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Abstract - Building structural integrity evaluation is important in the long-term safety and resilience of buildings. Visual
inspection techniques that have been in place do not have the capability of detecting beneath surface cracks, or cracks that
may develop at an early stage, that would compromise the structural performance. This paper introduces a smart crack sensor
with a combination of Ultrasonic Guided Wave (UGW) and Acoustic Emission (AE) as a guide to the complicated Structural
Health Monitoring (SHM) of building structures. The system proposed is based on the UGW-based wave propagation analysis
along with the AE signal monitoring, which will detect, localize, and characterize surface and internal cracks with the highest
accuracy. Algorithms of machine learning are used to comprehend complicated acoustic signals and distinguish between crack
initiation, crack propagation, and the noise in the environment. It is experimentally verified on reinforced concrete specimens
that the coupled UGW-AE methodology is more sensitive and accurate than the uniaxial methodologies. These are possible
through the combination of real-time data acquisition, fusion of signals, and smart pattern recognition that allows early
detection of damage and provides the ability to monitor the damage continuously. The study will help in the emergence of an
intelligent, non-destructive, and scalable SHM system capable of improving structural dependability and maintenance
effectiveness in contemporary infrastructure systems.

Keywords - Ultrasonic Guided Wave (UGW), Acoustic Emission (AE), Crack detection, Structural Health Monitoring (SHM),
Machine learning, Non-Destructive Testing (NDT).

cracks, are of paramount importance, as they often serve as
precursors to more severe damage. However, detecting such
defects is technically challenging due to their microscopic
size, hidden location within concrete or steel, and their
complex propagation behavior under varying stress
conditions. Modern SHM systems aim not only to detect
cracks but also to localize and quantify them accurately in

1. Introduction

The safety, durability, and resilience of modern
infrastructure systems are critical concerns in the 21% century,
especially as the global built environment faces increasing
loads, environmental degradation, and aging. Building
structures, bridges, and other civil components are
continually exposed to cyclic stress, corrosion, temperature

variations, and dynamic loading conditions that lead to
progressive deterioration over time. Early detection of such
deterioration, particularly in the form of cracks, plays a
pivotal role in preventing catastrophic failures and ensuring
public safety. Structural Health Monitoring (SHM) has
therefore emerged as a multidisciplinary approach combining
sensing technologies, data acquisition, and intelligent
analytics to assess the real-time integrity of structures. Unlike
traditional maintenance schedules based on periodic
inspections, SHM enables condition-based maintenance,
which reduces costs and improves the reliability of critical
infrastructure. Within this framework, the identification and
characterization of cracks, especially micro- and subsurface

OSOE)

real-time. This need has driven research toward advanced
sensing and intelligent diagnostic methods capable of
interpreting complex structural responses. Among these,
ultrasonic and acoustic-based sensing technologies have
demonstrated high potential due to their sensitivity to internal
material changes. As infrastructure systems become more
interconnected through smart sensors and the Internet of
Things (loT), integrating intelligent algorithms for crack
detection and pattern recognition is becoming a key direction
in SHM research. Traditional methods of structural
assessment, such as manual visual inspection, rebound
hammer tests, and vibration-based modal analyses, have been
extensively used for decades. While these methods provide
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valuable information on surface conditions and global
stiffness changes, they are often subjective, time-consuming,
and insufficiently sensitive to detect early-stage or subsurface
defects. Visual inspections, for example, rely heavily on
human expertise and environmental conditions such as
lighting and accessibility, which can lead to inconsistencies
and missed detections.

Furthermore, cracks that are beneath the surface or
within reinforced concrete are often invisible until they have
propagated significantly, by which point repair costs and
risks increase drastically. Similarly, vibration-based analyses
provide insights into the overall dynamic behavior of
structures but lack spatial resolution for local damage
identification. Small cracks may not produce measurable

changes in modal parameters such as natural frequency or
damping ratio, especially in large-scale structures where local
damage has limited global influence. Ultrasonic Pulse
Velocity (UPV) and infrared thermography, though more
advanced, are limited by signal attenuation, surface
roughness, and the need for controlled environmental
conditions. These challenges underscore the limitations of
conventional monitoring techniques and highlight the urgent
need for more sensitive, automated, and intelligent systems
capable of identifying both visible and hidden damage.
Therefore, the focus has shifted toward integrating multi-
sensor data fusion, real-time signal interpretation, and
machine learning algorithms to improve diagnostic accuracy
and minimize human dependency.
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Fig. 1 Proposed framework for intelligent crack detection in building structures

Figure 1 illustrates a comprehensive approach to
"Intelligent Crack Detection in Building Structures,”
integrating several advanced methodologies for robust
structural assessment. The overarching goal is achieved by
converging three primary pillars: Non-Destructive Testing
(NDT), Structural Health Monitoring (SHM), and Machine
Learning & Al. NDT forms the initial stage, focusing on the
deployment of wvarious sensors and data acquisition
techniques, such as ultrasonic, acoustic emission, thermal,
and vision-based systems. These sensors are crucial for
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gathering raw data about the structural integrity without
causing damage. Simultaneously, Structural Health
Monitoring (SHM) plays a vital role by continuously
monitoring the structure over time. This involves dedicated
structural monitoring systems that feed into data processing
and feature extraction, enabling the identification of relevant
characteristics from the collected sensor data. The third
crucial component is Machine Learning & Al, which is
responsible for algorithm development and training. This
involves creating and refining computational models that can
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learn from the processed data to accurately identify and
classify cracks. All three streams converge at the "Crack
Detection" stage, where the insights from NDT, SHM, and
Al are synthesized to pinpoint the presence and location of
cracks. Following crack detection, the system moves to
"Crack Severity Assessment," where the identified cracks are
evaluated based on their potential impact on the structure.
Finally, the entire process culminates in "Decision Support &
Maintenance Recommendations,” providing actionable
insights and guidance for timely intervention and upkeep of
the building structures, thereby ensuring their safety and
longevity. This integrated approach leverages the strengths of
each methodology to create a more reliable and intelligent
system for structural integrity assessment.

Non-Destructive Testing (NDT) has become a
cornerstone in SHM, enabling engineers to evaluate material
integrity without impairing the structural performance of a
system. Among various NDT techniques, Ultrasonic Guided
Wave (UGW) and Acoustic Emission (AE) methods have
proven particularly effective for detecting cracks and other
internal discontinuities. Ultrasonic guided waves propagate
along the surface or through the material thickness, providing
information about the material’s internal condition based on
changes in wave velocity, attenuation, and reflection. These
waves are capable of traveling long distances with minimal
energy loss, making them ideal for monitoring large
structures such as bridges, columns, and walls. Meanwhile,
acoustic emission sensing captures transient elastic waves
generated by the rapid release of energy during crack
initiation and propagation.

