-scale data critical in
dynamic environments. Still, there are limits to these
technologies because, according to Macciotta and Hendry [2]
and Al-Rawabdeh et al. [19], they do not account for
subsurface conditions, which are crucial to an informed
understanding of geotechnical risks. This is a problem for
multi-layered models, which combine information from the
surface level with information from subsurface simulations.
Hybrid models are not far from filling this need. The hybrid
formulations of the type proposed by Das and Singh [5] and
Liu etal. [29] might be the best compromise available that can
leverage both the strengths of machine learning and FEA in
predicting the risks in a more realistic and efficient manner
computationally. However, these models still need to be
further developed to be applicable and generalizable to other
similar geotechnical contexts.

State-of-the-art high-impact works have improved
geotechnical risk assessment by developing domain
adaptation, dense sensing technologies, 3D modelling of the
underground environment, and explainable artificial
intelligence. These methods can result in better predictive
results and accuracy, as well as effective interpretability;
however, they are generally designed independently, and
without real-time scalability, and physics-based constraints
are typically absent. Literary systematic evidence suggests
that current methods seldom combine spatial learning,
temporal prediction, finite element simulation, and uncertain
quantification and explainability into a single operational
framework. To overcome this disintegration, the proposed
BD-GRAM devises a comprehensive structure that comprises
these complementary nodes assimilating into a coherent, real-
time, interpretable structure that is directly meant to be

192

applied to and utilized in the

infrastructure.

large-scale highway

Lastly, the quest for sustainability and resilience in
geotechnical engineering is on the increase, as indicated by
Reddy et al. [14] and Kumar and Parihar [26]. It is critical that
such contexts are integrated into the methodologies of risk
assessment in the face of climate change and the prevalence
of environmental challenges. Yet, there is a great demand for
practical guidance and standards to be developed that would
allow them to actually be applied in real projects in a
sustainable geotechnical way. In the future, efforts in research
should be made more towards improving the scalability and
adaptability of such complex models in a bid to make them
affordable and applicable to different geographical and
economic contexts. With further innovation and fine-tuning,
these models may well make infrastructure projects within
worldwide scenarios much safer, more sustainable, and more
resilient.

2.1. Research Gaps

As reviewed, the research conducted to evaluate
geotechnical risk lacks some gaps. The quality and
availability of data should be improved since many of the
more advanced machine learning models, such as CNN and
fuzzy-based, rely heavily on high-resolution site-specific
datasets, which are typically unavailable or inaccessible.
More importantly, probabilistic models such as Bayesian
networks are helpful in mitigating uncertainty but pose high
computational demands, which limit their use to many
applications, especially in resource-constrained regions.
Subsurface geotechnical data is not well combined with
remote sensing technologies. Most models today are built
primarily from surface-level conditions with little insight into
the subsurface. Hybrid models need to be developed further:
integrate machine learning and physics-based simulations,
like finite element analysis, appropriately to effectively
balance computational efficiency with predictive accuracy
across diversified geotechnical conditions. Sustainability and
resilience are increasingly considered critical factors in risk
assessments, but practical guidelines and standards that can
facilitate the implementation of sustainable geotechnical
practices are still in their infancy and are not widely adopted
in infrastructure projects.

3. Proposed Design of an Integrated Model for
Geotechnical Risk Assessment using Graph
Convolutional Networks and Hybrid LSTM-
FEA Models in Mega Highway Projects

To address the low efficiency and high complexity
plaguing current approaches, this section discusses the design
of an Integrated Model for Geotechnical Risk Assessment
using Graph Convolutional Networks, as well as a Hybrid
LSTM-FEA Model for Mega Highway Projects. First, as
shown in Figure 1, the Integ. of Spatiotemporal Data Fusion



Yogesh P Kherde et al. / 1JCE, 13(2), 186-207, 2026

via Graph Convolutional Networks GCN is designed to focus
on this capability of including both spatial and temporal
dependencies inherent in geotechnical data samples.
Geotechnical datasets include soil profiles, seismic activity,
and real-time sensor data such as soil moisture and vibration,
which exhibit spatial interconnections across locations and
temporal evolution over temporal instance sets.

The GCN framework is particularly suited to this
challenge, since geospatial data is well represented as a graph
structure. Each location is represented as a node, and the
relationships among locations are represented as edges. This
allows for a natural aggregation of information from
neighboring locations, which would be extremely important
in capturing spatial dependencies within this more complex
geotechnical environment. The GCN works by performing a
direct convolution of graph-structured data, like traditional
convolutional networks on Euclidean grids, but generalized to
arbitrary graph structures.

The input to the model X € R M{NxF} is a feature matrix,
where 'N' would be the number of spatial locations, or nodes,
and 'F' is the number of features associated with each location,
such as soil moisture, rock properties sets. The adjacency
matrix AERNxN describes the spatial relationships between
locations that capture the proximity and connectivity between
different sites. Modeling the spatial dependencies is realized
through applying the propagation rule of the GCN layer via
equation 1

H(l+1) =a(A~HOW D) 1

Where, H(l) - node feature matrix at layer 'I') W(l) -
trainable weight matrix for layer 'l'; o - non-linear activation
function (ReLU); A~ = A + | - degree matrix estimated via
equation 2

1 1

A~ =DT2AD"2 (2)
The normalized adjacency matrix with D being the
degree matrix of A in the process. This normalization is
necessary to scale the features appropriately summed from
neighboring nodes and to avoid the explosion or vanishing
problem at different steps of the aggregation process. The
GCN integrates an attention mechanism to capture temporal
dependencies. The GCN learns the spatial relationship while
the attention mechanisms identify the most critical
timestamps or regions of interest within their temporal
dimension sets. Such an extension of GCN ensures that the
model acquires the capability to focus more on its critical
spatial regions and time durations, possibly being regions
characterized by a high degree of risk or specific timestamp
frames of interest, such as during or after seismic events.
These weights, a(i,j), are now learned during training and
quantify the importance of all various connections, which are
specific to a process-specific combination of spatial and
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temporal connections. The added timestamp as an additional
dimension in the input captures the temporal dynamics; it
applies a modification of the convolution operator with regard
to timestamps for the process. The spatiotemporal
representation fused by the GCN is thus mathematically
formulated to aggregate information not only from
neighboring spatial nodes but also from relevant timestamp
frames. It leads to the following operation for a GCN
enhanced with temporal attention via equation 3,

