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Abstract - Mega highway projects are very sensitive to a number of geotechnical risks in the form of soil instability, seismic 

events, and environmental change, leading to costly failures. The current risk assessment methods are not capable of integrating 

the range of datasets—spatial data, temporal data, and real-time streams of data—and thus lack good levels of predictability, 

combined with a lack of response time. Thus, with a view to addressing these barriers, we introduce the new concept of Big Data 

Geotechnical Risk Assessment Model (BD-GRAM), which applies big data analytics and advanced machine learning algorithms 

in order to better predict and mitigate geotechnical risks for different scenarios. BD-GRAM combines various methods adapted 

to geotechnical data samples. The Graph Convolutional Networks (GCNs) are utilized for spatial and temporal data fusion, 

where complex spatial dependencies and temporal variations in soil properties, as well as samples of seismic data, are 

considered. GCNs, with the enhancement of attention mechanisms, have the ability to increase accuracy by as much as 20% 

compared with the conventional methods. A hybrid model by combining LSTMs and FEA, misleading synergistic use of physical 

laws, as well as temporal patterns of data pertaining to predictive accuracy, with an improvement of 25%. Near real-time 

processing on Apache Kafka & Apache Spark enables near real-time continuous monitoring of risk with alerting on. SHAP 

(Shapley Additive Explanations) ensures interpretability of the model outputs, as well as transparency of the factors driving the 

risk predictions. Lastly, the system is scalable using GPU-accelerated TensorFlow to Run Masses of datasets & samples. This 

fully integrated approach is optimized in this way to further enhance predictive accuracy and reduce false-positives and false-

negatives, enhancing the speed and response of geotechnical risk assessment responses in real time. BD-GRAM represents an 

effective way to meet the early identification and mitigation of geotechnical challenges in a scalable data-driven manner for 

improved resilience and safety of large-scale infrastructures in any given highway scenario. 

Keywords - Big Data, Geotechnical Risk, Graph Convolutional Networks, Finite Element Analysis, Real-Time Monitoring. 
 

1. Introduction 
Mega highway infrastructure projects are inherently 

vulnerable to substantial geotechnical risk because of their 

enormous spatial extent, long service life, and sensitivity to 

the state of the subsurface environment. The performance and 

safety of such projects are drastically affected by the 

mechanical and environmental behavior of ground and rock 

systems, which are frequently characterized by high levels of 

uncertainty and spatial variability [1-3]. Factors such as the 

differential settlement, ground motion induced by earthquake, 

fluctuations in groundwater levels, and instability of slopes 

can have a significant impact on the structural integrity and 

long-term serviceability. Consequently, good geotechnical 

risk assessment remains one of the most difficult issues in the 

planning, construction, and operation of mega highway 

corridors. Conventional risk assessment approaches in the 

geotechnical field mostly depend on deterministic or 

probabilistic techniques through localised geotechnical 

investigation and historical records. While such techniques 

have been able to capture relatively static conditions, they are 

limited in temporal ability to capture complex interactions 

between spatially distributed and temporally evolving 

variables [4-6]. In particular, traditional methods have 

problems in processing large-scale heterogeneous data 

originating from multiple sources, such as in-situ sensors, 

environmental monitoring systems, and seismic networks. As 
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a result, predicting risks is often simplified, not reactive 

enough, or inadequate for the prediction of rapidly changing 

geotechnical hazards in dynamic environmental conditions. 

Recent progress in big data analytics and machine 

learning has brought new opportunities for solving these 

challenges. Techniques like deep learning, data fusion, and 

high-performance computer-processing capability enable the 

analysis of massive geotechnical and environmental datasets, 

which provide better predictive possibilities. However, some 

limits of currently available data-driven models: the first one 

concerns the low capacity to render potential complex spatial 

dependencies that exist in geotechnical systems, and the 

second one regards the weak coupling with physics-based 

models, which limits their reliability and interpretability. 

And, still, many of these approaches are computationally 

intensive and are not ideal for real-time risk assessment. This 

lack of an integrated, scalable, and interpretable framework 

that can fuse the spatiotemporal data without physical 

modeling is an identified research gap in geotechnical risk 

analysis for mega highway undertaking projects. To address 

this gap, this study, in an effort to recommend an approach for 

managing geotechnical risk by using advanced machine 

learning, physics-based modeling, and real-time disaster data 

processing, has proposed a Big Data-driven Geotechnical 

Risk Assessment Model (BD-GRAM). The framework 

utilizes Graph Convolutional Networks (GCNs) to model 

spatial relationship between geotechnical entities, a Long 

Short-Term Memory (LSTM) network to capture time 

dependency relations, and Finite Element Analysis (FEA) to 

include fundamental physical behavior of soil and structure 

systems. By modeling geotechnical information in the form 

of graph-structure data, BD-GRAM is successful in capturing 

the complex spatial interactions that are unexpected by other 

interpolation methods. Attention mechanisms in the GCN 

architecture also help further to pick out important risk zones 

by prioritizing locations and time intervals. The hybrid 

combination of LSTM with FEA closes the gap between 

purely data and a physics-based approach. While LSTM 

models can learn changing patterns using historical and real-

time geotechnical data, the FEA component can provide 

deterministic information about stress distribution, 

deformation, and settlement behavior under different load and 

environmental conditions. In addition to this, real-time data 

ingestion and processing with Apache Kafka and Apache 

Spark pave the way for continuous monitoring and quick risk 

evaluation, which is a key requirement for reducing the 

impact of sudden risks, such as landslides or earthquakes. The 

incorporation of explainable artificial intelligence techniques, 

such as SHAP, further promotes model transparency and 

enables geotechnical engineers to make informed decisions. 

Based on the identified research gap, the present study 

focuses on the following capability: The capability of 

integrated big data and deep learning frameworks in modeling 

complex geotechnical risks. effectiveness, a hybrid physics-

based and data-driven approach in improving risk prediction 

accuracy. and the Feasibility of real-time, interpretable risk 

assessment of mega highway infrastructure. In summary, BD-

GRAM provides an integrated and scalable, big data 

analytics-based solution to geotechnical risk assessment 

across a deep learning and physical modeling model in a real-

time platform. The proposed approach is designed to address 

the shortcomings of current methodologies and to help make 

mega-highway infrastructure systems safer and more 

resilient. 

1.1. Motivation and Contribution 

This research is motivated by the pressing need for more 

accurate and scalable geotechnical risk assessment methods 

to be applied in real time to large infrastructure projects, 

specifically for different highway scenarios. The available 

approaches are relatively effective for localized or small-scale 

projects, but they cannot address the complexity and 

dynamism of mega highway projects where multiple 

geotechnical factors interact over vast spatial areas and 

extended timestamp durations. The typical geotechnical risk 

models thus rely on static data and deterministic analyses that 

do not capture the relative interaction between diversified 

environmental, seismic, and soil conditions and the temporal 

evolution of risks. However, great opportunities emerge from 

the increased availability of real-time data from IoT sensors 

and environmental monitoring systems that are much more 

challenging for the current models to deal with. Therefore, 

there is a key requirement for a robust data-driven approach 

that combines real-time monitoring, machine learning, and 

physical modeling to enhance predictive accuracy so that 

associated risks are mitigated in time in mega projects of 

infrastructure involved in highway scenarios. 

The applied aspects of this research are a Big Data 

Geotechnical Risk Assessment Model (BD-GRAM), which 

presents a new paradigm for geotechnical risk management. 

The proposed model unifies at least three state-of-the-art 

techniques: Graph Convolutional Networks (GCNs) to fuse 

spatiotemporal data at the fusion level, a hybrid Long Short-

Term Memory (LSTM) and Finite Element Analysis (FEA) 

structure to integrate information from both data-driven and 

physics-based methods, and Apache Kafka and Apache Spark 

architectures to represent real-time data processing. Each of 

these is targeted specifically for geotechnical risk assessment 

on very large projects-for example, to deal with spatial and 

temporal dependencies, integrate data streams in real time, 

and present interpretable risk predictions that lead directly to 

actionable decisions. BD-GRAM also improves the 

transparency and trustworthiness of the prediction, so that 

geotechnical engineers may better make decisions to mitigate 

risk. Scalability of the model, made possible by distributed 

computing frameworks like TensorFlow, allows it to process 

such enormous datasets, typical of mega projects, and 

provides the model as a robust, practical tool in modern 

infrastructure projects for different highway scenarios. 
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2. Review of Existing Models for Optimization 

of Highway Construction Scenarios 
A huge number of natural hazards in geotechnical 

engineering can be predicted with a precise amount of risk 

mitigation regarding landslides, soil instability, and seismic 

activity, as it ensures the safety and longevity of infrastructure 

projects in various highway scenarios. In recent years, 

research has focused on applying the most advanced machine 

learning techniques and probabilistic models, plus 

geotechnical simulations, to achieve higher predictive 

accuracy and provide more actionable insights across 

different scenarios. In this review of 40 papers, some insights 

are gained into the current state of methodologies of 

geotechnical risk assessment: key findings, strengths, and 

limitations across a wide range of studies for different 

scenarios. A clear trend that is apparent in the literature is that 

machine learning models are increasingly being utilized for 

the prediction of risk and early warning systems. Take a case 

on fuzzy-based approaches to machine learning demonstrated 

by Zhou et al. [1], and it effectively established early warning 

systems on a soft rock slope instability, proving that it 

improves the identification of risk by 15%. Moreover, CNNs 

have been utilized for disaster prediction in complex slope 

environments, for example, Yin et al. [27] reported an 

improvement in accuracy of 20% with respect to traditional 

techniques. The models are good at processing large high-

dimensional datasets and identifying patterns that may not be 

easily found by conventional geotechnical methods.  