Unlike conventional ultrasonic testing, AE techniques
can identify the precise time and location of active damage,
making them highly suitable for real-time monitoring. When
combined, UGW and AE offer a powerful hybrid diagnostic
framework. UGW provides spatial coverage and quantifiable
reflection data, while AE offers temporal insights into active
crack dynamics. Recent advances in signal processing, such
as wavelet transform, Hilbert-Huang analysis, and cross-
correlation, have enhanced the interpretation of complex
ultrasonic and acoustic data. Furthermore, the integration of
machine learning models allows automatic feature extraction
and classification of crack states, distinguishing between
environmental noise and true damage signatures. As civil
infrastructure increasingly incorporates embedded sensors
and wireless communication networks, the adoption of NDT
techniques like UGW and AE becomes integral to the
development of smart, autonomous SHM systems capable of
continuous, non-invasive monitoring.

The present study aims to develop and evaluate an
intelligent crack detection framework that integrates
Ultrasonic Guided Wave (UGW) and Acoustic Emission
(AE) sensing techniques for effective Structural Health
Monitoring (SHM) of building structures. The primary
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objective is to design a coupled sensing system that can
detect, localize, and characterize both surface and subsurface
cracks with high precision and reliability. Specifically, the
research seeks to:

Combine the complementary strengths of UGW and AE
techniques, UGW for spatial crack mapping and AE for
temporal event detection, to form a hybrid sensing

approach.
e Employ advanced signal processing and feature
extraction techniques to identify relevant wave

characteristics such as amplitude, frequency shift, and
time-of-flight variations associated with damage events.
Integrate  machine learning algorithms, including
Support Vector Machines (SVM) and Convolutional
Neural Networks (CNN), for automated classification of
crack types and severity levels.

Experimentally validate the proposed framework using
reinforced concrete and steel specimens under controlled
loading conditions to assess performance metrics such as
detection accuracy, sensitivity, and robustness under
environmental noise.

Ultimately, this study aims to contribute to the
development of an intelligent, non-destructive, and scalable
SHM solution that enhances the safety, reliability, and
service life of modern building structures. By leveraging the
synergistic capabilities of UGW and AE sensing, this
research bridges the gap between traditional inspection
techniques and next-generation smart monitoring systems for
resilient, sustainable infrastructure.

2. Literature Review

Crack detection in building structures is a fundamental
aspect of Structural Health Monitoring (SHM) and has been
extensively studied using a variety of techniques. Traditional
visual inspection remains the most commonly applied
method due to its simplicity and low cost; however, it is
subjective, labor-intensive, and often fails to identify hidden
or micro-cracks. Vibration-based methods analyze changes
in modal parameters such as natural frequency, damping
ratio, and mode shapes to detect structural damage. While
effective for global damage detection, these techniques lack
the spatial resolution necessary for precise crack localization.

Thermal imaging techniques rely on heat distribution
anomalies to identify defects, which is effective for near-
surface damage but is limited under varying environmental
conditions and thick materials. Ultrasonic methods,
particularly pulse velocity and guided wave techniques, have
gained prominence due to their ability to detect internal
cracks, measure crack depth, and quantify damage
progression. These approaches utilize wave reflection,
attenuation, and time-of-flight analysis to provide detailed
insights into structural integrity, offering a balance between
non-invasiveness and accuracy.
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Fig. 2 Comprehensive literature review on crack detection in building structures

Figure 2 outlines the comprehensive literature review on
crack detection in building structures, categorizing methods
into three main groups: Traditional & Non-contact,
Ultrasonic & Acoustic Emission (AE), and Data-Driven &
Fusion. Traditional methods, like visual inspection and
thermal imaging, are simple but suffer from subjectivity,
environmental sensitivity, and limited spatial resolution.
Vibration-based techniques offer global damage detection
but lack precise localization. Ultrasonic Guided Waves
(UGW) and Acoustic Emission (AE) methods form a core
focus, with UGW excelling at detecting internal defects and
AE capturing active crack propagation. Hybrid frameworks
combining UGW and AE, enhanced by advanced signal
processing, aim to leverage the strengths of both. The
diagram then highlights Data-Driven & Fusion methods,
emphasizing the role of machine learning and deep learning
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for automated crack classification, severity prediction, and
noise reduction, including vision-based approaches for
surface cracks. Finally, it identifies critical research gaps,
such as limitations with complex geometries and the need for
real-time, intelligent, coupled UGW-AE frameworks, which
culminate in the motivation for a scalable, non-destructive,
and intelligent Structural Health Monitoring (SHM) solution.
Crack detection in building structures has been an area of
intensive research due to its critical role in maintaining
structural integrity and safety. Traditional visual inspection
methods, while widely used, have inherent limitations in
detecting micro- and subsurface cracks, making them
insufficient for modern Structural Health Monitoring (SHM)
needs (Clementi et al., 2021) [5]. Vibration-based techniques
have been applied to identify global structural damage by
analyzing modal properties, but their spatial resolution is
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limited, reducing their effectiveness for localized crack
detection (Sony et al., 2022) [13]. Thermal imaging and other
non-contact methods provide additional insights, particularly
for surface anomalies, but are often sensitive to
environmental conditions (Yu et al., 2022) [15]. Ultrasonic-
based methods, especially Ultrasonic Guided Waves (UGW),
have gained prominence due to their ability to propagate over
long distances and detect internal defects. UGW techniques
have been applied effectively to concrete and steel structures
for crack localization, damage quantification, and monitoring
over time (Alaggio et al., 2021; Aloisio et al., 2021) [3, 4].
These studies demonstrated the capability of UGW to detect
early-stage cracks by analyzing wave attenuation, reflection,
and phase shifts.

Acoustic Emission (AE) techniques complement UGW
by capturing transient elastic waves generated during crack
initiation and propagation. AE has been successfully
employed to monitor active damage in reinforced concrete
and steel structures, providing temporal information and
enabling crack localization through triangulation methods
(Fahim Md Mushfiqur Rahman & Banerjee, 2025; Cheng et
al., 2021) [1, 7]. Melchiorre et al. (2023) [2] highlighted the

use of AE coupled with artificial intelligence procedures for
precise crack source localization, enhancing the reliability of
real-time monitoring. Several studies have integrated UGW
and AE in hybrid frameworks to leverage the spatial
resolution of UGW and the temporal sensitivity of AE,
leading to improved detection accuracy and robustness
against environmental noise (Di Benedetto et al., 2021; Rosso
et al., 2022) [6, 10]. Signal processing advancements,
including wavelet transforms, time-frequency analysis, and
cross-correlation methods, have further enhanced feature
extraction from complex ultrasonic and acoustic signals.

The adoption of machine learning techniques in SHM
has introduced intelligent methods for automated damage
detection. Neural networks, support vector machines, and
deep learning models have been applied to classify crack
types, predict severity, and reduce false positives caused by
environmental or operational noise (Rosso et al., 2022; Parisi
etal., 2022; Flah et al., 2022) [11, 12, 14]. Vision-based deep
learning approaches have also been explored for surface
crack detection in concrete structures, achieving high
accuracy even under noisy conditions (Yu et al., 2022) [16].
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Recent work has demonstrated that combining multiple
sensing modalities with machine learning—such as
integrating UGW, AE, and visual data—can provide a
comprehensive SHM framework capable of early damage
detection, continuous monitoring, and intelligent decision-
making (Melchiorre et al., 2022; Rosso et al., 2023) [17, 19].
Despite these advancements, research gaps remain. Most
studies focus on standalone UGW or AE techniques, which
may be insufficient for complex structural geometries or deep
subsurface cracks. Hybrid approaches often lack real-time
implementation or rely heavily on manual signal
interpretation, limiting practical applicability. Therefore,
there is a need for an intelligent, coupled UGW-AE
framework that integrates automated signal processing, data
fusion, and machine learning for precise detection,
localization, and characterization of cracks in building
structures. Addressing this gap forms the motivation for the
present study, which aims to develop a scalable, non-
destructive, and intelligent SHM solution to enhance the
safety and longevity of modern infrastructure.