Htl+1) =0 (Z a(t, t’)A~Ht’(l)W(l)> 3)
tl

Where a(t,t") refers to the attention weights across sets of
temporal instances, 't' and t' index into current and past
timestamps, respectively, this equation fuses spatial
information from neighboring nodes at each step of the
timestamp, incorporating attention into the mechanism that
weighs importance differences among timestamps for the
process. The attention weights a(t,t’) are learned dynamically,
in which the model adapts to the variation in temporal patterns
or evolves, such as an increase in seismic activities or rainfall
that may lead to soil instability levels. A vital justification for
the selection of GCN in application to this spatiotemporal data
fusion lies in its capacity to model complex, non-Euclidean
spatial relations, which abound in samples of geotechnical
data. Unlike natural restrictions in traditional CNNs to
structured, grid-like data, such as images, GCNs can be
directly used on graph-structured data, and hence, both the
flexible representation of spatial locations and their
interconnections may be used for the process. Flexibility is
particularly important for dealing with irregular spatial
distributions, such as sensor node (or geological feature)
locations. In addition, attention-enhanced GCN improves
static spatial models by including temporal dynamics, which
are rarely captured in the traditional approaches. This can be
compounded with some other models, such as LSTMs or FEA
models, in order to give more granularity into the spatial
relationship at each part of the project area. Though effective
for capturing long-term dependencies in terms of time,
LSTMs are neither natively nor well-suited to spatial
dependency. In contrast to FEA, which typically models the
physical behavior of geotechnical systems over an extremely
wide range of conditions, it may not inherently exploit these
strengths, yet by combining the two approaches, the
interactions between the complex spaces, times, and
geotechnical factors can be encapsulated under a more
holistic approach in risk assessment. Third, integration of
spatial and temporal data within the GCN framework
improves the general accuracy of predictions for geotechnical
risk estimations. The model will better account for
heterogeneities in soil profiles as well as the temporal
evolution of seismic activity while detecting critical zones of
geotechnical risk. Empirical results from case studies have
provided clear evidence of improved prediction accuracy,
while reducing both false positives and negatives relative to
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spatial interpolation and models that are purely temporal, via
equation 4.

Y =f (Z H(l))

Where Y' represents the predicted risk scores, for each
location, H(I) represents node feature representations at layer
I', and f(-) represents the final readout function to aggregate
information across all GCN layers to output the fused risk
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predictions. Ensemble modeling and Bayesian-inspired
uncertainty estimation were used to deal with uncertainty in
predictions- both epistemic and data-based uncertainty. To
measure the risk factor on the availability of confidence in the
outputs of risk, prediction intervals were calculated. The
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Fig. 1 Model architecture of the proposed analysis process

Next, using Figure 2, a Hybrid Physics-Based and Data-
Driven Model that combines FEA with Long Short-Term
Memory networks has been devised to address the
sophistication of geotechnical systems; the ones containing
patterns based on complex physical laws and data-driven
changes over time across sets of temporal instances. The
hybrid model integrates deterministic physical simulations
with the recognition of temporal patterns to provide predictive
geotechnical risk profiles with uncertainty bounds. The
innovation lies in the combination of FEA's power of
simulating physical behavior under various load conditions
with LSTM networks' capability for long-term dependency
capture in temporal data, such as variation in soil moisture,
seismic activity, and changes in environmental conditions,
including rainfalls, resulting in better and reliable predictions,
especially in more complex and dynamic environments. The
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FEA model involves deterministic simulations based on the
physical properties of the geotechnical system, such as the
stress-strain behavior of the soil, deformation, and material
strength. In FEA, the geotechnical domain is discretised into
finite elements with a view to solving the governing equations
of equilibrium in the form via equation 5,
Ku=f (5)
Where K is the stiffness matrix, u is the displacement
vector, and f is the force vector acting on the system. This
operation is necessary for FEA, where K represents the
material properties and boundary conditions of the system,
and u is the unknown displacement field that is computed
numerically at various steps of the process.
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Fig. 2 Overall flow of the proposed analysis process

The output of the FEA model is a high-resolution
simulation of the behavior of the real system under diverse
loads and environmental conditions. Predictions of stress
distributions,  displacements, and deformations are
determined. However, although FEA provides highly
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accurate physical simulations, it fails to take into account
temporal dynamics, as introduced in the case of
environmental changes such as rainfall or seismic activity,
which often develop non-linearly over temporal instance sets.
To fill in this deficiency, a data-driven component of the
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hybrid model was proposed, the LSTM network. LSTMs are
particularly suitable for modeling temporal dependencies
where, for some reason, system behavior changes with
timestamp. The LSTM wuses historical and real-time
geotechnical data to learn patterns such as cyclic loads or
gradual soil settlement. The state update operations for LSTM
have been represented via equations 6, 7, 8, 9, 10,

it =o0(Wi-[h(t —1),xt] + bi) (6)

ft=oaWf - [h(t—1),xt] + bf) @)
ct=ftOQclt—1)+it
O tanh(Wc - [h(t — 1),xt] + bc) (8)

ot =o(Wo - [h(t — 1), xt] + bo) 9

ht = ot © tan h(ct) (10)
Where it, ft, and ot represent the input, forget, and output
gates, respectively, which control the information flows
through the process of the LSTM. Its two hidden states, ct and
ht, grasp the long-term and short-term interdependencies
between time steps in the data so that the LSTM learns
complicated temporal patterns, such as soil consolidation due
to repeated events of rainfall. It is trained on the residuals
between FEA outputs and real-world observations, therefore
capable of correcting for mismatches and maximizing overall
predictive accuracy across the system. Residual rt at timestep
't' comes via equation 11,
rt = yt — y't(FEA) 1
Here, y t represents the actual measured values at time 't',
and y 't( FEA) is a prediction of the FEA. The LSTM was
trained in the sense of minimizing the residuals rt, thereby
improving its predictions and filling in the gaps of any
incomplete FEA models. In fact, an important feature of this
hybrid model is the ability to update at run-time and also
adhere to the physical constraints governing the systems.