However, most of the effectiveness is constrained by the 

availability and quality of the data sets, with many machine 

learning approaches requiring extensive, high-resolution data 

sets in order to perform effectively. Most studies have this 

limitation in that they rely on data availability; uncertainty in 

the collection of data usually reduces the accuracy of 

prediction or increases false positives and negatives. 

Probabilistic models are increasingly being used in evaluating 

geotechnical risks with uncertain inputs beyond machine 

learning. For instance, Bayesian networks have been applied 

by Benachenhou et al. [3], who have been employed in 

decision improvement regarding geotechnical risk evaluation. 

Such models will predict better, with quantification of 

uncertainty and having prior knowledge to make more robust 

inferences in sparse or partially incomplete data.  

However, the kinds of computational complexities and 

extensive calibration to be achieved are probably a bias that 

needs to be further considered and developed. Recently, 

several other research studies have focused on uncertainty 

reduction strategies in site characterization and risk 

assessment. Some examples of such studies include those 

carried out by Sivakumar Babu [7] and Oluwatuyi et al. [8]. 

These studies focus on reducing the uncertainty to enhance 

the reliability of the predictions of risks, especially for those 

categorized as risky, like landslide-prone regions. Although 

effective, these methods often require comprehensive site-

specific data, which usually makes them less applicable in 

regions where such data collection is difficult. Various studies 

have also exploited the use of remote sensing and geospatial 

technologies in monitoring risk and hazard. Macciotta and 

Hendry [2] applied remote sensing techniques to landslide 

monitoring in Western Canada, achieving a 20% 

improvement in detection accuracy. Al-Rawabdeh et al. [19] 

incorporated the Open Street Map (OSM) data and Weighted 

Linear Combination (WLC) techniques into landslide hazard 

modeling, which enhanced the accurate identification of 

hazardous zones by 18%. The remote sensing technologies 

offer the possibility of continuous monitoring over large 

areas, making them good sources of data for risk assessment.  

However, these methods are limited by their inability to 

capture subsurface conditions in most cases; this is critical for 

a comprehensive geotechnical risk evaluation.  

Also, Bozkurt and Akbas [12] applied finite element analysis 

in order to mitigate risks posed by deep excavations with a 

10% reduction in excavation-related failures. Silveira et al. 

[6] applied FEA, along with quantitative risk analysis, to 

highway rock slopes and achieved a 22% decrease in false 

positives in risk assessment.  

The FEA is a powerful tool to be used in simulating 

geotechnical behavior under varied load conditions for a 

detailed analysis of the soil-structure interaction. One of the 

most significant limitations of FEA is its high computational 

cost, especially in large-scale infrastructure projects. Besides, 

the FEA models are highly sensitive to the input parameters, 

such as soil properties and boundary conditions, requiring 

them to be perfectly calibrated and validated against real-

world samples of data. One potential way of overcoming such 

restrictions is the hybrid model that brings together data-

driven techniques with physics-based simulations.  

Das and Singh [5] applied such a hybrid technique for the 

stability of cut slope along the national highway in India, 

whereas Liu et al. [29] used a similar technique in assessing 

large deformation risks in the loess tunnel to enhance the 

accuracy of predictions by as much as 16%. These hybrid 

models take advantage of the best features of machine 

learning and FEA, considering more accurate forecasting 

capabilities with lower computational costs. However, several 

issues remain regarding effective integration, as the physics-

based parts of the model should be applicable across a broad 

range of geotechnical conditions. Considering sustainability 

and resilience, many studies have understood how these 

concepts might be incorporated into geotechnical risk 

assessment. Reddy et al. [14] introduced a new paradigm 

concerning the sustainability of geotechnical solutions; 

resilience metrics should be incorporated into geotechnical 

designs. This is particularly valid in the contexts mentioned 

above about environmental volatility brought on by climate 

change. Kumar and Parihar [26] also discussed the 
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sustainability of waste foundry sand in geotechnical 

applications, to establish the possibility of decreasing material 

waste generated in any project and enhancing its 

sustainability. These methods are a few important strides 

toward more sustainable geotechnical engineering, but still 

lack practical implementation rules and standards to be 

adopted in real projects for various scenarios in highways. 

Table 1. Empirical review of existing methods 

Reference Method Used Findings Results Limitations 

[1] 
Fuzzy-Based Machine 

Learning 

Applied fuzzy logic for 

early warning in soft rock 

slopes. 

Improved risk 

identification by 15%. 

Limited applicability to 

different rock types. 

[2] Remote Sensing 

Used remote sensing to 

monitor landslides in 

Western Canada. 

Enhanced detection 

accuracy by 20%. 

Inability to assess deep 

subsurface movements. 

[3] Bayesian Networks 
Applied Bayesian networks 

for highway viaduct risk. 

Improved decision-

making accuracy by 

18%. 

Requires extensive data 

for reliable results. 

[4] 
Debris Flow Risk 

Assessment 

Assessed debris flow risk 

along a major highway. 

Identified high-risk 

zones with 92% 

accuracy. 

High computational 

complexity for large 

datasets. 

[5] Geotechnical Insights 
Analyzed cut slopes in a 

national highway in India. 

Provided practical 

recommendations to 

reduce slope failures. 

Limited to slope 

stability; lacks real-time 

monitoring. 

[6] Rockfall Risk Analysis 

Developed a quantitative 

system for highway rock 

slopes. 

Reduced false positives 

in rockfall risk by 22%. 

Lack of real-time 

adaptation for changing 

conditions. 

[7] 
Reliability and Risk 

Analysis 

Analyzed geotechnical 

risks using probabilistic 

methods. 

Increased confidence in 

failure probability 

assessments. 

High uncertainty in 

areas with sparse data 

samples. 

[8] Uncertainty Reduction 

Proposed strategies for 

uncertainty reduction in site 

characterization. 

Reduced uncertainty by 

12% in risk assessment. 

Requires high-quality 

baseline data for 

effective 

implementation. 

[9] 
Earthquake Damage 

Assessment 

Modeled earthquake 

damage for highway 

bridges. 

Predicted structural 

failure with 87% 

accuracy. 

Inability to model soil-

structure interactions in 

detail. 

[10] 
Semi-Quantitative Risk 

Assessment 

Developed risk assessment 

methodology for tunnel 

design. 

Enhanced tunnel failure 

predictions by 18%. 

Limited predictive 

power for long-term 

tunnel performance. 

[11] PS-InSAR Risk Analysis 

Applied geotechnical 

characterization and PS-

InSAR for landslide risk. 

Improved landslide 

prediction accuracy by 

25%. 

High cost and 

complexity of PS-

InSAR data processing. 

[12] Finite Element Analysis 
Used FEA for deep 

excavation risk analysis. 

Achieved a reduction in 

excavation-related 

failures by 10%. 

High computational 

resources are required 

for large excavations. 

[13] 
Seismic Response 

Analysis 

Assessed the impact of soil 

variability on bridge 

seismic response. 

Improved understanding 

of seismic-induced 

bridge damage. 

Limited to specific soil 

conditions in the study 

region. 
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[14] 

Sustainability in 

Geotechnical 

Engineering 

Proposed sustainability and 

resilience in geotechnical 

design. 

Identified key 

sustainability metrics 

for geotechnical 

projects for different 

highway scenarios. 

Lack of practical 

implementation 

guidelines. 

[15] 
Rock Instability 

Quantitative Risk 

Assessed rock instability 

risks in Türkiye. 

Provided a quantitative 

assessment reducing 

risk by 15%. 

Limited scope in 

handling dynamically 

changing conditions. 

[16] 
Geotechnical 

Characterization 

Developed 2D soil cross-

sections for risk analysis in 

the Kashmir Basin. 

Enhanced model 

precision for risk 

profiling by 10%. 

Limited application in 

areas with limited 

borehole data samples. 

[17] Slope Assessment 

Integrated change detection 

with slope risk 

management. 

Reduced false negatives 

in slope failures by 

20%. 

High data dependency 

for change detection 

accuracy. 

[18] 

Geomatics-Based 

Highway Route 

Selection 

Applied geomatics for 

optimal highway route 

selection. 

Reduced project costs 

by 12% with optimized 

routes. 

Limited flexibility in 

rapidly changing 

environments. 

[19] 
Landslide Hazard 

Modeling 

Modeled landslide hazards 

along a highway using 

WLC. 

Improved landslide 

hazard zone 

identification by 18%. 

High sensitivity to 

weight allocation in 

WLC. 

[20] 
Earthquake Territory 

Assessment 

Analyzed geotechnical 

findings from a major 

earthquake in Türkiye. 

Identified high-risk 

zones for future 

earthquakes. 

Lack of predictive 

power for subsequent 

events. 

[21] 
GIS-Based Disaster Risk 

Assessment 

Used GIS for post-

earthquake disaster risk in 

China. 

Enhanced disaster risk 

visualization by 22%. 

Requires extensive GIS 

data processing 

capabilities. 

[22] Foundry Sand Suitability 
Quantified geotechnical 

suitability of waste sands. 

Identified potential for 

sustainable material use. 

Limited to specific 

waste types and 

compositions. 

[23] Stability Analysis 

Conducted stability 

analysis for rock slopes in 

Turkey. 

Increased slope stability 

predictions by 14%. 

Limited integration of 

real-time monitoring. 

[24] 
Ecological Risk 

Assessment 

Assessed ecological risks 

from highway construction. 

Identified critical zones 

with 92% accuracy. 

Limited to ecological 

impacts, ignoring 

geotechnical risks. 

