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Abstract - Building structural integrity evaluation is important in the long-term safety and resilience of buildings. Visual 

inspection techniques that have been in place do not have the capability of detecting beneath surface cracks, or cracks that 

may develop at an early stage, that would compromise the structural performance. This paper introduces a smart crack sensor 

with a combination of Ultrasonic Guided Wave (UGW) and Acoustic Emission (AE) as a guide to the complicated Structural 

Health Monitoring (SHM) of building structures. The system proposed is based on the UGW-based wave propagation analysis 

along with the AE signal monitoring, which will detect, localize, and characterize surface and internal cracks with the highest 

accuracy. Algorithms of machine learning are used to comprehend complicated acoustic signals and distinguish between crack 

initiation, crack propagation, and the noise in the environment. It is experimentally verified on reinforced concrete specimens 

that the coupled UGW-AE methodology is more sensitive and accurate than the uniaxial methodologies. These are possible 

through the combination of real-time data acquisition, fusion of signals, and smart pattern recognition that allows early 

detection of damage and provides the ability to monitor the damage continuously. The study will help in the emergence of an 

intelligent, non-destructive, and scalable SHM system capable of improving structural dependability and maintenance 

effectiveness in contemporary infrastructure systems. 

Keywords - Ultrasonic Guided Wave (UGW), Acoustic Emission (AE), Crack detection, Structural Health Monitoring (SHM), 

Machine learning, Non-Destructive Testing (NDT). 

1. Introduction 
The safety, durability, and resilience of modern 

infrastructure systems are critical concerns in the 21st century, 

especially as the global built environment faces increasing 

loads, environmental degradation, and aging. Building 

structures, bridges, and other civil components are 

continually exposed to cyclic stress, corrosion, temperature 

variations, and dynamic loading conditions that lead to 

progressive deterioration over time. Early detection of such 

deterioration, particularly in the form of cracks, plays a 

pivotal role in preventing catastrophic failures and ensuring 

public safety. Structural Health Monitoring (SHM) has 

therefore emerged as a multidisciplinary approach combining 

sensing technologies, data acquisition, and intelligent 

analytics to assess the real-time integrity of structures. Unlike 

traditional maintenance schedules based on periodic 

inspections, SHM enables condition-based maintenance, 

which reduces costs and improves the reliability of critical 

infrastructure. Within this framework, the identification and 

characterization of cracks, especially micro- and subsurface 

cracks, are of paramount importance, as they often serve as 

precursors to more severe damage. However, detecting such 

defects is technically challenging due to their microscopic 

size, hidden location within concrete or steel, and their 

complex propagation behavior under varying stress 

conditions. Modern SHM systems aim not only to detect 

cracks but also to localize and quantify them accurately in 

real-time. This need has driven research toward advanced 

sensing and intelligent diagnostic methods capable of 

interpreting complex structural responses. Among these, 

ultrasonic and acoustic-based sensing technologies have 

demonstrated high potential due to their sensitivity to internal 

material changes. As infrastructure systems become more 

interconnected through smart sensors and the Internet of 

Things (IoT), integrating intelligent algorithms for crack 

detection and pattern recognition is becoming a key direction 

in SHM research. Traditional methods of structural 

assessment, such as manual visual inspection, rebound 

hammer tests, and vibration-based modal analyses, have been 

extensively used for decades. While these methods provide 
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valuable information on surface conditions and global 

stiffness changes, they are often subjective, time-consuming, 

and insufficiently sensitive to detect early-stage or subsurface 

defects. Visual inspections, for example, rely heavily on 

human expertise and environmental conditions such as 

lighting and accessibility, which can lead to inconsistencies 

and missed detections. 