Because the LSTM output prediction is always updated,
the model is extremely adaptive to any dynamic changes in
the environment at real-time data streams, such as soil
moisture and seismic activity status. Since the residual
between the FEA outputs and the real-world observations is
fed into the LSTM, the model improves its prediction over the
temporal instance sets. This can be represented with a
correction term added into the FEA predictions to provide the
final hybrid prediction via equation 12,

Vy't(Hybrid) = y't(FEA) + et (12)

Where, y't (Hybrid) represents the final hybrid prediction
and et represents the error term learned by the LSTM process.
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This error term captures the patterns that are not being
captured by the static FEA model, and hence, the predictions
made are highly accurate and strong. Moreover, uncertainty
bounds are produced to measure the level of confidence in the
predictions. These uncertainty bounds are most relevant in
practical applications because they can provide an estimate
for decision-makers of the possible error margin in the
predictions of the risk. The uncertainty is modeled by
combining both the FEA-based deterministic uncertainty and
the LSTM-based probabilistic uncertainty. The total
uncertainty Ut at timestamp 't' can be written via equation 13,

Ut = Ut(FEA) + Ut(LSTM) (13)

Where, Ut(FEA) refers to the uncertainty obtained from
the FEA model, usually attributed to material properties and
boundary conditions variability, and Ut(LSTM) refers to the
uncertainty associated with a data-driven LSTM model,
representing variability in environmental conditions and time
patterns. The summation of these two sources of uncertainty
provides a comprehensive measure of the model's belief in
predicted values, thus enabling better-informed judgments on
geotechnical risk mitigation measures. The choice of the
hybrid model is justified by the complementary nature of the
FEA and LSTM approaches. FEA excels at producing
accurate physical simulations according to well-understood
principles of geotechnical engineering, but fails to capture
temporal dynamics that originate from environmental
changes. LSTMs are good at modeling temporal
dependencies but fail to incorporate physical constraints
directly. This hybrid model achieved higher prediction
accuracy than either of these models, and brought out a 25%
improved prediction accuracy with the results from empirical
observations in comparison to a purely FEA or an LSTM-
based model.

The basis of this solution is the integration and design of
the real-time data processing framework on Apache Kafka
and Apache Spark, integrating techniques from Explainable
Al using SHAP-Shapley Additive Explanations for
continuous monitoring and geotechnical risk assessment. This
framework has been designed particularly for overcoming the
challenges of real-time geotechnical data streams that are
generated from the 10T sensors distributed across large-scale
infrastructure projects in different highway scenarios. The
sensors will ensure continual measurement of the pressure
and moisture content of soils, as well as seismic activities and
other environmental parameters, which are essential for risk
prediction and mitigation. Data in big volumes will be
possible to handle, process accurately, and determine risks in
a timely manner by utilising robust solutions provided by
Apache Kafka and Apache Spark. Apache Kafka is leveraged
as a core component of the event-driven architecture. It allows
for the ingestion of stream flow with real-time data coming
from diverse sensor networks. Output from any sensor is
considered an event stream, constantly published to Kafka
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topics. In return, Apache Spark consumes these streams of
data and processes them close to real-time using the micro-
batching architecture sets. This means that Spark is able to
process massive distributed data, so though the data is rising,
it actually indicates that the system horizontally scales up to
deliver the same output. The main strength of this
configuration in the Spark processing engine is that it allows
Spark to perform computationally intensive operations on
data in micro-batches, making it easy for constant risk
monitoring. In mathematical terms, the whole process can be
defined via equation 14,
Xt(i) = {xt1(Q), xt2(i), ..., xtn(i)} (14)
We represent where Xt(i) means real-time data streaming
of sensor 'i' at time 't', and every xtk(i) forms a data point for
a particular geotechnical feature, say soil moisture, pressure,
or seismic vibration at that temporal set. These data points are
continuously ingested in the Kafka system and forwarded for
real-time processing and analysis in Spark. Once the data is
ingested, Spark applies the suitable risk assessment models,
which may include algorithms of machine learning,
geotechnical ~ simulations, and anomaly detection
mechanisms. Micro-batching by Spark allows the data to be
analyzed in small timestamp windows At, thus bringing rapid
updates in the risk profiles. The time-evolving risk model,
which may be updated based on the new data inflow, can be
represented via equation 15,

R(t+4t) = f (Xt(i),X(t - At(i)),X(—nAt(i))) (15)
Here, R(t+At) represents the evolving risk profile at
timestamp t+At, and f(:) stands for the model processing the
sensor data streams to figure out the risks. Function 'F'
captures both the temporal patterns and spatial dependencies
existing in the previous data points, allowing it to constantly
fine-tune the risk assessments in near-real-time instance sets.
This frequent update would make sure the impact of
modifications in the geotechnical conditions, like shock rises
in moisture content in the soil due to rainfall, finds its
representation in the risk model in due time to give a risk
calculation and start a process for decision-making.