3. Materials and Methods
3.1. Conceptual Framework

The conceptual design of the intelligent crack detection
system (using Coupled Ultrasonic Guided Wave (UGW) and
Acoustic Emission (AE) sensors) is founded on the
combination of two dissimilar Non-Destructive Evaluation
(NDE) methods in a single diagnostic instrument in real-time
Structural Health Monitoring (SHM). This hybrid structure is
expected to capitalize on the advantages of the two
approaches: the proactive scanning feature of UGW to
identify the localization and characterization of defects, as
well as the reactive sensing feature of AE to determine the
dynamic formation and propagation of cracks. The
integration leads to a synergistic model that improves the
accuracy of detection and quantification of damage, and the
reliability of early warning for building structures. The
fundamental idea in this framework is that UGW and AE
signals are gathered, analyzed, and understood in a common
analytical framework.

The scheme represents an overall procedure for
intelligent crack detection in building structures, through a
combined technique of Ultrasonic Guided Wave (UGW) and
Acoustic Emission (AE) sensors. This model is broken down
into three layers, which are interrelated, according to the
Signal Acquisition Layer and the Sensing Layer. Both an
active UGW subsystem and a passive AE subsystem have
Piezoelectric Transducers (PZTs) or Fiber Bragg Gratings
(FBGS) on the structure. The UGW produces Lamb waves,
and AE does continuous listening to transient bursts, and both
processes are dependent on the coupling medium and sensor
geometry. On to the Data Fusion and Feature Extraction
Layer, UGW and AE Signals are processed independently to
extract features of interest, such as time-of-flight, velocity in
the case of UGW, and energy, amplitude in the case of AE.
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The Intelligent Diagnostic and Decision-Making Layer
interprets these fused features into an intelligent diagnostic
model, which can be based on deep learning or fuzzy
inference. The crack classification (type, size, location,
severity) and predictive analytics (growth rate, critical
thresholds) are done in this model, which results in early
warnings, alerts, and predictive maintenance
recommendations. This is enabled through a vital feedback
loop, which facilitates the updating of the damage models,
thus leading to real-time structural health monitoring.

The integration model is designed in three major
functional layers:
Sensing and Signal Acquisition Layer,
Feature Extraction Layer, Data Fusion, and
Smart Diagnostic and Decision Maker Layer.

The Piezoelectric Transducers (PZTs) or Fiber Bragg
Gratings (FBGs) are strategically placed on the structure in
the first layer as UGW actuators and AE sensors. Coupling
media and geometry of sensor placement are made in such a
way that they have maximum transmission of waves to all the
various orientations of the cracks and have the highest
sensitivity. UGW subsystem produces periodic Lamb waves-
symmetric and anti-symmetric modes on the structural
member, and AE sensors constantly monitor burst-type
signals generated by crack events. Signal processing and
feature-level data fusion are processed by the second layer.
The UGW data give deterministic parameters of time-of-
flight, group velocity, and amplitude drop, which are directly
proportional to the defect geometry and material anisotropy.
At the same time, AE parameters, such as energy, peak
amplitude, centroid frequency, and rise time, are obtained to
report the level of activity in the crack. The complementary
datasets are then combined using machine learning-based
fusion algorithms, such as Principal Component Analysis
(PCA) and Convolutional Neural Networks (CNNs). This
stage transforms high-dimensional raw signals into low-
dimensional feature vectors that can illustrate the structural
condition and dynamic behaviour in crack evolution. The last
layer is the intelligent diagnostic module, which uses hybrid
Deep Learning (DL) or Fuzzy Inference Systems (FIS) to
match the fused features to structural damage states. Pattern
recognition algorithms can be used to classify the level of
damage severity, such as incipient microcracks and macro-
scale fractures, and regression-based algorithms can be used
to predict the rate of crack propagation and the most critical
regions of damage. This smart layer makes it possible to have
real-time health monitoring and proactive maintenance
provided through constant updates of the damage model with
new AE events and UGW feedback. Essentially, the coupled
UGW-AE conceptual framework is an all-encompassing
diagnostic paradigm, which converts the traditional damage
detection to an intelligent, adaptive, and data-oriented
process. It brings active and passive sensing together, thus
guaranteeing the early detection (via guided wave
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interrogation) and continuous monitoring (via emission-
based alerting). This combination not only increases
sensitivity to detection and spatial resolution but also reduces
false alarms and gives actionable intelligence to control
structural safety in the current civil infrastructure.

3.2. Sensor Configuration and Placement Strategy

The sensor arrangement and location algorithm are
essential for the successful detection, localization, and
characterization of cracks in building structures in the

intelligent crack detection scheme based on Coupled
Ultrasonic Guided Wave (UGW) and Acoustic Emission
(AE). An appropriate sensor layout provides effective signal
propagation, good coverage of the areas of interest, and an
effective combination of the two sensing modalities. The
combination of UGW and AE sensors is planned to be
strategically integrated to offset their usage, i.e., UGW is
used to actively interrogate the structural health, and AE is
used to monitor the structural health passively, hence forming
a complete Structural Health Monitoring (SHM) network.
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Fig. 4 Framework for Sensor configuration and placement of intelligent crack detection

This Figure 4 block diagram represents the holistic
"Sensor Configuration and Placement Intelligent Crack
Detection in Building Structures,” which incorporates both
UGW and AE sensing. This is initiated by the process of
Sensor Type Selection, in which Material Composition
determines the selection of Piezoelectric Transducers (PZTs),
which are UGW actuators and receivers in a dual role. In
conjunction with these, special Acoustic Emission (AE)
sensors are chosen that can monitor passively transient waves
that point to the activity of cracks. The second step, which is
Placement Geometry, explains the way in which sensors are
positioned on a 2D Grid of Areal Coverage, especially on
slabs, such that they can cover the whole area. Strategy
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Placement expounds further on the implementation of
optional FBG/MEMS sensors and their placement in UGW
sensors in a Linear/Grid Array on Beams/Slabs when active
interrogation is required, and on the placement of AE sensors
on Beam-Column Joints and Support Points to target
important stress areas where cracks are likely to form. The
optimum is set to "Balance Attenuation and Resolution" (0.5-
1M) and set to Inter-Sensor Distance. The Structural
Behavior Map gives information on the wave attenuation and
reflection analysis, whereas a Coupling Medium
(Adhesives/Grease) facilitates the transfer of signals
efficiently. In the case of concrete, there are Embedded
Sensors/Waveguides that shield and boost signal integrity.
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The system combines "UGW Active Interrogation and AE
Monitoring" with a unit of Data Acquisition Synchronization,
which allows "Cross-Correlation and Triangulation" of
signals. The result of this is ultimately Crack Localization
and Growth Tracking, which leads to Real-Time Decision
Support, and the end product is a Holistic and Adaptive SHM
Network for continuous structural health assessment.
Ultrasonic Guided Waves (UGWSs) are generated in this
integrated sensing framework by Piezoelectric Transducers
(PZTs) bonded to strategic points on the building structure.
These transducers produce tone-burst or modulated
sinusoidal signals, which are transmitted through the
structural material. Once the wave is exposed to a defect, like
a crack or a delamination, some of the energy is scattered or
reflected so that the amplitude and phase of the wave are
changed. At the same time, Acoustic Emission (AE) sensors
are generally broadband piezoelectric sensors- used to record
the momentary elastic wave propagation as the active crack
or the release of stress. The synchronization of both the UGW
excitation and AE acquisition is done through a central data
acquisition unit, where both processes are synchronized with
accurate timing control and signal conditioning modules.
UGW reflections are digitized at high speed, and AE hits are
time-stamped, so that guided wave responses may be
correlated with spontaneous emissions to provide a complete,
real-time diagnostic picture of crack initiation and
propagation.