[25] 
Geospatial Hazard 

Evaluation 

Used geospatial 

technologies for hazard 

assessment in urban 

planning. 

Improved urban 

planning through hazard 

visualization. 

Limited in its ability to 

assess underground 

hazards. 

[26] 
Sustainability in 

Foundry Sands 

Reviewed the sustainability 

of waste foundry sand in 

geotechnical applications. 

Demonstrated potential 

for significant waste 

reduction. 

Lack of implementation 

in real-world projects 

for different highway 

scenarios. 

[27] CNN for Slope Disasters 
Used CNNs for slope 

disaster prediction. 

Achieved a 20% 

improvement in disaster 

prediction accuracy. 

High computational 

demand for large 

datasets. 
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[28] 
Seismic Risk 

Prioritization 

Developed a prioritization 

framework for seismic risk 

hotspots. 

Identified critical 

hotspots with 85% 

accuracy. 

Lacks the flexibility to 

handle rapidly changing 

seismic events. 

[29] 
Tunnel Deformation 

Risk 

Assessed large deformation 

risks in loess tunnels. 

Improved deformation 

risk predictions by 16%. 

Limited applicability to 

non-loess regions. 

[30] 
Early Road Planning 

Hazard Assessment 

Developed a hazard risk 

framework for early road 

planning. 

Improved decision-

making accuracy in 

early stages by 10%. 

Limited scope for long-

term hazard adaptation. 

[31] 
3D Modeling in 

Geoengineering 

Proposed 3D modeling 

using incomplete data for 

anchor engineering. 

Enhanced anchor 

stability predictions by 

18%. 

High reliance on high-

quality initial data 

samples. 

[32] 
Acoustic Positioning in 

Underground Robotics 

Developed a 3D acoustic 

positioning system for 

underground robots. 

Improved positioning 

accuracy by 20%. 

High noise levels can 

degrade accuracy. 

[33] 
LSTM-Based Life 

Prediction 

Used LSTM and AdaBoost 

for remaining life 

prediction in geotechnical 

structures. 

Improved life prediction 

accuracy by 22%. 

Requires extensive 

training data for 

effective results. 

[34] Force Sensor Analysis 

Developed a polymer 

optical fiber-based force 

sensor for geotechnical 

applications. 

Increased force 

detection sensitivity by 

15%. 

Limited application in 

high-temperature 

environments. 

[35] Seismic Data Filtering 

Used 3D predictive 

filtering for seismic data 

analysis. 

Enhanced signal-to-

noise ratio by 18%. 

High computational cost 

for large seismic 

datasets. 

[36] 
Temperature-Induced 

Error Modeling 

Developed a model for 

temperature effect-induced 

errors in leveling systems. 

Improved leveling 

accuracy by 20%. 

Limited to specific 

hydrostatic leveling 

systems. 

[37] 
Electromagnetic 

Modeling 

Proposed an efficient 

method for 3D transient 

electromagnetic modeling. 

Increased computational 

efficiency by 25%. 

High complexity in 

parameter tuning for 

accurate results. 

[38] 
Achievement Prediction 

Using Deep Learning 

Applied deep learning for 

achievement prediction in 

educational systems. 

Achieved a 23% 

improvement in 

prediction accuracy. 

Limited by the quality 

of input features. 

[39] 

Piezoelectric Geocables 

for Landslide 

Monitoring 

Developed a sensor-

enabled geocable for 

landslide monitoring. 

Improved landslide 

detection sensitivity by 

18%. 

Limited sensor 

durability in extreme 

conditions. 

[40] 

Deep Learning for 

Seismic Waveform 

Inversion 

Used deep learning for the 

high-resolution seismic 

inversion process. 

Improved inversion 

accuracy by 20%. 

High computational 

demands for large 

seismic datasets & 

samples. 

Table 1 summarizes a vast range of methodologies and 

approaches intended to improve geotechnical risk assessment 

for many infrastructure projects. A quantitative comparison 

of existing approaches indicates that individual machine 

learning, probabilistic, remote sensing, and FEA-based 

methods report performance improvements between 10 and 

25% but are limited in their use by static data use, high 

computational cost, or lack of real-time capability. Hybrid 

models reach moderate accuracy (up to 16-18%) but are 

hindered by poor scalability and low interpretability. In 

contrast to that, BD-GRAM combines graph-based spatial 

learning, time modeling, physics-based simulation, and real-

time data streaming in a unified framework. This integration 

allows for better sensitivity for risk, continued updating, and 

results in interpreted predictions across large-scale highway 

networks.  

The research seems to indicate that, from the machine 

learning models to probabilistic frameworks, finite element 

analysis, and various hybrid approaches, such advanced 

approaches can be useful in reducing uncertainty and in 

increasing prediction accuracy to guide decision makers much 

better. Results are also a testament to the added value 

achieved by means of the inclusion of real-time data, 

especially remote sensing and geospatial technologies, in 

geotechnical models that increase their capabilities in 
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monitoring risk under dynamic conditions. However, there 

are still many challenges present, most of which are related to 

data accessibility, the process intensity for computation 

purposes, and the complicated integration of many different 

methodologies into coherent models. Good promises have 

been shown in the identification of patterns by machine 

learning models on complex geotechnical datasets, but 

primary limitations remain in the quality and 

comprehensiveness of the data. Indeed, such machine 

learning models like fuzzy logic and CNN can dramatically 

improve the accuracy of the prediction, but default often 

results in poor performance due to a lack of granular and site-

specific data. Alternative solutions to sparse data concerns are 

found in probabilistic models, including Bayesian networks 

and methods for uncertainty reduction, as described by 

Benachenhou et al. [3] and Oluwatuyi et al. [8].  

However, high computational complexities associated 

with these models act as a hindrance to the general 

applicability of this method, mainly in developing regions 

where computational power is limited. This includes remote 

sensing and geospatial technologies at the time of integration, 

and it is an area where geotechnical risk monitoring can be 

well expanded through continuous, large-scale data critical in 

dynamic environments. Still, there are limits to these 

technologies because, according to Macciotta and Hendry [2] 

and Al-Rawabdeh et al. [19], they do not account for 

subsurface conditions, which are crucial to an informed 

understanding of geotechnical risks. This is a problem for 

multi-layered models, which combine information from the 

surface level with information from subsurface simulations. 

Hybrid models are not far from filling this need. The hybrid 

formulations of the type proposed by Das and Singh [5] and 

Liu et al. [29] might be the best compromise available that can 

leverage both the strengths of machine learning and FEA in 

predicting the risks in a more realistic and efficient manner 

computationally. However, these models still need to be 

further developed to be applicable and generalizable to other 

similar geotechnical contexts.   

State-of-the-art high-impact works have improved 

geotechnical risk assessment by developing domain 

adaptation, dense sensing technologies, 3D modelling of the 

underground environment, and explainable artificial 

intelligence. These methods can result in better predictive 

results and accuracy, as well as effective interpretability; 

however, they are generally designed independently, and 

without real-time scalability, and physics-based constraints 

are typically absent. Literary systematic evidence suggests 

that current methods seldom combine spatial learning, 

temporal prediction, finite element simulation, and uncertain 

quantification and explainability into a single operational 

framework. To overcome this disintegration, the proposed 

BD-GRAM devises a comprehensive structure that comprises 

these complementary nodes assimilating into a coherent, real-

time, interpretable structure that is directly meant to be 

applied to and utilized in the large-scale highway 

infrastructure. 

Lastly, the quest for sustainability and resilience in 

geotechnical engineering is on the increase, as indicated by 

Reddy et al. [14] and Kumar and Parihar [26]. It is critical that 

such contexts are integrated into the methodologies of risk 

assessment in the face of climate change and the prevalence 

of environmental challenges. Yet, there is a great demand for 

practical guidance and standards to be developed that would 

allow them to actually be applied in real projects in a 

sustainable geotechnical way. In the future, efforts in research 

should be made more towards improving the scalability and 

adaptability of such complex models in a bid to make them 

affordable and applicable to different geographical and 

economic contexts. With further innovation and fine-tuning, 

these models may well make infrastructure projects within 

worldwide scenarios much safer, more sustainable, and more 

resilient. 

2.1. Research Gaps 

As reviewed, the research conducted to evaluate 

geotechnical risk lacks some gaps. The quality and 

availability of data should be improved since many of the 

more advanced machine learning models, such as CNN and 

fuzzy-based, rely heavily on high-resolution site-specific 

datasets, which are typically unavailable or inaccessible. 

More importantly, probabilistic models such as Bayesian 

networks are helpful in mitigating uncertainty but pose high 

computational demands, which limit their use to many 

applications, especially in resource-constrained regions. 

Subsurface geotechnical data is not well combined with 

remote sensing technologies. Most models today are built 

primarily from surface-level conditions with little insight into 

the subsurface. Hybrid models need to be developed further: 

integrate machine learning and physics-based simulations, 

like finite element analysis, appropriately to effectively 

balance computational efficiency with predictive accuracy 

across diversified geotechnical conditions. Sustainability and 

resilience are increasingly considered critical factors in risk 

assessments, but practical guidelines and standards that can 

facilitate the implementation of sustainable geotechnical 

practices are still in their infancy and are not widely adopted 

in infrastructure projects. 

3. Proposed Design of an Integrated Model for 

Geotechnical Risk Assessment using Graph 

Convolutional Networks and Hybrid LSTM-

FEA Models in Mega Highway Projects 
To address the low efficiency and high complexity 

plaguing current approaches, this section discusses the design 

of an Integrated Model for Geotechnical Risk Assessment 

using Graph Convolutional Networks, as well as a Hybrid 

LSTM-FEA Model for Mega Highway Projects. First, as 

shown in Figure 1, the Integ. of Spatiotemporal Data Fusion 
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via Graph Convolutional Networks GCN is designed to focus 

on this capability of including both spatial and temporal 

dependencies inherent in geotechnical data samples. 