SHAP, Shapley Additive Explanations, shall be
incorporated within this framework to accomplish the crucial
challenge of interpretability in machine learning models,
which are applied in the assessment of risk. SHAP values
provide an exact quantitative measure of how much a feature
contributes to the predictions of its model, thereby showing
insight into the decision-making process of complex models.
SHAP extends game theory, particularly cooperative game
theory, and assigns a contribution value to each feature based
on its marginal contribution to the prediction. The SHAP
value of a specific feature xj at timestamp 't' is calculated via
equation 16,
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SI(N =S —1)! ,
UGN~ £

bj (16)
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Where ¢j is the SHAP value of feature 'j, and N is the set
of all features, 'S' is a subset of features excluding 'j', and
f(SU{j}) represents the model output if feature 'j' is added to
the input set 'S'. Formulated in this way, it is possible to
calculate, using SHAP, the marginal contribution of any
geotechnical feature, such as soil moisture or seismic activity,
toward the total risk prediction. The SHAP values are
particularly valuable for these real-time risk assessments in
which the decision-makers need not only the risk predictions
but also insight into why those predictions were made. By
computing the SHAP values in real-time, the framework
provides immediate feedback on what features are driving the
risk assessment at any given moment. For instance,
considering the seismic event, SHAP will reveal the
contribution of seismic data in the risk profile, which is 70%,
while that of soil moisture is 20% and thus calls the engineer
to action towards the seismic stability. Apache Kafka and
Apache Spark have been chosen for this framework; the
justification lies in proven scalability, tolerance of faults, and
on-time reception of flows of real-time data. Apache Kafka is
configured with the ability to ingest large volumes of data
from thousands of sensors monitoring ground motions at a
high throughput while concurrently giving durability and fault
tolerance to ensure there is no data loss in the case of system
failures.

For these reasons, Apache Spark offers a high-
performance in-memory data processing engine that can
handle the real-time Analytical workload for continuous
Geotechnical Risk Assessments. Together, they form a robust
and expandable system that can be used to support large-scale
geotechnical monitoring systems across a number of highway
scenarios. The addition of interpretability through SHAP
helps to complement the capability of the real-time processing
because now the outputs of the machine learning models
become clearer to act according to the required situation. It is
critical in the geotechnical risk assessment, where the
decision-makers should know the determinants of the risk so
that effective mitigation strategies can be implemented. Thus,
the SHAP-based explanations will enable a clear breaking
down of feature contributions so that such predictions from
the model by geotechnical engineers can be better interpreted
and trusted, with the result of more informed and timely
decision-making processes. The improvements for practical
applications of the system are great, with a potential for a real-
time system. For example, in the landslide monitoring pilot
project, it will be able to issue real-time alerts in 5-10 seconds
if there are significant changes in soil moisture and seismic
activity. Such data was furnished 30 percent quicker than the
old-fashioned batch processing based on duration aggregation
and analysis of data systems. This reduction in latency is
important in the case of early warning systems because even
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a few seconds of advanced notice may be the difference in
implementation of mitigation measures or evacuation
protocols. Geotechnical risk assessment models must be able
to scale with large infrastructure projects that produce an
enormous amount of data. Therefore, source data, such as
historical geotechnical datasets, real-time sensor data, and
environmental monitoring data streams, may be
complemented by other data.

The integration of TensorFlow with GPU acceleration
offers an efficient and powerful solution for handling these
massive datasets, which significantly improves the
computational speed and enables real-time predictions.
TensorFlow uses a distributed computing framework that
allows parallel processing of many different models across
multiple GPUs. This makes the training of complex machine
learning models like GCNs and LSTM networks much faster.
Its ability to do so will thus ensure minimal latency in its
provision of high-resolution geotechnical risk maps and real-
time predictive updates. This makes the BD-GRAM system
very appropriate for large-scale infrastructure monitoring.

The concept is to spread the computationally expensive
load across several GPUs. This means that TensorFlow will
gain from the full power of modern hardware during the
training of large neural networks. This is particularly relevant
to models such as GCNs and LSTMSs. These models are so
intensive in computation using matrices and update content
with the training process. This is because many parameters
are placed in the process. Each GPU does part of the separate
timestamping in parallel, hence heavily reducing the number
of timestamps - both in training and in real-time predictions.
TensorFlow achieves this by virtue of its own data parallelism
and model parallelism strategies that it has implemented
natively. Data parallelism promises that one will have large
batches of data being split among multiple GPUs, each
working on its piece independently. For instance, model
parallelism enables the breaking up of large models across
GPUs so that different parts of the neural network can be
processed in parallel.

Techniques such as these severely truncate the training
timestamp, and the BD-GRAM system can produce real-time
predictions, updating risk profiles within 3-5 seconds of hew
data arriving during the process. This choice with GPU
acceleration is further supported by the scalability of the
solution, its capability to handle real-time data processing
efficiently at large scale, real-time sensor streams, and
historical geotechnical data that is usually in the order of
millions of records, especially in the context of geotechnical
risk assessments. With such volumes, traditional CPU-based
computing architectures fail to deliver the required results in
time and are thus plagued by delays in risk updates, which
could be highly detrimental in time-sensitive scenarios such
as landslide prediction or seismic event monitoring. With a
deployment of TensorFlow across multiple GPUs, the BD-

198

GRAM system will ensure that computational bottlenecks are
eliminated, and predictions are delivered at nearly real-time
instance sets. Another aspect in which TensorFlow supports
distributed training also enables the use of real-time data
streams in the model, thus enabling the adaptation of the
system to evolving conditions as new data streams are added.

This is particularly important in dynamic geotechnical
systems, in which conditions such as soil moisture, pressure,
and seismic activity are likely to evolve over temporal
instance sets. The distributed environment of TensorFlow is
always taking in new data, and the model parameters are
being updated in real time by methods like mini-batch
gradient descent, whose objective function to be minimized
reads via equation 17,

1 - 2
L(o) = EZ(yi — F(xi; ) 17)

Where L(0) is the loss function, yi represents the
observed data point, f(xi;0) is the prediction from the model
based on the input features xi and parameters 0, and 'm' is the
mini-batch size for the given operations. Using the GPU
acceleration for backpropagation, the equation is optimized so
that when the model intakes new data, its parameters will
adjust quickly. This integration of distributed computing
capabilities by TensorFlow, along with GPU acceleration,
ensures the scaling up of BD-GRAM up to high-resolution
geotechnical risk maps in real-time instance sets. Massive
data sets can now be processed in parallel so that complex
spatial and temporal dependencies can be modeled across vast
infrastructure networks.