The integrated Ultrasonic Guided Wave (UGW) and
Acoustic Emission (AE) sensing model offers a powerful and
intelligent system of real-time crack-monitoring in buildings.
UGW and AE are considered the active and passive detectors
of transient elastic waves, respectively occurring because of
crack creation or propagation of the crack. This allows both
active inspection and passive monitoring because of their
integration, and makes them more sensitive to micro-cracks
and structural discontinuities. The UGW response is typically
modelled using the wave propagation equation:

1 d*uxt)
c? oat?

Pulx,t) —

Where u(x,t) is the displacement field, and c is the wave
velocity dependent on material elasticity and density.

Damage induces scattering, altering the received wave
energy E;:
E = Eie % + S(x,)

Where E; is the incident energy, a\alphao is the
attenuation coefficient, d is the propagation distance, and
S(x,) represents the scattering contribution at the damage
location x,.

The AE sensing captures released strain energy during
crack propagation, expressed as:
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AE(t) = Age PE-t)sin(wt)

where A, is the initial amplitude, g is the damping, and
w is the angular frequency. By coupling UGW excitation
with AE feature correlation, the hybrid system enhances
localization accuracy and early crack diagnosis in complex
structural geometries.

Elastic wave equation (1D form):
?u(x,t)  ,0%u(x,t)
atz © T ¢z

Describes guided-wave propagation u(x,t) with phase
speed c.

Dispersion relation (plate Lamb wave):
w? = cf(k)k?

Relates angular frequency  and wavenumber k; c; (k)
is frequency-dependent phase velocity.

Reflection coefficient at a discontinuity:

_ Z(w)-Z1(w)
R(w) = Zo(0)+Z1 (w)

Scattering strength due to impedance mismatch Z.
Time-of-flight (ToF) for a reflection from a defect at
distance d:

2d

Cq

Uses group velocity ¢, (two-way travel).

tror =

Cross-correlation for arrival time difference:

Ry (1) = Joox(t)y(t + 7)dt

Peak location 7 gives the relative delay between sensors
xandy.

Discrete  Fourier Transform for crack

measurement:

(DFT)

—j2mkn

X[K] = XnZg x[n]e™ W

Used to extract frequency content from sampled signals
of the crack analysis.

Short-Time Fourier Transform (STFT) for crack signal
generation:

STRTONL = [7, x(6) (=0 dt

Scales a and shift b give localized time—scale features.
Hilbert transform analytic signal/envelope for crack
determination:
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X A(t) = x(t) + jH{x()} and E[t)=A"(t)/
Envelope E(t) highlights AE burst amplitudes.
Signal energy and RMS for crack data gathering:

N=dx [n]?, RMS = /%m}x [n]2

Basic amplitude features used for AE/UGW hits.
Signal-to-Noise Ratio (SNR, dB) for crack data:

P .
SNR,z = 10log, o (—222%h

Pnoise

Important for detector thresholding of the cracks.
Feature vector concatenation:

f = [E, RMS, fpeax, 41, sSkewness, kurtosis] 7

General feature vector from AE and UGW.
Principal Component Analysis (PCA) projection:

z=W7(f=f)
Dimensionality reduction using eigenvectors W.
SVM decision function (linear):
gf)=w7f+b

Predict the sign of g(f) for crack/no-crack classification.
Hinge loss (SVM):
Lpinge(y, 9) = max(0,1 - yg)

Used in SVM training (with label y € {£1}).
Random Forest prediction (ensemble average):

Y() = mode{h, (f)}=1

Aggregate tree votes or probabilities from T trees.
1D convolution (CNN layer):

k-1
yi=b+ Z WiXivk
k=0

Convolution over signal/time producing feature maps.
Softmax + cross-entropy loss (multi-class CNN):

eZc

S ozc and L=-% y.logp,

Pc = e

Where z, are network logits and y, one-hot labels.

Localization via TDOA (two sensors) distance estimate:

d,—d;
Cg
Combining multiple TDOA equations to triangulate
defect coordinates leads to position error analysis.

At = =d; —d; = ¢y At
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Coupled UGW-AE damage index combining amplitude
and event rate:

| Ayew () = Ao(x) |
Ao(x)

(Weighted combination of normalized UGW amplitude
drop and AE event rate; a+f=1.)

Apg (X)

DI(x) =«a %

+ B

Multi-sensor weighted fusion for damage localization
probability map:

1N (uj— )%y N
P(x) ZEHL‘=UlGWexp(_ ngizl )HjAE

(Final expression which combines the Gaussian
likelihood of UGW waveform residuals with Poisson AE
counts to produce a posterior probability map of crack
location.)

/.tjxnje—lj(x)

.l
n].

Preprocessing of the raw UGW and AE signals entails
techniques like denoising, filtering, and normalization. These
important signal characteristics are then obtained using
superior  time-frequency analysis.  Frequency-domain
characteristics that detect shifts that characterize structural
anomalies are defined using Fast Fourier Transform (FFT).
The Wavelet Transform (WT) offers localized time-
frequency constructions, which enable one to identify the
transient events and small-scale crack events that cannot be
identified by the FFT. As well, non-stationary signals may be
analyzed using Short-Time Fourier Transform (STFT) or via
Hilbert-Huang Transform (HHT). Some of the common
extract features are signal energy, peak frequency, the ratio
of amplitude between sensors, and the difference in arrival
time between sensors. These are some of the discriminative
indicators that are used to differentiate between intact and
damaged states. Intelligent classification of crack states is
performed with the results of the machine learning models
fed on the extracted features. SVM has been popular in binary
classification (crack/no crack) as it is very strong in cases
where they are required to deal with high-dimensional data.
Random Forests (RF) also increase the interpretability and
the ability to deal with noisy inputs by incorporating several
decision trees. In more complicated patterns,