 

Furthermore, cracks that are beneath the surface or 

within reinforced concrete are often invisible until they have 

propagated significantly, by which point repair costs and 

risks increase drastically. Similarly, vibration-based analyses 

provide insights into the overall dynamic behavior of 

structures but lack spatial resolution for local damage 

identification. Small cracks may not produce measurable 

changes in modal parameters such as natural frequency or 

damping ratio, especially in large-scale structures where local 

damage has limited global influence. Ultrasonic Pulse 

Velocity (UPV) and infrared thermography, though more 

advanced, are limited by signal attenuation, surface 

roughness, and the need for controlled environmental 

conditions. These challenges underscore the limitations of 

conventional monitoring techniques and highlight the urgent 

need for more sensitive, automated, and intelligent systems 

capable of identifying both visible and hidden damage. 

Therefore, the focus has shifted toward integrating multi-

sensor data fusion, real-time signal interpretation, and 

machine learning algorithms to improve diagnostic accuracy 

and minimize human dependency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 1 Proposed framework for intelligent crack detection in building structures 

 

Figure 1 illustrates a comprehensive approach to 

"Intelligent Crack Detection in Building Structures," 

integrating several advanced methodologies for robust 

structural assessment. The overarching goal is achieved by 

converging three primary pillars: Non-Destructive Testing 

(NDT), Structural Health Monitoring (SHM), and Machine 

Learning & AI. NDT forms the initial stage, focusing on the 

deployment of various sensors and data acquisition 

techniques, such as ultrasonic, acoustic emission, thermal, 

and vision-based systems. These sensors are crucial for 

gathering raw data about the structural integrity without 

causing damage. Simultaneously, Structural Health 

Monitoring (SHM) plays a vital role by continuously 

monitoring the structure over time. This involves dedicated 

structural monitoring systems that feed into data processing 

and feature extraction, enabling the identification of relevant 

characteristics from the collected sensor data. The third 

crucial component is Machine Learning & AI, which is 

responsible for algorithm development and training. This 

involves creating and refining computational models that can 
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learn from the processed data to accurately identify and 

classify cracks. All three streams converge at the "Crack 

Detection" stage, where the insights from NDT, SHM, and 

AI are synthesized to pinpoint the presence and location of 

cracks. Following crack detection, the system moves to 

"Crack Severity Assessment," where the identified cracks are 

evaluated based on their potential impact on the structure. 

Finally, the entire process culminates in "Decision Support & 

Maintenance Recommendations," providing actionable 

insights and guidance for timely intervention and upkeep of 

the building structures, thereby ensuring their safety and 

longevity. This integrated approach leverages the strengths of 

each methodology to create a more reliable and intelligent 

system for structural integrity assessment. 

 

Non-Destructive Testing (NDT) has become a 

cornerstone in SHM, enabling engineers to evaluate material 

integrity without impairing the structural performance of a 

system. Among various NDT techniques, Ultrasonic Guided 

Wave (UGW) and Acoustic Emission (AE) methods have 

proven particularly effective for detecting cracks and other 

internal discontinuities. Ultrasonic guided waves propagate 

along the surface or through the material thickness, providing 

information about the material’s internal condition based on 

changes in wave velocity, attenuation, and reflection. These 

waves are capable of traveling long distances with minimal 

energy loss, making them ideal for monitoring large 

structures such as bridges, columns, and walls. Meanwhile, 

acoustic emission sensing captures transient elastic waves 

generated by the rapid release of energy during crack 

initiation and propagation.  

 

Unlike conventional ultrasonic testing, AE techniques 

can identify the precise time and location of active damage, 

making them highly suitable for real-time monitoring. When 

combined, UGW and AE offer a powerful hybrid diagnostic 

framework. UGW provides spatial coverage and quantifiable 

reflection data, while AE offers temporal insights into active 

crack dynamics. Recent advances in signal processing, such 

as wavelet transform, Hilbert–Huang analysis, and cross-

correlation, have enhanced the interpretation of complex 

ultrasonic and acoustic data. Furthermore, the integration of 

machine learning models allows automatic feature extraction 

and classification of crack states, distinguishing between 

environmental noise and true damage signatures. As civil 

infrastructure increasingly incorporates embedded sensors 

and wireless communication networks, the adoption of NDT 

techniques like UGW and AE becomes integral to the 

development of smart, autonomous SHM systems capable of 

continuous, non-invasive monitoring. 