Moreover, the model will treat both historical and real-
time inputs without losing its responsiveness, hence keeping
the model on track; the actual process of incorporating new
geotechnical and environmental data streams continues. Next,
we will discuss the proposed model's efficiency in terms of
different metrics compared with existing models under
various scenarios. Model performance was examined using
stratified train-validation-test splits as well as k-fold cross-
validation in order to ensure the robustness of subsetting in
both space and time dimensions.

Statistical significance of performance gains was
measured by a paired test in different folds. Sensitivity
analysis was carried out by pushing on some of the important
geotechnical inputs to see whether the model became
unstable. Ablation experiments were carried out by
selectively cutting out graph, temporal, and physics-based
components in order to quantify how much of each
contributed. Failure cases with sparse sensor coverage and
extreme conditions due to loading conditions were discussed
to find limitations in the model and to facilitate risk-aware
deployment.
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4. Comparative Result Analysis

The experimental setup of this study was geared to test
the performance of the Big Data Geotechnical Risk
Assessment Model (BD-GRAM) in handling large-scale
geotechnical datasets, real-time risk prediction, and
explainable, high-resolution geotechnical risk maps. The
configuration incorporated various data sources that
comprised historical geotechnical data, real-time sensor
inputs, seismic activity records, and environmental data to
simulate complex geotechnical challenges presented by mega
highway infrastructure projects under various highway
scenarios.

Historical geotechnical data were gathered from a
database holding over 1 million records across different
regions, according to soil profiles with parameters that
include soil type, compaction, permeability, and stress-strain
behavior. Real-time sensor data of soil moisture in percent,
pressure in kPa, and ground vibrations in mm/s were fed
continuously into the system at an interval of 5 seconds from
the loT-based sensors. Environmental data consisting of
rainfall intensity in mm/h and temperature in °C were ingested
from real-time weather monitoring stations to capture
dynamic influences on the soil behavior.

The seismic data used were obtained from national
seismic networks and included recorded ground acceleration
(in m/s?) and magnitude (in Richter scale) at a sampling
frequency of 1 Hz. Calibration of the FEA model was done
using the soil samples with the typical Young's modulus in
the range between 10 MPa and 50 MPa, depending on the soil
type and compaction. The LSTM component was trained on
historical temporal sequences over more than 10 years. As
part of assessing the BD-GRAM model experimentally,
NZGD was considered as the primary source of geotechnical
data samples of historical and environmental nature. The
amount of data in the databases found in the NZGD is
voluminous and includes data related to soil profiles, seismic
activities, and environmental conditions of several regions
within New Zealand, particularly relevant to large-scale
infrastructure projects within seismic regions.

The data set provides specific soil borehole logs
containing details regarding the composition, density,
permeability, and stress-strain behavior at various depths. In
addition, records were obtained from the GeoNet seismic
network, which comprised ground acceleration values and
earthquake magnitudes. Environmental parameters were
acquired from weather stations integrated into the NZGD,
including rainfall intensity and temperature. The dataset spans
more than 10 years, and the various geotechnical conditions
across several soil types include alluvial, volcanic, and marine
deposits and provide a rich source of historical geotechnical
data with real-time inputs of seismic and environmental data
that may be sent to feed this model. Such a wide variety of
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scope, geographic, and temporal makes this highly suitable
for validation in terms of testing the model's ability to handle
diverse geotechnical challenges in dynamic environments.
We deploy the experiment environment on a distributed
computing cluster with 8 NVIDIA Tesla V100 GPUs
equipped with 32GB of memory each, aiming to effectively
and scalably train GCNs and LSTMs on large amounts of
data. TensorFlow's distributed architecture was used to
parallelize model training across GPUs.

Thus, the timestamp of training-10 hours for 1 million
records is reduced approximately to 1.5 hours. Apache Kafka
is tuned to capture real-time sensor data, so that throughput
reaches 100,000 events per second; thus, not a single event is
lost in transit. Apache Spark processed real-time data in
micro-batches, processing 1000 records per batch and
updating geotechnical risk profiles every 5 seconds. To
challenge its robustness, a synthetic landslide scenario has
been envisaged for simulation, where the amount of soil
moisture reaches 35% after the heavy rainfall event, which
causes a change in the risk profile.

SHAP achieved an explanation of risk predictions by
breaking down the factors, such as soil type, with an average
contribution of 35%, and seismic data with a contribution of
55% of the overall risk score, into considerable detail during
earthquake events. This output comprised real-time risk
alerts, high-resolution risk maps with a spatial resolution of
100m x 100m, and predictive models that lowered false
positives to 18% and false negatives to 22% as compared to
traditional methods. This showed the scalability, accuracy,
and interpretability of BD-GRAM in real-world large-scale
infrastructure projects of various highway scenarios.

The results of the developed Big Data Geotechnical Risk
Assessment Model, BD-GRAM, are presented in this paper
for numerous geotechnical challenges by utilising data
samples from the New Zealand Geotechnical Database,
NZGD. Experiments were conducted for predicting
geotechnical risks relating to soil stability risk, seismic risk,
and landslide risk; the predictions by BD-GRAM are
compared with those of three existing models, as in [4, 8, 18].
Performance comparison metrics include prediction accuracy,
precision, recall, false positives, and false negatives for the
geotechnical scenario.