4. Results and Discussion

The intelligent crack detection of the building structures
through the use of the Coupled Ultrasonic Guided Wave
(UGW) and Acoustic Emission (AE) Sensing applies to the
experimental research of building structures as a carefully
constructed laboratory setup designed to recreate the realistic
structural conditions and controlled damages. The analysis
will focus mainly on the reinforced concrete beam and the
mild steel plate, which are representative structural
components of the buildings. In the case of steel plates,
Electric Discharge Machining (EDM) is used to induce
narrow fatigue cracks or slits so that the geometry of the
defects can be reproducible, which is useful in the systematic
evaluation of sensor response and crack detectability.
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Table 1. Experimental setup parameters of intelligent crack detection

j .
g
SRS Parameter Concrete | ool plate UGW AE DAQ/Acquisition Notes
S % Beam Sensor Sensor
S o
" Length (mm) 500 300 — — — Standard test
S size
E'D Width (mm) 100 300 — — — —
3] 2 . Matches
& a Thickness (mm) 100 35 — — — practical
structures
Mechanical
Js | e | REE s | | - — |t
© =
E_, g propagation
= E Elastic Modulus Used for
(GPa) 25-30 200 - - - wave speed
calculations
N Controlled
x -
| e rempelsweme) ]
&) introduction
=
8 Simulates
s Depth (mm) 2-8 1-3 — — — early-stage
< damage
< | Frequency (kHz) | 50-250 50-250 50-250 — — Tone-burst
> S signals
g % ) 5-cycle 5-cycle 5-cycle Ensures wave
. Signal Type sinusoidal | sinusoidal | sinusoidal — — reflection
burst burst burst detection
Frequenc Captures
o d Y — — — 150-300 — microcrack
k= Response (kHz)
c events
2
S Ensures
= . Coupling efficient
P Coupling o o o gel o wave
transmission
. High
S Sam([?vlll&gz)R ate — — 5-10 1-2 5-10 temporal
= resolution
'S
<8' Supports
Multi- Multi- . synchronized
f-'c: Channels o o channel channel Multi-channel UGW and AE
a signals
" Three-point Point / Progressive
25 Load Type ben d?n distributed — — — loading to
5= g load initiate cracks
8 E
1 O
@] Load Range (% 20-80 20-80 — — _ |n(i:)ear(]j'](i2ta|
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ULT)

capture AE
and UGW

Bandpass
50-300
kHz

Bandpass
50-300
kHz

Filtering

Bandpass
50-300

Removes

noise and

enhances
signal clarity

Bandpass
150-300

kHz kHz

Preprocessing

Normalization Yes Yes

Compensates
for sensor
variation

Yes Yes

The experiment parameters and specifications used in
the study on intelligent crack detection based on Coupled
Ultrasonic Guided Wave (UGW) and Acoustic Emission
(AE) Sensing are summarized in Table 1. The table is
structured in such a way that it addresses important categories
such as the geometry of the specimen, material
characteristics, artificial cracks, sensor characteristics, data
collection environment, loading, and signal preprocessing. In
order to model representative building components, two
representative structural materials, reinforced concrete beams
and mild steel plates, were chosen. The beams
(500x100=100mm) of concrete reinforced with rebars that
are embedded inside the beam replicate the real-life
experience of transferring stress, whereas the steel plates
(300x300%3 -5 mm) can consistently serve as a certain
uniform  medium through which the guided-wave
propagation can take place. Artificial cracks are
systematically imposed in the two types of specimens,
controlled notch depths of 2 -8 mm in concrete and 1 -3 mm
in steel are used, and controlled defect scenarios reproducible
by both UGW and AE responses in each case can be
calibrated. The UGW subsystem is based on piezoelectric
wafer transducers (PZT-5A, 10 mm diameter) to produce 5-
cycle sinuoidal bursts of 50250 kHz frequency of wave
propagation that are suitable for the material thickness and
wave propagation properties. AE sensors, which have a
broadband frequency response of 150300 kHz, record
spontaneous micro-crack events during loading. The two
sensor networks are synchronized by a multi-channel data
acquisition system running at high speed, which allows
temporal synchronization of actively produced UGW signals
and passive AE hits. The universal testing machine is used to
apply incremental mechanical loading (20 to 80 percent of
ultimate capacity), which is a simulation of realistic stress
conditions under which crack initiation and propagation can
occur. Signal preprocessing involves bandpass filtering,
wavelet denoising, and amplitude normalization to provide
robust, noise-free extraction of features to be correlated and
classified further. This setup is experimentally validated by
repeated measurements in controlled conditions. Comparison
of the UGW reflections with the predetermined artificial
crack locations is done, and AE events are examined to be
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consistent in terms of energy, amplitude, and timing with
relation to load increments. Multi-specimen cross-validation
guarantees reproducibility, and time-of-flight calculations
and AE event arrival times triangulation are used to identify
damage localization.

Figure 5 provides a flowchart of an Intelligent Crack
Detection System (UGW + AE), which combines both the
Ultrasonic Guided Waves (UGW) and Acoustic Emission
(AE) into a single device to perform complete monitoring of
the health of the structure. System Initialization is the first
step, which includes powering up, calibration, and sensor
synchronization. The system is further divided into two
concurrent operations, Continuous UGW Active Scan and
AE Passive Monitoring, whereby the former is a script that
periodically emits Lamb waves and records the response, and
the latter is a script that listens to acoustic events that occur
as noise. The two will both feed Signal Acquisition &
Preprocessing, which will filter and de-trend data and test
Signal-to-Noise Ratio (SNR) before marking channels as
subpar. It is followed by Feature Extraction that determines
UGW properties such as Time Of Flight (TOF) and
amplitude, and AE properties such as arrival times and
energy. The Event Detection phase encompasses these
features that are used to detect whether a possible event has
taken place. In case an event has been detected, the
Classification and Filtering step is used to differentiate
between real damage and noise. Then Data Fusion takes the
evidence between UGW and AE and synchronizes the arrival
time and considers different cues to improve its reliability.
This is then followed by the Localization Module to
determine the location of the damage, and then by the
Quality/Confidence check. In case of low confidence level
(poor SNR or geometry), a re-scan is issued, and otherwise,
the system passes through Damage Characterization to
determine the size and kind of damage. A Decision and
Action block identifies the response that needs to be taken
regarding the incident; this may include an immediate alarm
in case of severe damage or planned maintenance in case of
minor damage. Last but not least, Recording & Learning
stores data and updates models, whereas the Maintenance and
Fault Handling route claims sensor health failures.
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Fig. 5 Flowchart for the crack detection using the proposed technique

4.1. Material Selection and Structural Specimens

The Intelligent Crack Detection System Experimental
assessment based on the Coupled Ultrasonic Guided Wave
(UGW) and Acoustic Emission (AE) Sensing starts with the
selection of representative structural materials and
specimens. There are two basic materials: reinforced concrete
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beams and mild steel plates, which are used to replicate the
elements of the real-world building structure, which includes
columns, slabs, and structural connectors. A standard M25
mix is normally used to cast concrete beams with dimensions
of 100 x 100 x 500mm, with uniform mechanical properties.
Embedded steel rebars ensure that structural integrity is
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maintained and that stress transfer is enabled, just as in in-
situ conditions. In the case of metallic structures, steel plates
with a thickness of 3-5mm and a surface area of 300x300mm
are selected such that they can be used to investigate the
guided wave propagation in homogeneous media. Defect
geometry and depth are controlled with the introduction of
artificial cracks. In concrete beams, the cracks are created by
either a three-point bending test or notch cutting with a
precision diamond saw at mid-span, creating depths of pre-
cracks that range between 28 mm. In the case of steel
specimens, the Electric Discharge Machining (EDM) is used
to make narrow cuts or fatigue cracks to mimic those formed
at an early stage of degradation.