 

The present study aims to develop and evaluate an 

intelligent crack detection framework that integrates 

Ultrasonic Guided Wave (UGW) and Acoustic Emission 

(AE) sensing techniques for effective Structural Health 

Monitoring (SHM) of building structures. The primary 

objective is to design a coupled sensing system that can 

detect, localize, and characterize both surface and subsurface 

cracks with high precision and reliability. Specifically, the 

research seeks to:  

 Combine the complementary strengths of UGW and AE 

techniques, UGW for spatial crack mapping and AE for 

temporal event detection, to form a hybrid sensing 

approach. 

 Employ advanced signal processing and feature 

extraction techniques to identify relevant wave 

characteristics such as amplitude, frequency shift, and 

time-of-flight variations associated with damage events. 

 Integrate machine learning algorithms, including 

Support Vector Machines (SVM) and Convolutional 

Neural Networks (CNN), for automated classification of 

crack types and severity levels. 

 Experimentally validate the proposed framework using 

reinforced concrete and steel specimens under controlled 

loading conditions to assess performance metrics such as 

detection accuracy, sensitivity, and robustness under 

environmental noise. 

Ultimately, this study aims to contribute to the 

development of an intelligent, non-destructive, and scalable 

SHM solution that enhances the safety, reliability, and 

service life of modern building structures. By leveraging the 

synergistic capabilities of UGW and AE sensing, this 

research bridges the gap between traditional inspection 

techniques and next-generation smart monitoring systems for 

resilient, sustainable infrastructure. 

2. Literature Review 
Crack detection in building structures is a fundamental 

aspect of Structural Health Monitoring (SHM) and has been 

extensively studied using a variety of techniques. Traditional 

visual inspection remains the most commonly applied 

method due to its simplicity and low cost; however, it is 

subjective, labor-intensive, and often fails to identify hidden 

or micro-cracks. Vibration-based methods analyze changes 

in modal parameters such as natural frequency, damping 

ratio, and mode shapes to detect structural damage. While 

effective for global damage detection, these techniques lack 

the spatial resolution necessary for precise crack localization.  

 

Thermal imaging techniques rely on heat distribution 

anomalies to identify defects, which is effective for near-

surface damage but is limited under varying environmental 

conditions and thick materials. Ultrasonic methods, 

particularly pulse velocity and guided wave techniques, have 

gained prominence due to their ability to detect internal 

cracks, measure crack depth, and quantify damage 

progression. These approaches utilize wave reflection, 

attenuation, and time-of-flight analysis to provide detailed 

insights into structural integrity, offering a balance between 

non-invasiveness and accuracy. 
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Fig. 2 Comprehensive literature review on crack detection in building structures 

 

Figure 2 outlines the comprehensive literature review on 

crack detection in building structures, categorizing methods 

into three main groups: Traditional & Non-contact, 

Ultrasonic & Acoustic Emission (AE), and Data-Driven & 

Fusion. Traditional methods, like visual inspection and 

thermal imaging, are simple but suffer from subjectivity, 

environmental sensitivity, and limited spatial resolution. 

Vibration-based techniques offer global damage detection 

but lack precise localization. Ultrasonic Guided Waves 

(UGW) and Acoustic Emission (AE) methods form a core 

focus, with UGW excelling at detecting internal defects and 

AE capturing active crack propagation. Hybrid frameworks 

combining UGW and AE, enhanced by advanced signal 

processing, aim to leverage the strengths of both. The 

diagram then highlights Data-Driven & Fusion methods, 

emphasizing the role of machine learning and deep learning 

for automated crack classification, severity prediction, and 

noise reduction, including vision-based approaches for 

surface cracks. Finally, it identifies critical research gaps, 

such as limitations with complex geometries and the need for 

real-time, intelligent, coupled UGW-AE frameworks, which 

culminate in the motivation for a scalable, non-destructive, 

and intelligent Structural Health Monitoring (SHM) solution. 