Table 2 is used for the comparison of the accuracy of the
prediction of soil settlement due to heavy rainfall. The BD-
GRAM model is the solution using the hybrid approach of
combining LSTM and FEA for finding the most accurate
method. Other reasons for it being the most accurate method
are its combination of real-time data with physical simulation
for making decisions. The models are tested on the soil
profiles with variable moisture conditions ranging from
relatively dry 5% to nearly saturated 35%.
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Table 2. Accuracy of soil settlement prediction after rainfall

Soil Moisture BD-GRAM Accuracy | Method [4] Accuracy | Method [8] Accuracy Method [18]
(%) (%) (%) (%) Accuracy (%)
5 95.2 88.5 84.3 80.1
15 93.4 85.7 82.1 78.5
25 91.7 82.9 80.4 76.9
35 90.3 81.2 78.8 75.2
Accuracy of Soil Settlement Prediction After Rainfall
——=BD-GRAM Accuracy (%) = Method [4] Accuracy (%)
Method [8] Accuracy (%) == Method [18] Accuracy (%)
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Fig. 3 Accuracy of soil settlement prediction after rainfall

BD-GRAM invariably outperformed methods [4, 8, 18]
for all moisture levels, but is especially critical at higher
moisture contents, where real-time adaptation towards rainfall
and soil changes was vital. As presented in Table 3, the
precision and recall of the landslide prediction risk by BD-

GRAM compared to other models at varying seismic
intensities were assessed. The BD-GRAM model was able to
have a better balance between precision and recall due to its
ability to integrate seismic activity data with soil behavior
models.

Table 3. Precision and recall for landslide risk prediction

Seismic BD- BD- Method Method Method Method Method Method
. GRAM GRAM [4] [4] [8] [8] [18] [18]
Intensity . . ey o
(Richter) Precision Recall Precision Recall Precision Recall Precision Recall
(%) (%) (%) (%) (%) (%) (%0) (%0)
4.0 92.5 90.1 88.3 84.6 85.7 80.2 80.4 76.8
5.0 91.2 88.7 87.1 83.5 83.9 78.9 78.6 745
6.0 89.8 86.5 85.5 81.4 82.4 77.1 76.7 72.8

The BD-GRAM model achieved better precision and
recall for landslide risk prediction; the results were true in
cases of high seismic intensity, where real-time seismic data
and geotechnical conditions played a crucial role for accurate
landslide risk detection. Table 4 compares the false positive
and false negative rates for soil instability prediction during
an earthquake. False positive and false negative rates for
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predicting soil instability during earthquakes. For the false
positive and false negative rates of BD/Soil-G, static models,
and BD-GRAM are compared, it is seen that BD-GRAM had
the least false positive and false negative rates, indicating the
models' better effectiveness at correct identification of
unstable and stable zones.
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Table 4. False positive and false negative rates for earthquake-induced soil instability levels

BD- | Method | Method | Method | Method | ™Method | Method

I BD-GRAM GRAM [18] [18]

Seismic iy [4] False | [4] False | [8] False | [8] False

. False Positives False L . L . False False

Magnitude o . Positives | Negatives | Positives | Negatives " .
(%) Negatives (%) (%) (%) (%) Positives | Negatives

(%) (%) (%)

5.0 4.2 3.8 8.6 9.3 10.4 11.1 12.5 13.6

6.0 5.1 4.4 9.8 10.7 11.7 12.8 13.8 14.9

7.0 6.3 5.2 11.2 12.4 13.5 14.3 15.6 16.8

BD-GRAM combined the real-time seismic data with
FEA simulations that allow the system to make accurate soil
instability predictions during an earthquake, and there are
considerable reductions in false positives and negatives
compared to other methods. A significant concern for the
evaluation of the efficiency of this model was related to the

Table 5. Real-time processing latency for risk predictions

latency of real-time data processing. The BD-GRAM maodel
involved the maximum usage of Apache Kafka and Apache
Spark for real-time ingestion and processing. One such model
showed the lowest latency for geotechnical risk profiles to be
updated immediately after taking input in real time for seismic
or soil moisture data sets.

BD-GRAM Latency | Method [4] Latency | Method [8] Latency | Method [18] Latency
Data Input Type (seconds) (seconds) (seconds) (seconds)
Seismic Data
(Magnitude 6) 4.5 9.1 11.3 13.6
Soil Moisture Data
(350) 3.7 8.4 10.2 12.7
Rainfall Data (25 39 88 105 129
mm/h)
False Positive and False Negative Rates for Earthquake-Induced Soil
Instability Levels
—BD-GRAM False Positives (%) =——BD-GRAM False Negatives (%)
== Method [4] False Positives (%) ===Method [4] False Negatives (%)
- Method [8] False Positives (%) Method [8] False Negatives (%)
Method [18] False Positives (%) Method [18] False Negatives (%)
18
16
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Fig. 4 False positive and false negative rates for earthquake-induced soil instability levels
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The time frame was within 4-5 seconds for nearly
instantaneous updates in BD-GRAM's real-time architecture,
as opposed to other approaches, which applied the batch
processing method and consequently gave rise to the higher
latency levels. The following table compares the contribution

of different types of input features associated with risk
predictions: soil type, seismic data, and moisture as quantified
by SHAP values. Outputs of BD-GRAM had the most
understandable influence when linked to risk drivers, wherein
the engineers could place their trust in the modeling process.

Table 6. Interpretability analysis using SHAP values for the process

Feature BD-GRAM SHAP Method [4] Method [8] Method [18]
Contribution (%) Contribution (%) | Contribution (%) | Contribution (%)
Soil Type (Alluvial) 35.6 28.4 27.5 26.2
Seismic Activity (Richter) 55.2 45.8 43.7 40.9
Soil Moisture (30%) 9.2 7.3 6.8 6.1

The BD-GRAM model with SHAP incorporated into its
framework of explainability presented clearer and more
interpretable risk explanations compared to methods [4, 8,
18], which helped geotechnical engineers understand the most
influential risk factors. Training timestamp and scalability are

measured in a dataset of 1 million geotechnical records. BD-
GRAM was optimized with TensorFlow along with
acceleration through the GPU. In doing so, it presented BD-
GRAM at very high levels of training efficiency.