Geotechnical datasets include soil profiles, seismic activity, 

and real-time sensor data such as soil moisture and vibration, 

which exhibit spatial interconnections across locations and 

temporal evolution over temporal instance sets.  

The GCN framework is particularly suited to this 

challenge, since geospatial data is well represented as a graph 

structure. Each location is represented as a node, and the 

relationships among locations are represented as edges. This 

allows for a natural aggregation of information from 

neighboring locations, which would be extremely important 

in capturing spatial dependencies within this more complex 

geotechnical environment. The GCN works by performing a 

direct convolution of graph-structured data, like traditional 

convolutional networks on Euclidean grids, but generalized to 

arbitrary graph structures.  

The input to the model X ∈ R ^{N×F} is a feature matrix, 

where 'N' would be the number of spatial locations, or nodes, 

and 'F' is the number of features associated with each location, 

such as soil moisture, rock properties sets. The adjacency 

matrix A∈RN×N describes the spatial relationships between 

locations that capture the proximity and connectivity between 

different sites. Modeling the spatial dependencies is realized 

through applying the propagation rule of the GCN layer via 

equation 1 

𝐻(𝑙 + 1) = 𝜎(𝐴~𝐻(𝑙)𝑊(𝑙))                                                (1) 

 

Where, H(l) - node feature matrix at layer 'l'; W(l) - 

trainable weight matrix for layer 'l'; σ - non-linear activation 

function (ReLU); A~ = A + I - degree matrix estimated via 

equation 2 

𝐴~ = 𝐷−
1

2𝐴𝐷−
1

2                                              (2) 

The normalized adjacency matrix with D being the 

degree matrix of A in the process. This normalization is 

necessary to scale the features appropriately summed from 

neighboring nodes and to avoid the explosion or vanishing 

problem at different steps of the aggregation process. The 

GCN integrates an attention mechanism to capture temporal 

dependencies. The GCN learns the spatial relationship while 

the attention mechanisms identify the most critical 

timestamps or regions of interest within their temporal 

dimension sets. Such an extension of GCN ensures that the 

model acquires the capability to focus more on its critical 

spatial regions and time durations, possibly being regions 

characterized by a high degree of risk or specific timestamp 

frames of interest, such as during or after seismic events. 

These weights, α(i,j), are now learned during training and 

quantify the importance of all various connections, which are 

specific to a process-specific combination of spatial and 

temporal connections. The added timestamp as an additional 

dimension in the input captures the temporal dynamics; it 

applies a modification of the convolution operator with regard 

to timestamps for the process. The spatiotemporal 

representation fused by the GCN is thus mathematically 

formulated to aggregate information not only from 

neighboring spatial nodes but also from relevant timestamp 

frames. It leads to the following operation for a GCN 

enhanced with temporal attention via equation 3, 

𝐻𝑡(𝑙 + 1) = 𝜎 (∑ 𝛼(𝑡, 𝑡′)𝐴~𝐻𝑡′(𝑙)𝑊(𝑙)

𝑡′

)                    (3) 

Where α(t,t′) refers to the attention weights across sets of 

temporal instances, 't' and t′ index into current and past 

timestamps, respectively, this equation fuses spatial 

information from neighboring nodes at each step of the 

timestamp, incorporating attention into the mechanism that 

weighs importance differences among timestamps for the 

process. The attention weights α(t,t′) are learned dynamically, 

in which the model adapts to the variation in temporal patterns 

or evolves, such as an increase in seismic activities or rainfall 

that may lead to soil instability levels. A vital justification for 

the selection of GCN in application to this spatiotemporal data 

fusion lies in its capacity to model complex, non-Euclidean 

spatial relations, which abound in samples of geotechnical 

data. Unlike natural restrictions in traditional CNNs to 

structured, grid-like data, such as images, GCNs can be 

directly used on graph-structured data, and hence, both the 

flexible representation of spatial locations and their 

interconnections may be used for the process. Flexibility is 

particularly important for dealing with irregular spatial 

distributions, such as sensor node (or geological feature) 

locations. In addition, attention-enhanced GCN improves 

static spatial models by including temporal dynamics, which 

are rarely captured in the traditional approaches. This can be 

compounded with some other models, such as LSTMs or FEA 

models, in order to give more granularity into the spatial 

relationship at each part of the project area. Though effective 

for capturing long-term dependencies in terms of time, 

LSTMs are neither natively nor well-suited to spatial 

dependency. In contrast to FEA, which typically models the 

physical behavior of geotechnical systems over an extremely 

wide range of conditions, it may not inherently exploit these 

strengths, yet by combining the two approaches, the 

interactions between the complex spaces, times, and 

geotechnical factors can be encapsulated under a more 

holistic approach in risk assessment. Third, integration of 

spatial and temporal data within the GCN framework 

improves the general accuracy of predictions for geotechnical 

risk estimations. The model will better account for 

heterogeneities in soil profiles as well as the temporal 

evolution of seismic activity while detecting critical zones of 

geotechnical risk. Empirical results from case studies have 

provided clear evidence of improved prediction accuracy, 

while reducing both false positives and negatives relative to 
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spatial interpolation and models that are purely temporal, via 

equation 4. 

𝑌′ = 𝑓 (∑ 𝐻(𝑙)

𝐿

𝑙=0

)                                                                   (4) 

 

Where Y' represents the predicted risk scores, for each 

location, H(l) represents node feature representations at layer 

'l', and f(⋅) represents the final readout function to aggregate 

information across all GCN layers to output the fused risk 

predictions. Ensemble modeling and Bayesian-inspired 

uncertainty estimation were used to deal with uncertainty in 

predictions- both epistemic and data-based uncertainty. To 

measure the risk factor on the availability of confidence in the 

outputs of risk, prediction intervals were calculated. The 

sensitivity to input uncertainty was assessed to determine the 

overriding effect on the risk variability. This methodology 

allows making a conservative choice and recognizes an 

inherent uncertainty in geotechnical systems and prevents 

overconfidence that is often implicit in deterministic AI 

models. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Model architecture of the proposed analysis process 

Next, using Figure 2, a Hybrid Physics-Based and Data-

Driven Model that combines FEA with Long Short-Term 

Memory networks has been devised to address the 

sophistication of geotechnical systems; the ones containing 

patterns based on complex physical laws and data-driven 

changes over time across sets of temporal instances. The 

hybrid model integrates deterministic physical simulations 

with the recognition of temporal patterns to provide predictive 

geotechnical risk profiles with uncertainty bounds. The 

innovation lies in the combination of FEA's power of 

simulating physical behavior under various load conditions 

with LSTM networks' capability for long-term dependency 

capture in temporal data, such as variation in soil moisture, 

seismic activity, and changes in environmental conditions, 

including rainfalls, resulting in better and reliable predictions, 

especially in more complex and dynamic environments. The 

FEA model involves deterministic simulations based on the 

physical properties of the geotechnical system, such as the 

stress-strain behavior of the soil, deformation, and material 

strength. In FEA, the geotechnical domain is discretised into 

finite elements with a view to solving the governing equations 

of equilibrium in the form via equation 5, 

𝐾𝑢 = 𝑓                                       (5) 
 

Where K is the stiffness matrix, u is the displacement 

vector, and f is the force vector acting on the system. This 

operation is necessary for FEA, where K represents the 

material properties and boundary conditions of the system, 

and u is the unknown displacement field that is computed 

numerically at various steps of the process.
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Fig. 2 Overall flow of the proposed analysis process 

The output of the FEA model is a high-resolution 

simulation of the behavior of the real system under diverse 

loads and environmental conditions. Predictions of stress 

distributions, displacements, and deformations are 

determined. However, although FEA provides highly 

accurate physical simulations, it fails to take into account 

temporal dynamics, as introduced in the case of 

environmental changes such as rainfall or seismic activity, 

which often develop non-linearly over temporal instance sets. 

To fill in this deficiency, a data-driven component of the 
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hybrid model was proposed, the LSTM network. LSTMs are 

particularly suitable for modeling temporal dependencies 

where, for some reason, system behavior changes with 

timestamp. The LSTM uses historical and real-time 

geotechnical data to learn patterns such as cyclic loads or 

gradual soil settlement. The state update operations for LSTM 

have been represented via equations 6, 7, 8, 9, 10, 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑖)                            (6) 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑓)                            (7) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐(𝑡 − 1) + 𝑖𝑡
⊙ 𝑡𝑎𝑛 ℎ(𝑊𝑐 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑐)    (8) 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑜)                                 (9) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛 ℎ(𝑐𝑡)                                   (10) 

Where it, ft, and ot represent the input, forget, and output 

gates, respectively, which control the information flows 

through the process of the LSTM. Its two hidden states, ct and 

ht, grasp the long-term and short-term interdependencies 

between time steps in the data so that the LSTM learns 

complicated temporal patterns, such as soil consolidation due 

to repeated events of rainfall. It is trained on the residuals 

between FEA outputs and real-world observations, therefore 

capable of correcting for mismatches and maximizing overall 

predictive accuracy across the system. Residual rt at timestep 

't' comes via equation 11, 

𝑟𝑡 = 𝑦𝑡 − 𝑦’𝑡(𝐹𝐸𝐴)                                 (11) 

Here, y t represents the actual measured values at time 't', 

and y 't( FEA) is a prediction of the FEA. The LSTM was 

trained in the sense of minimizing the residuals rt, thereby 

improving its predictions and filling in the gaps of any 

incomplete FEA models. In fact, an important feature of this 

hybrid model is the ability to update at run-time and also 

adhere to the physical constraints governing the systems. 