Crack detection in building structures has been an area of 

intensive research due to its critical role in maintaining 

structural integrity and safety. Traditional visual inspection 

methods, while widely used, have inherent limitations in 

detecting micro- and subsurface cracks, making them 

insufficient for modern Structural Health Monitoring (SHM) 

needs (Clementi et al., 2021) [5]. Vibration-based techniques 

have been applied to identify global structural damage by 

analyzing modal properties, but their spatial resolution is 
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limited, reducing their effectiveness for localized crack 

detection (Sony et al., 2022) [13]. Thermal imaging and other 

non-contact methods provide additional insights, particularly 

for surface anomalies, but are often sensitive to 

environmental conditions (Yu et al., 2022) [15]. Ultrasonic-

based methods, especially Ultrasonic Guided Waves (UGW), 

have gained prominence due to their ability to propagate over 

long distances and detect internal defects. UGW techniques 

have been applied effectively to concrete and steel structures 

for crack localization, damage quantification, and monitoring 

over time (Alaggio et al., 2021; Aloisio et al., 2021) [3, 4]. 

These studies demonstrated the capability of UGW to detect 

early-stage cracks by analyzing wave attenuation, reflection, 

and phase shifts. 

 

Acoustic Emission (AE) techniques complement UGW 

by capturing transient elastic waves generated during crack 

initiation and propagation. AE has been successfully 

employed to monitor active damage in reinforced concrete 

and steel structures, providing temporal information and 

enabling crack localization through triangulation methods 

(Fahim Md Mushfiqur Rahman & Banerjee, 2025; Cheng et 

al., 2021) [1, 7]. Melchiorre et al. (2023) [2] highlighted the 

use of AE coupled with artificial intelligence procedures for 

precise crack source localization, enhancing the reliability of 

real-time monitoring. Several studies have integrated UGW 

and AE in hybrid frameworks to leverage the spatial 

resolution of UGW and the temporal sensitivity of AE, 

leading to improved detection accuracy and robustness 

against environmental noise (Di Benedetto et al., 2021; Rosso 

et al., 2022) [6, 10]. Signal processing advancements, 

including wavelet transforms, time-frequency analysis, and 

cross-correlation methods, have further enhanced feature 

extraction from complex ultrasonic and acoustic signals. 

 

The adoption of machine learning techniques in SHM 

has introduced intelligent methods for automated damage 

detection. Neural networks, support vector machines, and 

deep learning models have been applied to classify crack 

types, predict severity, and reduce false positives caused by 

environmental or operational noise (Rosso et al., 2022; Parisi 

et al., 2022; Flah et al., 2022) [11, 12, 14]. Vision-based deep 

learning approaches have also been explored for surface 

crack detection in concrete structures, achieving high 

accuracy even under noisy conditions (Yu et al., 2022) [16].  

 
 

 
Fig. 3 Conceptual framework for intelligent crack detection  
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Recent work has demonstrated that combining multiple 

sensing modalities with machine learning—such as 

integrating UGW, AE, and visual data—can provide a 

comprehensive SHM framework capable of early damage 

detection, continuous monitoring, and intelligent decision-

making (Melchiorre et al., 2022; Rosso et al., 2023) [17, 19]. 

Despite these advancements, research gaps remain. Most 

studies focus on standalone UGW or AE techniques, which 

may be insufficient for complex structural geometries or deep 

subsurface cracks. Hybrid approaches often lack real-time 

implementation or rely heavily on manual signal 

interpretation, limiting practical applicability. Therefore, 

there is a need for an intelligent, coupled UGW–AE 

framework that integrates automated signal processing, data 

fusion, and machine learning for precise detection, 

localization, and characterization of cracks in building 

structures. Addressing this gap forms the motivation for the 

present study, which aims to develop a scalable, non-

destructive, and intelligent SHM solution to enhance the 

safety and longevity of modern infrastructure. 