Interpretability Analysis Using SHAP Values

50

W TN
= b

SHAP Contribution (%)
[} )
[w)

10+

Soil Type (Alluvial)

Seismic Activity (Richter)

mmm BD-GRAM SHAP Contribution (%)
m Method [4] Contribution (%)

mmm Method [8] Contribution (%)

= Method [ 18] Contribution (%)

Soil Moisture (30%)

Fig. 5 Interpretability analysis using SHAP values for the process

Table 7. Training timestamp and scalability on GPUs

Dataset Size BD-GRAM Training Method [4] Training Method [8] Training Method [18] Training
(Records) timestamp (hours) timestamp (hours) timestamp (hours) timestamp (hours)
1 Million 15 4.2 5.6 6.8

500,000 0.9 2.7 3.5 4.4
100,000 0.3 1.2 1.8 2.3
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Moreover, due to the scalability with TensorFlow and
GPU acceleration, training times are reduced significantly
compared to other methods in dealing with large datasets,
which is very appropriate for real-time geotechnical risk
assessment in large-scale projects with various highway
scenarios. Results. The validation is on both the efficiency of
BD-GRAM and its capability to provide geotechnical risk
assessment, which will be accurate, real-time, and
interpretable in comparison with current methods in terms of
their precision, latency, and scalability. Advanced machine
learning techniques, real-time data processing, and
explainable Al fueled the ability of BD-GRAM to give more
reliable and actionable insights concerning various highway
scenarios in managing geotechnical risks in infrastructure
projects. We then discuss its practical iterative use case,
which will help readers better understand the whole process
in detail.

5. Practical Use Case Scenario Analysis

We discuss an example evaluation of a performance by
the proposed BD-GRAM system in a very large highway
construction project conducted under a seismically active
area. Inputs include sensor readings, historical soil profiles,
and records of seismic activity, as well as various types of
environmental data streams. Soil profiles are measured at
different locations over the project area with soil type,
moisture content, and compaction variations. Different data
on seismic activity are monitored at intervals to capture the
dynamic movement of the ground. However, the environment
is captured based on rainfall intensity and temperature, among
others, and such environmental changes translate to changes
in the soil conditions. The following is organized to present

performance in multiple processes: Spatiotemporal Data
Fusion, Hybrid Physics-Based and Data-Driven Models,
Real-Time Processing, and Scalability, resulting in final
outputs on risk predictions. The GCN is utilized in the
introduction stage to combine geotechnical data across spatial
and time boundaries. The GCN processes soil profiles,
seismic data, and real-time moisture reading measurements to
predict risk across those spatial sites. Every site is represented
as a node in a graph, and the GCN captures the relationship
between these nodes by taking into consideration both the
spatial proximity of the said nodes and the temporal evolution
of the risk. Table 8 is the result of risk prediction for the
different spatial areas. The table shows varying soil moisture
and seismic intensities with different scenarios. Locations Al,
B2, C3, and D4 are selected from the Wellington region in
New Zealand. The area is quite seismically active and, due to
its complex geotechnical conditions, varies from other areas
because of its different types of soils. Location Al: Situated
close to the Wellington Fault, where soils are dominantly
alluvial that liquefy periodically during earthquakes. Location
B2: The south shore side by the suburb of Island Bay, with
marine deposits/volcanic soils highly prone to rainfall-
induced slides. Location C3 is located in Kelburn: it is a hilly
region where steep slopes and soils occur, so it is particularly
vulnerable to both slope failures and seismic instability.
Finally, location D4 is located within the Lower Hutt Valley,
an area bearing large-scale urban development over soft clays
and silts, which poses challenges involving soil settlement
and amplification of seismic waves. These were chosen
because geotechnical hazards differed in nature, so it would
be beneficial to test the predictive accuracy and scalability of
the BD-GRAM model within urban and natural
environments.

Table 8. Spatiotemporal risk prediction using GCN

L ocation Spil Seism.ic Ri_sk. Ri_sk_ Ri_sk_ Ri_sk_
ID Moisture Intensity Prediction Prediction Prediction Prediction
(%) (Richter) (BD-GRAM) (Method [4]) (Method [8]) (Method [18])
Al 15 4.0 0.82 0.75 0.71 0.69
B2 25 5.0 0.87 0.79 0.76 0.73
C3 30 6.0 0.91 0.84 0.80 0.77
D4 35 5.5 0.88 0.81 0.78 0.74

GCN-based risk predictions always tend to be higher
compared to the rest because BD-GRAM is able to predict
regions with a good chance of seismic activity and soil
moisture content. The next step is utilizing the hybrid model
using the LSTM networks to find temporal dependencies, and
then FEA to simulate the physical properties of the
geotechnical.

The model is trained from history as well as in real time,
based on which it predicts soil settlement under various
environmental conditions. SHAP-Informed explainability has
been used to interpret model predictions, determining
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dominant geotechnical drivers affecting the degree of risk.
The explanations were tested using scenario-based tests,
which represented real-life decision situations, e.g., slope
reinforcement prioritization and early-warning alerts. The
evaluation based on the domain experts' feedback
demonstrated that the feature-level explanations enhanced
trust and facilitated focused risk mitigation planning. This
loop between humans will make sure that BD-GRAM is a
decision-support system and not an opaque predictor.

Table 9 compares the obtained values for soil settlement
after intense rainfall in other regions with the other methods.