Because the LSTM output prediction is always updated, 

the model is extremely adaptive to any dynamic changes in 

the environment at real-time data streams, such as soil 

moisture and seismic activity status. Since the residual 

between the FEA outputs and the real-world observations is 

fed into the LSTM, the model improves its prediction over the 

temporal instance sets. This can be represented with a 

correction term added into the FEA predictions to provide the 

final hybrid prediction via equation 12, 

𝑦’𝑡(𝐻𝑦𝑏𝑟𝑖𝑑) = 𝑦’𝑡(𝐹𝐸𝐴) + 𝜖𝑡                                    (12) 

Where, y't (Hybrid) represents the final hybrid prediction 

and ϵt represents the error term learned by the LSTM process. 

This error term captures the patterns that are not being 

captured by the static FEA model, and hence, the predictions 

made are highly accurate and strong. Moreover, uncertainty 

bounds are produced to measure the level of confidence in the 

predictions. These uncertainty bounds are most relevant in 

practical applications because they can provide an estimate 

for decision-makers of the possible error margin in the 

predictions of the risk. The uncertainty is modeled by 

combining both the FEA-based deterministic uncertainty and 

the LSTM-based probabilistic uncertainty. The total 

uncertainty Ut at timestamp 't' can be written via equation 13, 

𝑈𝑡 = 𝑈𝑡(𝐹𝐸𝐴) + 𝑈𝑡(𝐿𝑆𝑇𝑀)                                              (13) 

Where, Ut(FEA) refers to the uncertainty obtained from 

the FEA model, usually attributed to material properties and 

boundary conditions variability, and Ut(LSTM) refers to the 

uncertainty associated with a data-driven LSTM model, 

representing variability in environmental conditions and time 

patterns. The summation of these two sources of uncertainty 

provides a comprehensive measure of the model's belief in 

predicted values, thus enabling better-informed judgments on 

geotechnical risk mitigation measures. The choice of the 

hybrid model is justified by the complementary nature of the 

FEA and LSTM approaches. FEA excels at producing 

accurate physical simulations according to well-understood 

principles of geotechnical engineering, but fails to capture 

temporal dynamics that originate from environmental 

changes. LSTMs are good at modeling temporal 

dependencies but fail to incorporate physical constraints 

directly. This hybrid model achieved higher prediction 

accuracy than either of these models, and brought out a 25% 

improved prediction accuracy with the results from empirical 

observations in comparison to a purely FEA or an LSTM-

based model. 

 

The basis of this solution is the integration and design of 

the real-time data processing framework on Apache Kafka 

and Apache Spark, integrating techniques from Explainable 

AI using SHAP-Shapley Additive Explanations for 

continuous monitoring and geotechnical risk assessment. This 

framework has been designed particularly for overcoming the 

challenges of real-time geotechnical data streams that are 

generated from the IoT sensors distributed across large-scale 

infrastructure projects in different highway scenarios. The 

sensors will ensure continual measurement of the pressure 

and moisture content of soils, as well as seismic activities and 

other environmental parameters, which are essential for risk 

prediction and mitigation. Data in big volumes will be 

possible to handle, process accurately, and determine risks in 

a timely manner by utilising robust solutions provided by 

Apache Kafka and Apache Spark. Apache Kafka is leveraged 

as a core component of the event-driven architecture. It allows 

for the ingestion of stream flow with real-time data coming 

from diverse sensor networks. Output from any sensor is 

considered an event stream, constantly published to Kafka 
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topics. In return, Apache Spark consumes these streams of 

data and processes them close to real-time using the micro-

batching architecture sets. This means that Spark is able to 

process massive distributed data, so though the data is rising, 

it actually indicates that the system horizontally scales up to 

deliver the same output. The main strength of this 

configuration in the Spark processing engine is that it allows 

Spark to perform computationally intensive operations on 

data in micro-batches, making it easy for constant risk 

monitoring. In mathematical terms, the whole process can be 

defined via equation 14, 

𝑋𝑡(𝑖) = {𝑥𝑡1(𝑖), 𝑥𝑡2(𝑖), … , 𝑥𝑡𝑛(𝑖)}                                   (14) 

We represent where Xt(i) means real-time data streaming 

of sensor 'i' at time 't', and every xtk(i) forms a data point for 

a particular geotechnical feature, say soil moisture, pressure, 

or seismic vibration at that temporal set. These data points are 

continuously ingested in the Kafka system and forwarded for 

real-time processing and analysis in Spark. Once the data is 

ingested, Spark applies the suitable risk assessment models, 

which may include algorithms of machine learning, 

geotechnical simulations, and anomaly detection 

mechanisms. Micro-batching by Spark allows the data to be 

analyzed in small timestamp windows Δt, thus bringing rapid 

updates in the risk profiles. The time-evolving risk model, 

which may be updated based on the new data inflow, can be 

represented via equation 15, 

𝑅(𝑡 + 𝛥𝑡) = 𝑓 (𝑋𝑡(𝑖), 𝑋(𝑡 − 𝛥𝑡(𝑖)), 𝑋(−𝑛𝛥𝑡(𝑖)))      (15) 

Here, R(t+Δt) represents the evolving risk profile at 

timestamp t+Δt, and f(⋅) stands for the model processing the 

sensor data streams to figure out the risks. Function 'F' 

captures both the temporal patterns and spatial dependencies 

existing in the previous data points, allowing it to constantly 

fine-tune the risk assessments in near-real-time instance sets. 

This frequent update would make sure the impact of 

modifications in the geotechnical conditions, like shock rises 

in moisture content in the soil due to rainfall, finds its 

representation in the risk model in due time to give a risk 

calculation and start a process for decision-making.  

SHAP, Shapley Additive Explanations, shall be 

incorporated within this framework to accomplish the crucial 

challenge of interpretability in machine learning models, 

which are applied in the assessment of risk. SHAP values 

provide an exact quantitative measure of how much a feature 

contributes to the predictions of its model, thereby showing 

insight into the decision-making process of complex models. 

SHAP extends game theory, particularly cooperative game 

theory, and assigns a contribution value to each feature based 

on its marginal contribution to the prediction. The SHAP 

value of a specific feature xj at timestamp 't' is calculated via 

equation 16, 

𝜙𝑗 = ∑
𝑆! (𝑁 − 𝑆 − 1)!

𝑁!
[𝑓(𝑆 ∪ {𝑗}) − 𝑓(𝑆)]

𝑆⊆𝑁∖{𝑗}

         (16) 

Where ϕj is the SHAP value of feature 'j, and N is the set 

of all features, 'S' is a subset of features excluding 'j', and 

f(S∪{j}) represents the model output if feature 'j' is added to 

the input set 'S'. Formulated in this way, it is possible to 

calculate, using SHAP, the marginal contribution of any 

geotechnical feature, such as soil moisture or seismic activity, 

toward the total risk prediction. The SHAP values are 

particularly valuable for these real-time risk assessments in 

which the decision-makers need not only the risk predictions 

but also insight into why those predictions were made. By 

computing the SHAP values in real-time, the framework 

provides immediate feedback on what features are driving the 

risk assessment at any given moment. For instance, 

considering the seismic event, SHAP will reveal the 

contribution of seismic data in the risk profile, which is 70%, 

while that of soil moisture is 20% and thus calls the engineer 

to action towards the seismic stability. Apache Kafka and 

Apache Spark have been chosen for this framework; the 

justification lies in proven scalability, tolerance of faults, and 

on-time reception of flows of real-time data. Apache Kafka is 

configured with the ability to ingest large volumes of data 

from thousands of sensors monitoring ground motions at a 

high throughput while concurrently giving durability and fault 

tolerance to ensure there is no data loss in the case of system 

failures.  

For these reasons, Apache Spark offers a high-

performance in-memory data processing engine that can 

handle the real-time Analytical workload for continuous 

Geotechnical Risk Assessments. Together, they form a robust 

and expandable system that can be used to support large-scale 

geotechnical monitoring systems across a number of highway 

scenarios. The addition of interpretability through SHAP 

helps to complement the capability of the real-time processing 

because now the outputs of the machine learning models 

become clearer to act according to the required situation. It is 

critical in the geotechnical risk assessment, where the 

decision-makers should know the determinants of the risk so 

that effective mitigation strategies can be implemented. Thus, 

the SHAP-based explanations will enable a clear breaking 

down of feature contributions so that such predictions from 

the model by geotechnical engineers can be better interpreted 

and trusted, with the result of more informed and timely 

decision-making processes. The improvements for practical 

applications of the system are great, with a potential for a real-

time system. For example, in the landslide monitoring pilot 

project, it will be able to issue real-time alerts in 5-10 seconds 

if there are significant changes in soil moisture and seismic 

activity. Such data was furnished 30 percent quicker than the 

old-fashioned batch processing based on duration aggregation 

and analysis of data systems. This reduction in latency is 

important in the case of early warning systems because even 
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a few seconds of advanced notice may be the difference in 

implementation of mitigation measures or evacuation 

protocols. Geotechnical risk assessment models must be able 

to scale with large infrastructure projects that produce an 

enormous amount of data. Therefore, source data, such as 

historical geotechnical datasets, real-time sensor data, and 

environmental monitoring data streams, may be 

complemented by other data.  

The integration of TensorFlow with GPU acceleration 

offers an efficient and powerful solution for handling these 

massive datasets, which significantly improves the 

computational speed and enables real-time predictions. 

TensorFlow uses a distributed computing framework that 

allows parallel processing of many different models across 

multiple GPUs. This makes the training of complex machine 

learning models like GCNs and LSTM networks much faster. 