 

3. Materials and Methods 
3.1. Conceptual Framework 

The conceptual design of the intelligent crack detection 

system (using Coupled Ultrasonic Guided Wave (UGW) and 

Acoustic Emission (AE) sensors) is founded on the 

combination of two dissimilar Non-Destructive Evaluation 

(NDE) methods in a single diagnostic instrument in real-time 

Structural Health Monitoring (SHM). This hybrid structure is 

expected to capitalize on the advantages of the two 

approaches: the proactive scanning feature of UGW to 

identify the localization and characterization of defects, as 

well as the reactive sensing feature of AE to determine the 

dynamic formation and propagation of cracks. The 

integration leads to a synergistic model that improves the 

accuracy of detection and quantification of damage, and the 

reliability of early warning for building structures. The 

fundamental idea in this framework is that UGW and AE 

signals are gathered, analyzed, and understood in a common 

analytical framework.  

 

The scheme represents an overall procedure for 

intelligent crack detection in building structures, through a 

combined technique of Ultrasonic Guided Wave (UGW) and 

Acoustic Emission (AE) sensors. This model is broken down 

into three layers, which are interrelated, according to the 

Signal Acquisition Layer and the Sensing Layer. Both an 

active UGW subsystem and a passive AE subsystem have 

Piezoelectric Transducers (PZTs) or Fiber Bragg Gratings 

(FBGs) on the structure. The UGW produces Lamb waves, 

and AE does continuous listening to transient bursts, and both 

processes are dependent on the coupling medium and sensor 

geometry. On to the Data Fusion and Feature Extraction 

Layer, UGW and AE Signals are processed independently to 

extract features of interest, such as time-of-flight, velocity in 

the case of UGW, and energy, amplitude in the case of AE. 

The Intelligent Diagnostic and Decision-Making Layer 

interprets these fused features into an intelligent diagnostic 

model, which can be based on deep learning or fuzzy 

inference. The crack classification (type, size, location, 

severity) and predictive analytics (growth rate, critical 

thresholds) are done in this model, which results in early 

warnings, alerts, and predictive maintenance 

recommendations. This is enabled through a vital feedback 

loop, which facilitates the updating of the damage models, 

thus leading to real-time structural health monitoring. 

 

The integration model is designed in three major 

functional layers: 

 Sensing and Signal Acquisition Layer, 

 Feature Extraction Layer, Data Fusion, and 

 Smart Diagnostic and Decision Maker Layer. 

The Piezoelectric Transducers (PZTs) or Fiber Bragg 

Gratings (FBGs) are strategically placed on the structure in 

the first layer as UGW actuators and AE sensors. Coupling 

media and geometry of sensor placement are made in such a 

way that they have maximum transmission of waves to all the 

various orientations of the cracks and have the highest 

sensitivity. UGW subsystem produces periodic Lamb waves- 

symmetric and anti-symmetric modes on the structural 

member, and AE sensors constantly monitor burst-type 

signals generated by crack events. Signal processing and 

feature-level data fusion are processed by the second layer. 

The UGW data give deterministic parameters of time-of-

flight, group velocity, and amplitude drop, which are directly 

proportional to the defect geometry and material anisotropy. 

At the same time, AE parameters, such as energy, peak 

amplitude, centroid frequency, and rise time, are obtained to 

report the level of activity in the crack. The complementary 

datasets are then combined using machine learning-based 

fusion algorithms, such as Principal Component Analysis 

(PCA) and Convolutional Neural Networks (CNNs). This 

stage transforms high-dimensional raw signals into low-

dimensional feature vectors that can illustrate the structural 

condition and dynamic behaviour in crack evolution. The last 

layer is the intelligent diagnostic module, which uses hybrid 

Deep Learning (DL) or Fuzzy Inference Systems (FIS) to 

match the fused features to structural damage states. Pattern 

recognition algorithms can be used to classify the level of 

damage severity, such as incipient microcracks and macro-

scale fractures, and regression-based algorithms can be used 

to predict the rate of crack propagation and the most critical 

regions of damage. This smart layer makes it possible to have 

real-time health monitoring and proactive maintenance 

provided through constant updates of the damage model with 

new AE events and UGW feedback. Essentially, the coupled 

UGW-AE conceptual framework is an all-encompassing 

diagnostic paradigm, which converts the traditional damage 

detection to an intelligent, adaptive, and data-oriented 

process. It brings active and passive sensing together, thus 

guaranteeing the early detection (via guided wave 
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interrogation) and continuous monitoring (via emission-

based alerting). This combination not only increases 

sensitivity to detection and spatial resolution but also reduces 

false alarms and gives actionable intelligence to control 

structural safety in the current civil infrastructure. 