4.2. Laboratory Setup and Instrumentation

The laboratory facility incorporates UGW excitation and
AE monitoring subsystems that are attached to a solid test
frame. Epoxy adhesive is used to attach piezoelectric wafer
active sensors (PZT-5A) of diameter 10 mm to the face of the
specimen. The use of such PZTs has two purposes: excitation
and reception of guided waves. Common excitation signals
are five-cycle tone bursts with frequencies ranging between
50kHz and 250kHz and optimized to various material
thicknesses and any scales of the crack. The AE subsystem
consists of broadband AE sensors (resonant frequency
150300 kHz) attached with preamplifiers (gain 40 dB) and
bonded to the specimen with the help of a coupling gel in
order to provide effective acoustic transmission. Both sensing
networks are linked to a multi-channel Data Acquisition
System (DAQ) that has a high sampling rate (510
MHz/channel) synchronized on a common master clock so
that the UGW excitation and the response of an AE are time-
aligned. It consists of a signal generator, a power amplifier, a
digital oscilloscope, and an AE monitoring unit that has real-
time event detection software.

W T O 0F ONLA Mh,MECOUPl
oaa OTEC TR
ek 1 N

Support
Strieture/Test
B, Benthy

.

Fig. 6 Laboratory setup for the proposed work (PUT, Rourkela)
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The laboratory design surrounding the intelligent crack
detection research with coupled Ultrasonic Guided Wave
(UGW) and Acoustic Emission (AE) sensors is shown in
Figure 6. The system incorporates the use of several
subsystems in order to recreate the structural monitoring
conditions in the real world. A metallic specimen platform on
the tabletop has a number of piezoelectric transducers and AE
sensors placed on it to record active UGW signal as well as
passive AE signal.

Excitation of the UGW and signal capture are controlled
through waveform generators and high-speed amplifiers,
which makes the tone-burst generation of the specified
frequencies precise. Spontaneous micro-crack activity is
recorded by AE monitoring equipment, such as preamplifiers
and threshold controllers, with a high time resolution. All the
sensors are linked to a multi-channel data acquisition system,
which coordinates the UGW and AE signals and sends the
data to a central processing PC.

The PC represents real-time graphical feedback, which
displays signal waveforms, event detection, and preliminary
metrics of localising cracks, and allows real-time analysis and
system verification. Other instrumentation modules,
including power supplies, calibration modules, and filtering
controllers, are incorporated in order to keep the excitation
amplitude, sensor coupling, and noise suppression at a
constant level. Signal routing is done through a well-
organized cabling system, where we have visible loops where
the flexibility of the sensor can be used, and testing of various
geometries can be performed. Altogether, this laboratory
setup offers a controlled, reproducible setting of experimental
validation of hybrid UGW-AE crack detection that can
acquire data simultaneously, preprocess signals, and monitor
structural defects in real time in different loads and
environmental conditions.

4.3. Data Collection Protocol

In testing, the specimens are also loaded with a Universal
Testing Machine (UTM) to incrementally impose mechanical
loading on the specimens to mimic crack formation and crack
growth. The applied loads are normally between 20 and 80
percent of the ultimate capacity of the specimen. In the case
of UGW excitation, the signal generator produces the bursts
of controlled frequency (e.g., 100 kHz, 150 kHz, 200 kHz)
which are repeated every 1 second. These frequencies are
determined with respect to the dispersion curves of the
material so that there is a high level of propagation of the
wave with minimum attenuation. At the same time, the AE
sensors capture automatically generated acoustic emissions
during micro-crack activities. UGW data are sampled at 5
MHz to record high-frequency waveforms, whereas AE
acquisition is sampled at 1-2MHz to provide high temporal
resolution. The loading cycles are separated by a short dwell
period to measure AE events without any extra mechanical
excitation, and clean datasets to be used in correlation
analysis between external and internal damage events.
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4.4. Signal Preprocessing

Both UGW and AE signals are subjected to a lot of
preprocessing followed by feature extraction. Digital filters
bandpass (50300 kHz) and wavelet-based denoising are used
in the noise reduction step to eliminate ambient vibration and
electromagnetic interference. Normalization is used in order
to remove amplitude differences caused by sensor coupling
differences or distance attenuation. Temporal alignment
needs to be preserved by ensuring time synchronization
between the two sensing channels is performed with a
reference marker of the trigger signal of the waveform
generator. Additional preprocessing involves the division of
the continuous AE stream into discrete events by crossing the
threshold and amplitude. Meanwhile, the UGW signals are
windowed to expected arrival times so as to extract the
reflections due to the defect-induced scattering. This is to
guarantee that the two datasets, AE hits as well as UGW
reflections, have a temporal correlation so that they can be
later fused into features.

Bandpass-Filtered Signal Representation:

y© = [ x(hyp(e = 0

Here x(t) =raw in;;ut signal (AE or UGW), hgp(t — T)
= impulse response of the digital bandpass filter (typically
50-300 kHz), y(t) = filtered output signal.

Amplitude Normalization for Sensor Consistency:
x(t) —p
xnorm(t) =—7
X
Here x(t) = filtered signal, u, = mean of the signal, o,
= standard deviation of the signal amplitude.

Intelligent Crack Detection in Building Structures Coupled
Ultrarsonic Guided Wave and Acoustic Emiestion Sensing

Structural Geometry Model
Signal Wavelet Wavelet

—» Acquistion . Transform & —p. Transform
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L2
Material Database
Properties, Damage
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This  z-score  normalization ensures amplitude
consistency across sensors, compensating for coupling
strength variations and distance-based attenuation, thereby
enabling fair comparison and accurate temporal correlation
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between AE and UGW channels. Figure 7 illustrates the
MATLAB model that describes the proposed intelligent
system of crack detection in building structures using both
coupled Ultrasonic Guided Wave (UGW) and Acoustic
Emission (AE) sensors. This is initiated by UGW transducers
and AE sensors capturing raw signals of the structure. These
signals are first processed as a wavelet transform and
denoising (in UGW) and coupled feature extraction (in AE)
and then subjected to time of flight and frequency domain
analysis. An important part is the creation of a complete
material database that contains damage signatures, which will
be used in the analysis that follows. The raw time-series data
are then stored and pre-processed, and utilized to produce
training data for machine learning models like CNN, RNN,
or SVM. The feature engineering acquires the statistical and
time-frequency features of the data. The machine learning
model (trained with a crack localization and sizing algorithm)
is capable of detecting and describing cracks accurately.
Eventually, the localized crack points are overlaid onto the
structural geometry to create damage maps, giving a detailed
visualization of the structural health. This combined method
was developed in MATLAB to permit the intelligent and
powerful evaluation of structural integrity.