Yogesh P Kherde et al. / 1JCE, 13(2), 186-207, 2026

Table 9. Predicted soil settlement using LSTM + FEA hybrid model

Location Rainfall Predicted Predicted Predicted Predicted
D (mm/h) Settlement (BD- Settlement Settlement Settlement
GRAM) (Method [4]) (Method [8]) (Method [18])
Al 20 51cm 7.3cm 6.9 cm 7.8 cm
B2 25 5.6 cm 7.9 cm 7.4 cm 8.2cm
C3 30 6.0 cm 8.4 cm 8.1cm 9.0 cm
D4 35 6.3cm 8.8 cm 8.6 cm 9.3cm

The hybrid LSTM and FEA model shows a 25%
improvement in predictive accuracy over purely data-driven
or physical models, with BD-GRAM producing more
accurate predictions for soil settlement after rainfall,
particularly in regions with high moisture content. In the real-
time data processing phase, Apache Kafka and Apache Spark

are utilized to ingest and analyze real-time sensor data, while
SHAP values are calculated to provide explanations for risk
predictions. The following table (Table 10) shows the real-
time risk updates generated from seismic and moisture data,
along with the SHAP values explaining the contribution of
each feature to the risk prediction.

Table 10. Real-time risk prediction and SHAP explanations

_ Location Seismic S_oil Ri_sk_ SH_AP _ SH_AP _
Timestamp ID Data Moisture Prediction Contribution Contribution
(Richter) (%) (BD-GRAM) (Seismic) (Moisture)
12:01 PM Al 4.5 22 0.85 0.65 0.35
12:03 PM B2 5.0 28 0.88 0.70 0.30
12:05 PM C3 5.5 33 0.91 0.72 0.28
12:07 PM D4 6.0 36 0.93 0.75 0.25

This hybrid of LSTM and FEA model results in 25%
more accurate prediction as compared to purely data-driven
models or physical models, whereas the BD-GRAM
prediction results are more accurate for soil settlement due to
rainfall, especially when the moisture content is at its
maximum. In the process of real-time computation, Apache
Kafka and Apache Spark are used for ingesting and analyzing

real sensor data in real-time, and SHAP values were
computed in order to provide explanations for risk
predictions. Table 10 shows real-time risk updates generated
by seismic and moisture data samples. Also, SHAP values
along with the contribution of each feature to predict the risk
are presented.

Table 11. Training timestamp with TensorFlow and GPUs

Dataset Size BD-GRAM Training Method [4] Training Method [8] Training | Method [18] Training
(Records) timestamp (hours) timestamp (hours) timestamp (hours) timestamp (hours)
100,000 0.4 1.2 1.7 2.3
500,000 0.8 2.6 3.5 4.1
1 Million 1.3 4.0 5.1 6.5

These training times are much less for BD-GRAM using
distributed computing across multiple GPUs, notably when
one has larger datasets, thereby making it more scalable for
real-time geotechnical risk prediction. The outputs of BD-
GRAM include detailed high-resolution geotechnical risk

maps and predicted risk bounds in real-time. Accuracy and
precision are determined through comparison with other
models. In summary, Table 12 presents the final risk scores
and uncertainty bounds for a number of regions:

Table 12. Final risk scores and uncertainty bounds

Fl_nal Uncertainty Fl_nal Uncertaint Fl_nal Uncertaint Fl_nal Uncertaint
. Risk Risk Risk Risk
Locati Score Bound Score y Bound Score y Bound Score y Bound
onID (BD- (Method (Method (Method
(BD- GRAM) (Method [4]) (Method [8]) (Method [18])
GRAM) [4]) [8]) [18])
Al 0.85 +0.05 0.75 +0.10 0.72 +0.12 0.68 +0.15
B2 0.88 +0.04 0.79 +0.08 0.76 +0.11 0.73 +0.14
C3 0.92 +0.03 0.84 +0.07 0.81 +0.10 0.77 +0.13
D4 0.95 +0.02 0.87 +0.06 0.83 +0.09 0.80 +0.12
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The final risk scores obtained through BD-GRAM are
more accurate, along with tighter uncertainty bounds
compared to the other methods, and thus demonstrated to be
robust in the context of geotechnical risk prediction and
mitigation strategy. These tables demonstrate the efficacy of
BD-GRAM to handle large-scale geotechnical risk
assessment scenarios compared to existing methods based on
various aspects of accuracy, scalability, real-time
performance, and explainability over multiple scenarios.

Variations in geological and climatic conditions under
the influence of domain-adapted inputs were also used in
evaluating transferability by testing the trained frameworks.
It was found that the performance has been regular with a
small amount of recalibration. Scalability measurements
show that distributed processing will provide almost a linear
performance improvement, thus making it feasible to conduct
real-time inferences in large highway networks. These
findings confirm that BD-GRAM can be deployed more
effectively outside of a single geographic area and can be
scaled to larger volumes of data with an ever-increasing data-
based size without excessively high computational expense.

6. Conclusion and Future Scopes

The Big Data Geotechnical Risk Assessment Model
(BD-GRAM) would illustrate the notable advancements in
geotechnical risk prediction and would present a strong yet
scalable solution to big datasets and data streams in real-time
data regarding various highway scenarios in complex
infrastructure projects. These included Spatiotemporal Data
Fusion using GCN and Hybrid Physics-Based and Data-
Driven Models utilizing LSTM networks and FEA, and
frameworks for real-time data processing, such as Apache
Kafka and Apache Spark. BD-GRAM demonstrated superior
performance in terms of predictive ability compared with
traditional methods. The settlement of soil is predicted with
an accuracy of 25% more than that of the models with error
margins that reduce from the existing 8 cm to 5 cm, as shown
in [4, 8, 18]. The landslide risk prediction accuracy and
sensitivity, too, improved considerably with BD-GRAM to be
92.5% for precision and 90.1% for recall during moderate
seismic activity, Richter 4.0, which was more than that in
methods [4, 8, 18] at different margins of up to 12%. At the
same time, the rate of false positives and false negatives for
earthquake-induced soil instability dropped to 4.2% and
3.8%, respectively, illustrating the effective decrease in errors
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