 

3.2. Sensor Configuration and Placement Strategy 

The sensor arrangement and location algorithm are 

essential for the successful detection, localization, and 

characterization of cracks in building structures in the 

intelligent crack detection scheme based on Coupled 

Ultrasonic Guided Wave (UGW) and Acoustic Emission 

(AE). An appropriate sensor layout provides effective signal 

propagation, good coverage of the areas of interest, and an 

effective combination of the two sensing modalities. The 

combination of UGW and AE sensors is planned to be 

strategically integrated to offset their usage, i.e., UGW is 

used to actively interrogate the structural health, and AE is 

used to monitor the structural health passively, hence forming 

a complete Structural Health Monitoring (SHM) network.

  

 
Fig. 4 Framework for Sensor configuration and placement of intelligent crack detection 

 

This Figure 4 block diagram represents the holistic 

"Sensor Configuration and Placement Intelligent Crack 

Detection in Building Structures," which incorporates both 

UGW and AE sensing. This is initiated by the process of 

Sensor Type Selection, in which Material Composition 

determines the selection of Piezoelectric Transducers (PZTs), 

which are UGW actuators and receivers in a dual role. In 

conjunction with these, special Acoustic Emission (AE) 

sensors are chosen that can monitor passively transient waves 

that point to the activity of cracks. The second step, which is 

Placement Geometry, explains the way in which sensors are 

positioned on a 2D Grid of Areal Coverage, especially on 

slabs, such that they can cover the whole area. Strategy 

Placement expounds further on the implementation of 

optional FBG/MEMS sensors and their placement in UGW 

sensors in a Linear/Grid Array on Beams/Slabs when active 

interrogation is required, and on the placement of AE sensors 

on Beam-Column Joints and Support Points to target 

important stress areas where cracks are likely to form. The 

optimum is set to "Balance Attenuation and Resolution" (0.5-

1M) and set to Inter-Sensor Distance. The Structural 

Behavior Map gives information on the wave attenuation and 

reflection analysis, whereas a Coupling Medium 

(Adhesives/Grease) facilitates the transfer of signals 

efficiently. In the case of concrete, there are Embedded 

Sensors/Waveguides that shield and boost signal integrity. 
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The system combines "UGW Active Interrogation and AE 

Monitoring" with a unit of Data Acquisition Synchronization, 

which allows "Cross-Correlation and Triangulation" of 

signals. The result of this is ultimately Crack Localization 

and Growth Tracking, which leads to Real-Time Decision 

Support, and the end product is a Holistic and Adaptive SHM 

Network for continuous structural health assessment. 

Ultrasonic Guided Waves (UGWs) are generated in this 

integrated sensing framework by Piezoelectric Transducers 

(PZTs) bonded to strategic points on the building structure. 

These transducers produce tone-burst or modulated 

sinusoidal signals, which are transmitted through the 

structural material. Once the wave is exposed to a defect, like 

a crack or a delamination, some of the energy is scattered or 

reflected so that the amplitude and phase of the wave are 

changed. At the same time, Acoustic Emission (AE) sensors 

are generally broadband piezoelectric sensors- used to record 

the momentary elastic wave propagation as the active crack 

or the release of stress. The synchronization of both the UGW 

excitation and AE acquisition is done through a central data 

acquisition unit, where both processes are synchronized with 

accurate timing control and signal conditioning modules. 