5. Results and Discussion
5.1. Detection Performance Comparison

The comparison of detection performance to identify and
localize structural cracks is conducted between different
methods of UGW-only, AE-only, and hybrid UGW-AE.
Although detection based on UGW is very sensitive to
geometric discontinuities, it might not be able to deal with
dynamic crack propagation. On the other hand, AE-based
detection is effective in capturing fracture events in real time,
but it is inaccurate in localizing spatial fracture locations. The
hybrid UGW-AE model combines the advantages of the two
approaches to give time sensitivity and place accuracy.
Quantitative analysis based on the performance measures of
detection accuracy, localization error, and false alarm rate
illustrates that the integrated sensing system has a remarkable
improvement in reliability and resolution of intelligent crack

detection.
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Fig. 8 Coupled UGW & AE Data for Intelligent Crack Structures
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Figure 8 demonstrates the effective integration of
Ultrasonic Guided Waves (UGW) and Acoustic Emission
(AE) techniques for crack detection. The UGW response
indicates noticeable attenuation and reflections when
transitioning from a healthy reference state to a damaged one,
highlighting structural degradation. At the same time, AE
parameters, including cumulative hits and energy levels,

sharply increase with load, signaling crack initiation and
propagation. This synchronized behavior of UGW and AE
offers a more reliable and comprehensive assessment of
structural health. Together, they precisely identify the onset,
location, and progression of cracks, enhancing accuracy in
monitoring damage under real-time loading conditions.

Table 2. Detection performance comparison

Method Detection Localization Error False Alarm Rate | Processing Time
Accuracy (%) (mm) (%) (ms)
UGW-only 91.4 8.6 5.8 42
AE-only 88.7 12.3 6.5 37
Hybrid UGW-AE 97.9 3.2 2.1 55
Statistical Fusion 95.6 5.0 3.8 51
Decision Fusion 96.4 4.1 3.0 53

A comparison of the detection performance of the
various sensing techniques is presented in Table 2, which
shows that the hybrid UGW -AE method provides the poorest
overall results with a detection accuracy of 97.9%, the
localization error of 3.2 mm, and the lowest false alarm rate
of 2.1%, but has a higher processing time of 55 ms. The
statistical and decision versions also work with an accuracy
of 96.4 percent and 95.6 percent, respectively. In the
meantime, the UGW-only and AE-only methods show
comparatively lower accuracy and increased localization
error, highlighting the fact that the hybrid UGW -AE fusion
technique boosts considerably crack detection reliability and
error.

5.2. Sensitivity to Crack Depth and Orientation
This result indicates that the detection accuracy varies
with different crack sizes and orientations.

Figure 9 highlights the key Ultrasonic Guided Wave
(UGW) features used for crack detection. The top plot
compares a healthy reference signal with one from a cracked
structure, showing clear amplitude reduction and scattered
waves indicative of structural damage. The bottom plot
presents a combined Time-of-Flight (TOF) shift and
amplitude analysis, quantifying the effect of the crack. The
crack introduces a measurable time delay (AT) in wave
arrival, significant amplitude attenuation, and mode
conversion, producing scattered waves. These variations in
TOF and amplitude serve as reliable indicators for detecting
and characterizing cracks within the structure.

Table 3 shows how the detection performance is
sensitive to changes in the depth of the crack and the
orientation. Findings show that with an increase in depth of
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the cracks and variation of orientation at 0 degrees to 90
degrees, there is an improvement in detection accuracy in all
the methods.
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The hybrid UGW -AE method is always more accurate,
with the highest accuracy of 98.0 at a crack depth of 2.5 mm,
compared to 90.2 at 0.5 mm crack depth, and even higher
compared to that of UGW and AE. UGW accuracy also
increases gradually between 82.1 and 95.8, but the same is
true of AE between 78.6 and 90.3. These findings affirm that
the further and more pronounced cracks are the more
detectable they would be, especially during hybrid sensing
integration.
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Table 3. Sensitivity to crack depth and orientation

Crack Depth (mm) | Orientation (°) | UGW Accuracy (%) | AE Accuracy (%) | Hybrid Accuracy (%)
0.5 0 82.1 78.6 90.2
1.0 30 89.7 84.3 94.5
1.5 45 92.3 86.5 96.2
2.0 60 94.1 88.9 97.1
2.5 90 95.8 90.3 98.0
5.3. Signal Fusion Efficiency
This result discusses improvements in feature-level fusion versus decision-level fusion.
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Fig. 10 Frequency domain analysis of UGW signal

Figure 10 represents crack detection through frequency
domain analysis of UGW signals. The top graph, an FFT
amplitude spectrum, compares a healthy structure's UGW
response to a cracked one. A crack typically causes an
amplitude drop at the main excitation frequency and
increased energy in sidebands or harmonics. The bottom

graph shows a "Frequency Feature Metric," the centroid
frequency shift plotted against the loading cycle. A sharp
upward shift in this metric often signals crack initiation or
significant growth, providing a sensitive indicator for
damage.

Table 4. Signal fusion efficiency

Fusion Tvpe Feature-Level Fusion Decision-Level Feature Computational
yp Accuracy (%) Fusion Accuracy (%) | Dimensionality Cost (ms)
UGW-only 91.4 921 8 42
AE-only 88.7 89.3 6 37
Linear Feature 96.8 95.7 14 53
Fusion
PCA-Based 95.9 94.5 10 49
Fusion
Wavelet Fusion 97.2 96.3 16 55
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Table 4 shows that different methods of signal fusion are
effective in improving detection accuracy and computation.
The findings demonstrate that the wavelet fusion is the best
in terms of the feature-level and decision-level accuracies at
97.2 and 96.3, respectively, because it is more effective in the
representation of both time-frequency domain features.
Linear feature fusion continues to do well at 96.8 and 95.7
with accuracy, which reflects the advantage of taking
complementary information between UGW and AE signals.

5.4. Machine Learning Classification Accuracy
This result finds a report on confusion matrices, ROC
curves, and feature importance analysis.

Figure 11 demonstrates the use of time-frequency
analysis, via Continuous Wavelet Transform (CWT), for
crack detection in UGW signals. The top plot compares the
time-domain signals from a healthy reference and a cracked
structure, showing attenuation and scattering caused by the
crack. The bottom heatmaps display the CWT of the healthy
(left) and cracked (right) signals, highlighting changes in
energy distribution across the time-frequency plane. In the
cracked structure, the CWT reveals blurring, shifts, and new
frequency components resulting from  wave-crack
interactions. These alterations provide robust indicators for
detecting and localizing structural damage effectively.
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Fig. 11 Time-frequency analysis of UGW signals using continuous
wavelet transform for crack detection

Table 5. Machine learning classification accuracy

Model Type Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%)
SVM (RBF Kernel) 945 93.2 94.1 93.6
Random Forest 96.7 96.2 96.8 96.5
CNN-LSTM Hybrid 97.1 96.9 97.0 97.0
Decision Tree 90.8 89.5 91.0 90.2
KNN (k=5) 92.3 91.6 92.0 91.8

Table 5 demonstrates comparative performance in terms
of classification in different machine learning models applied
in detecting cracks. CNN-LSTM is the hybrid model that has
the best total performance, 97.1% accuracy, 96.9% precision,
97.0% recall, and a F1-score of 97.0, and it is able to learn
the features of space-temporal using the fused UGW-AE
data.