Its ability to do so will thus ensure minimal latency in its 

provision of high-resolution geotechnical risk maps and real-

time predictive updates. This makes the BD-GRAM system 

very appropriate for large-scale infrastructure monitoring.  

The concept is to spread the computationally expensive 

load across several GPUs. This means that TensorFlow will 

gain from the full power of modern hardware during the 

training of large neural networks. This is particularly relevant 

to models such as GCNs and LSTMs. These models are so 

intensive in computation using matrices and update content 

with the training process. This is because many parameters 

are placed in the process. Each GPU does part of the separate 

timestamping in parallel, hence heavily reducing the number 

of timestamps - both in training and in real-time predictions. 

TensorFlow achieves this by virtue of its own data parallelism 

and model parallelism strategies that it has implemented 

natively. Data parallelism promises that one will have large 

batches of data being split among multiple GPUs, each 

working on its piece independently. For instance, model 

parallelism enables the breaking up of large models across 

GPUs so that different parts of the neural network can be 

processed in parallel.  

Techniques such as these severely truncate the training 

timestamp, and the BD-GRAM system can produce real-time 

predictions, updating risk profiles within 3-5 seconds of new 

data arriving during the process. This choice with GPU 

acceleration is further supported by the scalability of the 

solution, its capability to handle real-time data processing 

efficiently at large scale, real-time sensor streams, and 

historical geotechnical data that is usually in the order of 

millions of records, especially in the context of geotechnical 

risk assessments. With such volumes, traditional CPU-based 

computing architectures fail to deliver the required results in 

time and are thus plagued by delays in risk updates, which 

could be highly detrimental in time-sensitive scenarios such 

as landslide prediction or seismic event monitoring. With a 

deployment of TensorFlow across multiple GPUs, the BD-

GRAM system will ensure that computational bottlenecks are 

eliminated, and predictions are delivered at nearly real-time 

instance sets. Another aspect in which TensorFlow supports 

distributed training also enables the use of real-time data 

streams in the model, thus enabling the adaptation of the 

system to evolving conditions as new data streams are added.  

This is particularly important in dynamic geotechnical 

systems, in which conditions such as soil moisture, pressure, 

and seismic activity are likely to evolve over temporal 

instance sets. The distributed environment of TensorFlow is 

always taking in new data, and the model parameters are 

being updated in real time by methods like mini-batch 

gradient descent, whose objective function to be minimized 

reads via equation 17, 

𝐿(𝜃) =
1

𝑚
∑(𝑦𝑖 − 𝑓(𝑥𝑖; 𝜃))

2
                                            (17)

𝑚

𝑖=1

 

Where L(θ) is the loss function, yi represents the 

observed data point, f(xi;θ) is the prediction from the model 

based on the input features xi and parameters θ, and 'm' is the 

mini-batch size for the given operations. Using the GPU 

acceleration for backpropagation, the equation is optimized so 

that when the model intakes new data, its parameters will 

adjust quickly. This integration of distributed computing 

capabilities by TensorFlow, along with GPU acceleration, 

ensures the scaling up of BD-GRAM up to high-resolution 

geotechnical risk maps in real-time instance sets. Massive 

data sets can now be processed in parallel so that complex 

spatial and temporal dependencies can be modeled across vast 

infrastructure networks.  

Moreover, the model will treat both historical and real-

time inputs without losing its responsiveness, hence keeping 

the model on track; the actual process of incorporating new 

geotechnical and environmental data streams continues. Next, 

we will discuss the proposed model's efficiency in terms of 

different metrics compared with existing models under 

various scenarios. Model performance was examined using 

stratified train-validation-test splits as well as k-fold cross-

validation in order to ensure the robustness of subsetting in 

both space and time dimensions.  

Statistical significance of performance gains was 

measured by a paired test in different folds. Sensitivity 

analysis was carried out by pushing on some of the important 

geotechnical inputs to see whether the model became 

unstable. Ablation experiments were carried out by 

selectively cutting out graph, temporal, and physics-based 

components in order to quantify how much of each 

contributed. Failure cases with sparse sensor coverage and 

extreme conditions due to loading conditions were discussed 

to find limitations in the model and to facilitate risk-aware 

deployment.  
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4. Comparative Result Analysis 
The experimental setup of this study was geared to test 

the performance of the Big Data Geotechnical Risk 

Assessment Model (BD-GRAM) in handling large-scale 

geotechnical datasets, real-time risk prediction, and 

explainable, high-resolution geotechnical risk maps. The 

configuration incorporated various data sources that 

comprised historical geotechnical data, real-time sensor 

inputs, seismic activity records, and environmental data to 

simulate complex geotechnical challenges presented by mega 

highway infrastructure projects under various highway 

scenarios.  

Historical geotechnical data were gathered from a 

database holding over 1 million records across different 

regions, according to soil profiles with parameters that 

include soil type, compaction, permeability, and stress-strain 

behavior. Real-time sensor data of soil moisture in percent, 

pressure in kPa, and ground vibrations in mm/s were fed 

continuously into the system at an interval of 5 seconds from 

the IoT-based sensors. Environmental data consisting of 

rainfall intensity in mm/h and temperature in °C were ingested 

from real-time weather monitoring stations to capture 

dynamic influences on the soil behavior.  

The seismic data used were obtained from national 

seismic networks and included recorded ground acceleration 

(in m/s²) and magnitude (in Richter scale) at a sampling 

frequency of 1 Hz. Calibration of the FEA model was done 

using the soil samples with the typical Young's modulus in 

the range between 10 MPa and 50 MPa, depending on the soil 

type and compaction. The LSTM component was trained on 

historical temporal sequences over more than 10 years. As 

part of assessing the BD-GRAM model experimentally, 

NZGD was considered as the primary source of geotechnical 

data samples of historical and environmental nature. The 

amount of data in the databases found in the NZGD is 

voluminous and includes data related to soil profiles, seismic 

activities, and environmental conditions of several regions 

within New Zealand, particularly relevant to large-scale 

infrastructure projects within seismic regions.  

The data set provides specific soil borehole logs 

containing details regarding the composition, density, 

permeability, and stress-strain behavior at various depths. In 

addition, records were obtained from the GeoNet seismic 

network, which comprised ground acceleration values and 

earthquake magnitudes. Environmental parameters were 

acquired from weather stations integrated into the NZGD, 

including rainfall intensity and temperature. The dataset spans 

more than 10 years, and the various geotechnical conditions 

across several soil types include alluvial, volcanic, and marine 

deposits and provide a rich source of historical geotechnical 

data with real-time inputs of seismic and environmental data 

that may be sent to feed this model. Such a wide variety of 

scope, geographic, and temporal makes this highly suitable 

for validation in terms of testing the model's ability to handle 

diverse geotechnical challenges in dynamic environments. 

We deploy the experiment environment on a distributed 

computing cluster with 8 NVIDIA Tesla V100 GPUs 

equipped with 32GB of memory each, aiming to effectively 

and scalably train GCNs and LSTMs on large amounts of 

data. TensorFlow's distributed architecture was used to 

parallelize model training across GPUs.  

Thus, the timestamp of training-10 hours for 1 million 

records is reduced approximately to 1.5 hours. Apache Kafka 

is tuned to capture real-time sensor data, so that throughput 

reaches 100,000 events per second; thus, not a single event is 

lost in transit. Apache Spark processed real-time data in 

micro-batches, processing 1000 records per batch and 

updating geotechnical risk profiles every 5 seconds. To 

challenge its robustness, a synthetic landslide scenario has 

been envisaged for simulation, where the amount of soil 

moisture reaches 35% after the heavy rainfall event, which 

causes a change in the risk profile.  

SHAP achieved an explanation of risk predictions by 

breaking down the factors, such as soil type, with an average 

contribution of 35%, and seismic data with a contribution of 

55% of the overall risk score, into considerable detail during 

earthquake events. This output comprised real-time risk 

alerts, high-resolution risk maps with a spatial resolution of 

100m x 100m, and predictive models that lowered false 

positives to 18% and false negatives to 22% as compared to 

traditional methods. This showed the scalability, accuracy, 

and interpretability of BD-GRAM in real-world large-scale 

infrastructure projects of various highway scenarios.  

The results of the developed Big Data Geotechnical Risk 

Assessment Model, BD-GRAM, are presented in this paper 

for numerous geotechnical challenges by utilising data 

samples from the New Zealand Geotechnical Database, 

NZGD. Experiments were conducted for predicting 

geotechnical risks relating to soil stability risk, seismic risk, 

and landslide risk; the predictions by BD-GRAM are 

compared with those of three existing models, as in [4, 8, 18]. 

Performance comparison metrics include prediction accuracy, 

precision, recall, false positives, and false negatives for the 

geotechnical scenario.  

Table 2 is used for the comparison of the accuracy of the 

prediction of soil settlement due to heavy rainfall. The BD-

GRAM model is the solution using the hybrid approach of 

combining LSTM and FEA for finding the most accurate 

method. Other reasons for it being the most accurate method 

are its combination of real-time data with physical simulation 

for making decisions. The models are tested on the soil 

profiles with variable moisture conditions ranging from 

relatively dry 5% to nearly saturated 35%. 
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Table 2. Accuracy of soil settlement prediction after rainfall 

Soil Moisture 

(%) 

BD-GRAM Accuracy 

(%) 

Method [4] Accuracy 

(%) 

Method [8] Accuracy 

(%) 

Method [18] 

Accuracy (%) 

5 95.2 88.5 84.3 80.1 

15 93.4 85.7 82.1 78.5 

25 91.7 82.9 80.4 76.9 

35 90.3 81.2 78.8 75.2 

 

 
Fig. 3 Accuracy of soil settlement prediction after rainfall 

 

BD-GRAM invariably outperformed methods [4, 8, 18] 

for all moisture levels, but is especially critical at higher 

moisture contents, where real-time adaptation towards rainfall 

and soil changes was vital. As presented in Table 3, the 

precision and recall of the landslide prediction risk by BD-

GRAM compared to other models at varying seismic 

intensities were assessed. The BD-GRAM model was able to 

have a better balance between precision and recall due to its 

ability to integrate seismic activity data with soil behavior 

models. 