UGW reflections are digitized at high speed, and AE hits are 

time-stamped, so that guided wave responses may be 

correlated with spontaneous emissions to provide a complete, 

real-time diagnostic picture of crack initiation and 

propagation. 

 

The integrated Ultrasonic Guided Wave (UGW) and 

Acoustic Emission (AE) sensing model offers a powerful and 

intelligent system of real-time crack-monitoring in buildings. 

UGW and AE are considered the active and passive detectors 

of transient elastic waves, respectively occurring because of 

crack creation or propagation of the crack. This allows both 

active inspection and passive monitoring because of their 

integration, and makes them more sensitive to micro-cracks 

and structural discontinuities. The UGW response is typically 

modelled using the wave propagation equation: 

 

∇2 u(x,t) −
1

𝐶2  
𝜕2 𝑢(𝑥,𝑡)

𝜕𝑡2   

 

Where u(x,t) is the displacement field, and c is the wave 

velocity dependent on material elasticity and density.  

 

Damage induces scattering, altering the received wave 

energy Er: 

Er
 = 𝐸𝑖𝑒

−𝛼𝑑 + S(𝑥𝑑) 

 

Where Er is the incident energy, α\alphaα is the 

attenuation coefficient, d is the propagation distance, and 

S(𝑥𝑑) represents the scattering contribution at the damage 

location 𝑥𝑑. 

 

The AE sensing captures released strain energy during 

crack propagation, expressed as: 

AE(t) = 𝐴0𝑒−𝛽(𝑡−𝑡0)𝑠𝑖𝑛(𝜔𝑡) 

 

where 𝐴0 is the initial amplitude, β is the damping, and 

ω is the angular frequency. By coupling UGW excitation 

with AE feature correlation, the hybrid system enhances 

localization accuracy and early crack diagnosis in complex 

structural geometries. 

 

Elastic wave equation (1D form): 

𝜕2 𝑢(𝑥, 𝑡)

𝜕𝑡2
=  𝑐2

𝜕2 𝑢(𝑥, 𝑡)

𝜕𝑡2
 

 

Describes guided-wave propagation u(x,t) with phase 

speed c. 

 

Dispersion relation (plate Lamb wave): 

 

𝜔2 =  𝑐𝑝
2(𝑘)𝑘2 

 

Relates angular frequency ω and wavenumber k; 𝑐𝑝
2(𝑘) 

is frequency-dependent phase velocity. 

 

Reflection coefficient at a discontinuity: 

R(ω) = 
𝑍2(𝜔)−𝑍1(𝜔)

𝑍2(𝜔)+𝑍1(𝜔)
 

 

Scattering strength due to impedance mismatch Z. 

Time-of-flight (ToF) for a reflection from a defect at 

distance d: 

𝑡𝑇𝑜𝐹 =  
2𝑑

𝑐𝑔

 

Uses group velocity 𝑐𝑔 (two-way travel). 

 

Cross-correlation for arrival time difference: 

𝑅𝑥𝑦(𝜏) =  ∫ 𝑥(𝑡)𝑦(𝑡 + 𝜏)𝑑𝑡
∞

−∞

 

 

Peak location τ gives the relative delay between sensors 

x and y. 

 

Discrete Fourier Transform (DFT) for crack 

measurement: 

 

X[k] = ∑ 𝑥[𝑛]𝑒
−𝑗2𝜋𝑘𝑛

𝑁𝑁−1
𝑛=0  

 

Used to extract frequency content from sampled signals 

of the crack analysis. 
 

Short-Time Fourier Transform (STFT) for crack signal 

generation: 

STFT{x}(t,f) = ∫ 𝑥(𝑡)
∞

−∞
 𝜓∗(

𝑏−𝑎

𝑎
) 𝑑𝑡 

 

Scales a and shift b give localized time–scale features. 

Hilbert transform analytic signal/envelope for crack 

determination: 
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x ^(t) = x(t) + jH{x(t)} and   E(t)=∣x^(t)∣ 
 

Envelope E(t) highlights AE burst amplitudes. 
 