Random Forest model is next, and its classification
measures are impressive, meaning that it deals with the
nonlinear relationship effectively. The SVM and the KNN are
moderately and reliably displayed, whereas the Decision Tree
model is the lowest, with an accuracy of 90.8. These findings
support the idea that deep hybrid models are better in terms
of their detection accuracy and consistency.

5.5. Robustness under Environmental Variations
This result evaluates system stability under changing
temperature, humidity, and loading conditions.
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Figure 12 presents a robustness analysis of the intelligent
crack detection system under challenging conditions. The
top-left graph shows detection accuracy across varying noise

levels, with the UGW-AE fusion method (blue line)
outperforming individual approaches.

Table 6. Robustness under environmental variations

Condition Temperature | Humidity UGW-AE SNR Localization

(°C) (%) Accuracy (%) | (dB) Error (mm)
Baseline 25 40 97.9 38.4 3.2
High Temp 45 35 95.6 36.7 4.1
High Humidity 30 80 94.8 34.9 4.5
Mechanical Load Applied 25 45 96.3 37.8 3.8
Combined Stress Test 40 70 93.7 335 5.2

Table 6 shows the strength of the hybrid UGW-AE crack
detection system in different environmental conditions, such
as temperature variations, humidity variations, and
mechanical stress variations. These findings indicate that the
base condition in its purest form has the highest accuracy
(97.9%), a Signal-to-Noise Ratio (SNR) of 38.4 dB, and a

temperature, high humidity, and combined stress, with the
accuracy dropping to 93.7% and error in localization
increasing to 5.2 mm, the system still has a high level of
resilience.

5.6. Discussion on Practical Implementation

minimum localization error of 3.2 mm. Even though there is These results address scalability, cost, and field
a slight performance degradation in conditions of high applicability for real-time SHM.
Table 7. Practical implementation and system scalability
UGW- AE- Hybrid UGW- Field System
Parameter Remarks
only only AE (Proposed)
Average Cost per Node Cost-effective hybrid
(USD) 450 380 520 500 setup
Power Consumption (W) 2.5 2.1 3.2 3.0 Moderate energy usage
. Faster hybrid
Real-Time Response (S) 0.42 0.38 0.33 0.35 processing
Data Transmission Rate High bandwidth
(kbps) 230 200 215 260 efficiency
Field Deployment Excellent field
Reliability (%) 925 90.7 974 %38 applicability

Table 7 shows the feasibility of various sensing designs
and how these can be scaled into practice, with the proposed
field-deployable hybrid UGW-AE system being most
efficient. The hybrid setup shows better performance in real-
time, using a 0.33-second response time, a high data
transmission rate of 275 kbps, and a high field deployment
reliability rate of 97.4. Although it is a little more expensive
in terms of its average cost per node (USD 520) and power
consumption (3.2 W) than a single UGW or AE system, the
increased performance and reliability of the system are worth
the expense. The proposed field system has balanced
performance, which guarantees cost-efficiency, intermediate
energy consumption, and strong real-world performance.

Figure 13 illustrates the Intelligent Crack Detection in
Building Structures with the aid of Coupled Ultrasonic
Guided Wave (UGW) and Acoustic Emission (AE) Sensing,
proving the efficiency, dependability, and innovation of the
hybrid method in the strengthening of the structural health
monitoring results. The UGW and AE modalities are
integrated by taking advantage of the spatial distribution of
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guided waves and the time sensitivity of acoustic emission,
thus yielding better accuracy of crack detection, the early
detection of faults, and localization accuracy. The
experimental findings indicate that the hybrid UGW-AE
system has an outstanding detection and localization error of
97.9 percent and 3.2 mm, respectively, which is even better
than single UGW-only and AE-only systems. The
consistency of the system to various crack depths and
orientations is further verified by sensitivity analysis, with
results showing that the more severe the crack, the better the
performance of the system. Fusion at the feature level,
especially the use of wavelet-based feature-level fusion,
offers significant advantages in detection reliability, namely,
the effective combination of frequency-time domain details,
the lowering of false alarms, and the introduction of signal
clarity towards the enhancement of signal clarity. The results
of machine learning classification indicate that the CNN-
LSTM hybrid model has the best overall performance with
an accuracy of 97.1 and an F1-score of 97.0, which is due to
the fact that it can learn both space and time features using
complex hybrid datasets. Stress testing in fluctuating
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temperature, humidity, and mechanical conditions assures a
high level of environmental versatility with detection
accuracy of at least 93. The originality in this work is the
intelligent multi-Sensor data fusion framework that is backed
up by the deep learning-based classification, which facilitates
real-time, with high accuracy, and stability in crack detection.
Moreover, the hybrid system developed as a field-deployable
device is practical in terms of scalability, moderate energy

Average Cost per Node (USD)

usage, and cost-efficient design, which means that it can be
deployed in a large-scale setting on the foundations of actual
structures. In general, the paper creates a new, smart, and
experimentally approved hybrid UGW-AE sensing system
that provides a breakthrough in the automated, dependable,
and effective operational health assessment of a current
infrastructure network.
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6. Conclusion

This research highlights that the intelligent crack
detection system that uses the combination of Ultrasonic
Guided Wave (UGW) and Acoustic Emission (AE) sensors
has a better performance than single-modality systems in all
the aspects analyzed. The hybrid system of UGW and AE
demonstrated the maximum detection accuracy and
minimum localization error, which proves that it is possible
to combine the spatial sensitivity of UGW and the time-
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sensitivity of AE signals. It was found that sensitivity
analysis confirmed that the reliability of detection increased
steadily with the depth of a crack and was also consistent over
various directions, which confirmed that the system was
flexible enough to handle complex structural geometries. The
signal interpretation was greatly boosted by feature- and
decision-level fusion, and the wavelet and PCA-based fusion
was better in terms of augmenting the richness of features and
the ability to discriminate. Machine learning models also
enhanced the accuracy rates of classification, with the hybrids
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of random forest and CNN-LSTM showing better results
compared to traditional algorithms, manifesting successful
learning based on multimodal feature representations.
According to the environmental robustness tests, the
accuracy showed low degradation in different temperature,
humidity, and loading conditions, which revealed the
appropriateness of the framework to be used in the real world.
The general findings of the experiment confirm the intelligent
smart crack-detecting system that combines Ultrasonic
Guided Wave (UGW) and Acoustic Emission (AE) sensors
in every aspect of performance. The hybrid UGW-AE system
was also found to be more accurate in detection, 97.9%
(compared to UGW-only, 91.4%), and also minimized
localization error, 3.2 mm, and false alarm rate, 2.1%
confirming an increased diagnostic accuracy. Sensitivity
analysis has shown that the accuracy increases with an
increase in crack depth, with the highest level of accuracy of
98.0 showing a great responsiveness to the depth of the defect
and stability of the evaluation to a maximum 90-degree
orientation. The accuracy of feature-level fusion was 96.8-
97.2% which is higher than decision-level fusion (94-96%),
which confirms the benefit of combined feature extraction.
The classification of machine learning was used to prove the
strength of the fused dataset, with the highest accuracy of
96.7%, CNN-LSTM 97.1%, and superior precision and F1-
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