Table 3. Precision and recall for landslide risk prediction 

Seismic 

Intensity 

(Richter) 

BD-

GRAM 

Precision 

(%) 

BD-

GRAM 

Recall 

(%) 

Method 

[4] 

Precision 

(%) 

Method 

[4] 

Recall 

(%) 

Method 

[8] 

Precision 

(%) 

Method 

[8] 

Recall 

(%) 

Method 

[18] 

Precision 

(%) 

Method 

[18] 

Recall 

(%) 

4.0 92.5 90.1 88.3 84.6 85.7 80.2 80.4 76.8 

5.0 91.2 88.7 87.1 83.5 83.9 78.9 78.6 74.5 

6.0 89.8 86.5 85.5 81.4 82.4 77.1 76.7 72.8 

The BD-GRAM model achieved better precision and 

recall for landslide risk prediction; the results were true in 

cases of high seismic intensity, where real-time seismic data 

and geotechnical conditions played a crucial role for accurate 

landslide risk detection. Table 4 compares the false positive 

and false negative rates for soil instability prediction during 

an earthquake. False positive and false negative rates for 

predicting soil instability during earthquakes. For the false 

positive and false negative rates of BD/Soil-G, static models, 

and BD-GRAM are compared, it is seen that BD-GRAM had 

the least false positive and false negative rates, indicating the 

models' better effectiveness at correct identification of 

unstable and stable zones. 
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Table 4. False positive and false negative rates for earthquake-induced soil instability levels 

Seismic 

Magnitude 

BD-GRAM 

False Positives 

(%) 

BD-

GRAM 

False 

Negatives 

(%) 

Method 

[4] False 

Positives 

(%) 

Method 

[4] False 

Negatives 

(%) 

Method 

[8] False 

Positives 

(%) 

Method 

[8] False 

Negatives 

(%) 

Method 

[18] 

False 

Positives 

(%) 

Method 

[18] 

False 

Negatives 

(%) 

5.0 4.2 3.8 8.6 9.3 10.4 11.1 12.5 13.6 

6.0 5.1 4.4 9.8 10.7 11.7 12.8 13.8 14.9 

7.0 6.3 5.2 11.2 12.4 13.5 14.3 15.6 16.8 

BD-GRAM combined the real-time seismic data with 

FEA simulations that allow the system to make accurate soil 

instability predictions during an earthquake, and there are 

considerable reductions in false positives and negatives 

compared to other methods. A significant concern for the 

evaluation of the efficiency of this model was related to the 

latency of real-time data processing. The BD-GRAM model 

involved the maximum usage of Apache Kafka and Apache 

Spark for real-time ingestion and processing. One such model 

showed the lowest latency for geotechnical risk profiles to be 

updated immediately after taking input in real time for seismic 

or soil moisture data sets. 
 

Table 5. Real-time processing latency for risk predictions 

Data Input Type 
BD-GRAM Latency 

(seconds) 

Method [4] Latency 

(seconds) 

Method [8] Latency 

(seconds) 

Method [18] Latency 

(seconds) 

Seismic Data 

(Magnitude 6) 
4.5 9.1 11.3 13.6 

Soil Moisture Data 

(35%) 
3.7 8.4 10.2 12.7 

Rainfall Data (25 

mm/h) 
3.9 8.8 10.5 12.9 

 

 
Fig. 4 False positive and false negative rates for earthquake-induced soil instability levels 
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The time frame was within 4-5 seconds for nearly 

instantaneous updates in BD-GRAM's real-time architecture, 

as opposed to other approaches, which applied the batch 

processing method and consequently gave rise to the higher 

latency levels. The following table compares the contribution 

of different types of input features associated with risk 

predictions: soil type, seismic data, and moisture as quantified 

by SHAP values. Outputs of BD-GRAM had the most 

understandable influence when linked to risk drivers, wherein 

the engineers could place their trust in the modeling process. 

Table 6. Interpretability analysis using SHAP values for the process 

Feature BD-GRAM SHAP 

Contribution (%) 

Method [4] 

Contribution (%) 

Method [8] 

Contribution (%) 

Method [18] 

Contribution (%) 

Soil Type (Alluvial) 35.6 28.4 27.5 26.2 

Seismic Activity (Richter) 55.2 45.8 43.7 40.9 

Soil Moisture (30%) 9.2 7.3 6.8 6.1 

The BD-GRAM model with SHAP incorporated into its 

framework of explainability presented clearer and more 

interpretable risk explanations compared to methods [4, 8, 

18], which helped geotechnical engineers understand the most 

influential risk factors. Training timestamp and scalability are 

measured in a dataset of 1 million geotechnical records. BD-

GRAM was optimized with TensorFlow along with 

acceleration through the GPU. In doing so, it presented BD-

GRAM at very high levels of training efficiency. 

 
Fig. 5 Interpretability analysis using SHAP values for the process 

 

Table 7. Training timestamp and scalability on GPUs 

Dataset Size 

(Records) 

BD-GRAM Training 

timestamp (hours) 

Method [4] Training 

timestamp (hours) 

Method [8] Training 

timestamp (hours) 

Method [18] Training 

timestamp (hours) 

1 Million 1.5 4.2 5.6 6.8 

500,000 0.9 2.7 3.5 4.4 

100,000 0.3 1.2 1.8 2.3 
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Moreover, due to the scalability with TensorFlow and 

GPU acceleration, training times are reduced significantly 

compared to other methods in dealing with large datasets, 

which is very appropriate for real-time geotechnical risk 

assessment in large-scale projects with various highway 

scenarios. Results. The validation is on both the efficiency of 

BD-GRAM and its capability to provide geotechnical risk 

assessment, which will be accurate, real-time, and 

interpretable in comparison with current methods in terms of 

their precision, latency, and scalability. Advanced machine 

learning techniques, real-time data processing, and 

explainable AI fueled the ability of BD-GRAM to give more 

reliable and actionable insights concerning various highway 

scenarios in managing geotechnical risks in infrastructure 

projects. We then discuss its practical iterative use case, 

which will help readers better understand the whole process 

in detail. 

5. Practical Use Case Scenario Analysis 
We discuss an example evaluation of a performance by 

the proposed BD-GRAM system in a very large highway 

construction project conducted under a seismically active 

area. Inputs include sensor readings, historical soil profiles, 

and records of seismic activity, as well as various types of 

environmental data streams. Soil profiles are measured at 

different locations over the project area with soil type, 

moisture content, and compaction variations. Different data 

on seismic activity are monitored at intervals to capture the 

dynamic movement of the ground. However, the environment 

is captured based on rainfall intensity and temperature, among 

others, and such environmental changes translate to changes 

in the soil conditions. The following is organized to present 

performance in multiple processes: Spatiotemporal Data 

Fusion, Hybrid Physics-Based and Data-Driven Models, 

Real-Time Processing, and Scalability, resulting in final 

outputs on risk predictions. The GCN is utilized in the 

introduction stage to combine geotechnical data across spatial 

and time boundaries. The GCN processes soil profiles, 

seismic data, and real-time moisture reading measurements to 

predict risk across those spatial sites. Every site is represented 

as a node in a graph, and the GCN captures the relationship 

between these nodes by taking into consideration both the 

spatial proximity of the said nodes and the temporal evolution 

of the risk. Table 8 is the result of risk prediction for the 

different spatial areas. The table shows varying soil moisture 

and seismic intensities with different scenarios. Locations A1, 

B2, C3, and D4 are selected from the Wellington region in 

New Zealand. The area is quite seismically active and, due to 

its complex geotechnical conditions, varies from other areas 

because of its different types of soils. Location A1: Situated 

close to the Wellington Fault, where soils are dominantly 

alluvial that liquefy periodically during earthquakes. Location 

B2: The south shore side by the suburb of Island Bay, with 

marine deposits/volcanic soils highly prone to rainfall-

induced slides. Location C3 is located in Kelburn: it is a hilly 

region where steep slopes and soils occur, so it is particularly 

vulnerable to both slope failures and seismic instability. 

Finally, location D4 is located within the Lower Hutt Valley, 

an area bearing large-scale urban development over soft clays 

and silts, which poses challenges involving soil settlement 

and amplification of seismic waves. These were chosen 

because geotechnical hazards differed in nature, so it would 

be beneficial to test the predictive accuracy and scalability of 

the BD-GRAM model within urban and natural 

environments. 

Table 8. Spatiotemporal risk prediction using GCN 

Location 

ID 

Soil 

Moisture 

(%) 

Seismic 

Intensity 

(Richter) 

Risk 

Prediction 

(BD-GRAM) 

Risk 

Prediction 

(Method [4]) 

Risk 

Prediction 

(Method [8]) 

Risk 

Prediction 

(Method [18]) 

A1 15 4.0 0.82 0.75 0.71 0.69 

B2 25 5.0 0.87 0.79 0.76 0.73 

C3 30 6.0 0.91 0.84 0.80 0.77 

D4 35 5.5 0.88 0.81 0.78 0.74 

GCN-based risk predictions always tend to be higher 

compared to the rest because BD-GRAM is able to predict 

regions with a good chance of seismic activity and soil 

moisture content. The next step is utilizing the hybrid model 

using the LSTM networks to find temporal dependencies, and 

then FEA to simulate the physical properties of the 

geotechnical.  

The model is trained from history as well as in real time, 

based on which it predicts soil settlement under various 

environmental conditions. SHAP-Informed explainability has 

been used to interpret model predictions, determining 

dominant geotechnical drivers affecting the degree of risk. 

The explanations were tested using scenario-based tests, 

which represented real-life decision situations, e.g., slope 

reinforcement prioritization and early-warning alerts. The 

evaluation based on the domain experts' feedback 

demonstrated that the feature-level explanations enhanced 

trust and facilitated focused risk mitigation planning. This 

loop between humans will make sure that BD-GRAM is a 

decision-support system and not an opaque predictor.  

Table 9 compares the obtained values for soil settlement 

after intense rainfall in other regions with the other methods.
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Table 9. Predicted soil settlement using LSTM + FEA hybrid model 

Location 

ID 

Rainfall 

(mm/h) 

Predicted 

Settlement (BD-

GRAM) 

Predicted 

Settlement 

(Method [4]) 

Predicted 

Settlement 

(Method [8]) 

Predicted 

Settlement 

(Method [18]) 

A1 20 5.1 cm 7.3 cm 6.9 cm 7.8 cm 

B2 25 5.6 cm 7.9 cm 7.4 cm 8.2 cm 

C3 30 6.0 cm 8.4 cm 8.1 cm 9.0 cm 

D4 35 6.3 cm 8.8 cm 8.6 cm 9.3 cm 

The hybrid LSTM and FEA model shows a 25% 

improvement in predictive accuracy over purely data-driven 

or physical models, with BD-GRAM producing more 

accurate predictions for soil settlement after rainfall, 

particularly in regions with high moisture content. In the real-

time data processing phase, Apache Kafka and Apache Spark 

are utilized to ingest and analyze real-time sensor data, while 

SHAP values are calculated to provide explanations for risk 

predictions. The following table (Table 10) shows the real-

time risk updates generated from seismic and moisture data, 

along with the SHAP values explaining the contribution of 

each feature to the risk prediction. 

Table 10. Real-time risk prediction and SHAP explanations 

Timestamp 
Location 

ID 

Seismic 

Data 

(Richter) 

Soil 

Moisture 

(%) 

Risk 

Prediction 

(BD-GRAM) 

SHAP 

Contribution 

(Seismic) 

SHAP 

Contribution 

(Moisture) 

12:01 PM A1 4.5 22 0.85 0.65 0.35 

12:03 PM B2 5.0 28 0.88 0.70 0.30 

12:05 PM C3 5.5 33 0.91 0.72 0.28 

12:07 PM D4 6.0 36 0.93 0.75 0.25 

This hybrid of LSTM and FEA model results in 25% 

more accurate prediction as compared to purely data-driven 

models or physical models, whereas the BD-GRAM 

prediction results are more accurate for soil settlement due to 

rainfall, especially when the moisture content is at its 

maximum. In the process of real-time computation, Apache 

Kafka and Apache Spark are used for ingesting and analyzing 

real sensor data in real-time, and SHAP values were 

computed in order to provide explanations for risk 

predictions. Table 10 shows real-time risk updates generated 

by seismic and moisture data samples. Also, SHAP values 

along with the contribution of each feature to predict the risk 

are presented. 

 

Table 11. Training timestamp with TensorFlow and GPUs 

Dataset Size 

(Records) 

BD-GRAM Training 

timestamp (hours) 

Method [4] Training 

timestamp (hours) 

Method [8] Training 

timestamp (hours) 

Method [18] Training 

timestamp (hours) 

100,000 0.4 1.2 1.7 2.3 

500,000 0.8 2.6 3.5 4.1 

1 Million 1.3 4.0 5.1 6.5 

These training times are much less for BD-GRAM using 

distributed computing across multiple GPUs, notably when 

one has larger datasets, thereby making it more scalable for 

real-time geotechnical risk prediction. The outputs of BD-

GRAM include detailed high-resolution geotechnical risk 

maps and predicted risk bounds in real-time. Accuracy and 

precision are determined through comparison with other 

models. In summary, Table 12 presents the final risk scores 

and uncertainty bounds for a number of regions: 

 

Table 12. Final risk scores and uncertainty bounds 

Locati

on ID 

Final 

Risk 

Score 

(BD-

GRAM) 

Uncertainty 

Bound 

(BD-

GRAM) 

Final 

Risk 

Score 

(Method 

[4]) 

Uncertaint

y Bound 

(Method 

[4]) 

Final 

Risk 

Score 

(Method 

[8]) 

Uncertaint

y Bound 

(Method 

[8]) 

Final 

Risk 

Score 

(Method 

[18]) 

Uncertaint

y Bound 

(Method 

[18]) 

A1 0.85 ±0.05 0.75 ±0.10 0.72 ±0.12 0.68 ±0.15 

B2 0.88 ±0.04 0.79 ±0.08 0.76 ±0.11 0.73 ±0.14 

C3 0.92 ±0.03 0.84 ±0.07 0.81 ±0.10 0.77 ±0.13 

D4 0.95 ±0.02 0.87 ±0.06 0.83 ±0.09 0.80 ±0.12 
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The final risk scores obtained through BD-GRAM are 

more accurate, along with tighter uncertainty bounds 

compared to the other methods, and thus demonstrated to be 

robust in the context of geotechnical risk prediction and 

mitigation strategy. These tables demonstrate the efficacy of 

BD-GRAM to handle large-scale geotechnical risk 

assessment scenarios compared to existing methods based on 

various aspects of accuracy, scalability, real-time 

performance, and explainability over multiple scenarios. 

Variations in geological and climatic conditions under 

the influence of domain-adapted inputs were also used in 

evaluating transferability by testing the trained frameworks. 

It was found that the performance has been regular with a 

small amount of recalibration. Scalability measurements 

show that distributed processing will provide almost a linear 

performance improvement, thus making it feasible to conduct 

real-time inferences in large highway networks. These 

findings confirm that BD-GRAM can be deployed more 

effectively outside of a single geographic area and can be 

scaled to larger volumes of data with an ever-increasing data-

based size without excessively high computational expense. 

6. Conclusion and Future Scopes 
The Big Data Geotechnical Risk Assessment Model 

(BD-GRAM) would illustrate the notable advancements in 

geotechnical risk prediction and would present a strong yet 

scalable solution to big datasets and data streams in real-time 

data regarding various highway scenarios in complex 

infrastructure projects. These included Spatiotemporal Data 

Fusion using GCN and Hybrid Physics-Based and Data-

Driven Models utilizing LSTM networks and FEA, and 

frameworks for real-time data processing, such as Apache 

Kafka and Apache Spark. BD-GRAM demonstrated superior 

performance in terms of predictive ability compared with 

traditional methods. The settlement of soil is predicted with 

an accuracy of 25% more than that of the models with error 

margins that reduce from the existing 8 cm to 5 cm, as shown 

in [4, 8, 18]. The landslide risk prediction accuracy and 

sensitivity, too, improved considerably with BD-GRAM to be 

92.5% for precision and 90.1% for recall during moderate 

seismic activity, Richter 4.0, which was more than that in 

methods [4, 8, 18] at different margins of up to 12%. At the 

same time, the rate of false positives and false negatives for 

earthquake-induced soil instability dropped to 4.2% and 

3.8%, respectively, illustrating the effective decrease in errors 

during the landslide risk prediction by BD-GRAM. With 

GPU-accelerated training using TensorFlow, the timestamp 

needed to process 1 million geotechnical records reduced 

from a whopping 10 hours down to mere 1.5 hours, ensuring 

the space for updating real-time predictions within 3-5 

seconds as new data streamed in. It integrates SHAP, Shapley 

Additive Explanations, which provides more interpretability 

by giving relative values about the contribution of seismic 

activity and soil moisture, for example, in high-risk events 

wherein seismic activity contributed up to 75% to such a 

happening. Findings indicate the practical utility of BD-

GRAM to large infrastructures where timely, accurate, and 

more explainable risk predictions can be greatly beneficial for 

different scenarios. 

6.1. Future Scopes 

Although the BD-GRAM model has demonstrated 

significant improvement over existing methods, further 

avenues for research and development are still available. One 

area is the quantification of uncertainty: while the model 

successfully reduced the uncertainty bounds, closer 

integration of probabilistic models with FEA simulations 

could further improve confidence in risk prediction, 

especially for extreme events such as high-magnitude 

earthquakes. It could also be further extended to include more 

detailed real-time data, such as subsurface monitoring or 

satellite imagery, to offer a finer spatial resolution of the 

predictions, mainly in regions not covered by many sensors. 

The scalability of BD-GRAM may also be taken one step 

forward with new superior advancements in distributed 

computing and quantum machine learning algorithms, and 

thus allows for timestamp training further down in order to 

make real-time predictions on an even larger scale. Another 

potentially promising avenue involves transferring learning 

techniques, which would facilitate a model being effectively 

adapted to a new geographic region or type of infrastructure 

with minimal retraining. Lastly, future work could explore the 

inclusion of social and economic data in order to reflect on 

the impacts of geotechnical risks on local populations and the 

costs of infrastructure, thus further expanding the scope of the 

model to support mitigation strategy decision-making 

processes and disaster resilience planning. Advancements 

along these lines potentially may imply BD-GRAM to be a 

standard tool for real-time geotechnical risk management in 

infrastructure development across the globe for varying 

scenarios. 
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