Signal energy and RMS for crack data gathering: 

∑ 𝑥 [𝑛]2𝑁−1
𝑛=0 , RMS = √

1

𝑁
∑ 𝑥 [𝑛]2𝑁−1

𝑛=0  

 

Basic amplitude features used for AE/UGW hits. 

Signal-to-Noise Ratio (SNR, dB) for crack data: 

𝑆𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔10(
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒

) 

 

Important for detector thresholding of the cracks. 

Feature vector concatenation: 
 

f = [E, RMS, fpeak, Δt, skewness, kurtosis] ⊤ 

 

General feature vector from AE and UGW. 

Principal Component Analysis (PCA) projection: 
 

z = W⊤(f−fˉ) 
 

Dimensionality reduction using eigenvectors W. 

SVM decision function (linear): 

 

g(f) = w⊤ f + b 

 

Predict the sign of g(f) for crack/no-crack classification. 

Hinge loss (SVM): 

𝐿ℎ𝑖𝑛𝑔𝑒(𝑦, 𝑔) = 𝑚𝑎𝑥(0,1 − 𝑦𝑔) 

 

Used in SVM training (with label y ∈ {±1}). 

Random Forest prediction (ensemble average): 

 

Ŷ(f) = mode{ℎ𝑡(𝑓)}𝑡=1
𝑇  

 

Aggregate tree votes or probabilities from T trees. 

1D convolution (CNN layer): 

𝑦𝑖 = 𝑏 +  ∑ 𝑤𝑘𝑥𝑖+𝑘

𝑘−1

𝑘=0

 

 

Convolution over signal/time producing feature maps. 

Softmax + cross-entropy loss (multi-class CNN): 
 

𝑝𝑐 =  
𝑒𝑧𝑐

∑𝑗𝑒𝑧𝑐
  and L = −∑𝑐𝑦𝑐𝑙𝑜𝑔𝑝𝑐 

 

Where 𝑧𝑐 are network logits and 𝑦𝑐 one-hot labels. 

 

Localization via TDOA (two sensors) distance estimate: 

 

Δt = 
𝑑1−𝑑2

𝑐𝑔
 ⇒ 𝑑1 − 𝑑2 =  𝑐𝑔𝛥𝑡 

 

Combining multiple TDOA equations to triangulate 

defect coordinates leads to position error analysis. 

Coupled UGW-AE damage index combining amplitude 

and event rate: 

𝐷𝐼(𝑥) = 𝛼
│𝐴𝑈𝐺𝑊(𝑥) −  𝐴0(𝑥)│

𝐴0(𝑥)
+  𝛽

𝜆𝐴𝐸(𝑥)

𝜆0

 

 

(Weighted combination of normalized UGW amplitude 

drop and AE event rate; α+β=1.) 
 

Multi-sensor weighted fusion for damage localization 

probability map: 

𝑃(𝑥) = 
1

𝑍
∏ 𝑒𝑥𝑝(−

(𝑢𝑖− ŭ𝑖)2

2𝜎𝑖
2

𝑁𝑈𝐺𝑊
𝑖=1 ) ∏

𝜆𝑗𝑥
𝑛𝑗𝑒

−𝜆𝑗(𝑥)

𝑛𝑗!

𝑁𝐴𝐸
𝑗  

 

(Final expression which combines the Gaussian 

likelihood of UGW waveform residuals with Poisson AE 

counts to produce a posterior probability map of crack 

location.) 
 

Preprocessing of the raw UGW and AE signals entails 

techniques like denoising, filtering, and normalization. These 

important signal characteristics are then obtained using 

superior time-frequency analysis. Frequency-domain 

characteristics that detect shifts that characterize structural 

anomalies are defined using Fast Fourier Transform (FFT). 

The Wavelet Transform (WT) offers localized time-

frequency constructions, which enable one to identify the 

transient events and small-scale crack events that cannot be 

identified by the FFT. As well, non-stationary signals may be 

analyzed using Short-Time Fourier Transform (STFT) or via 

Hilbert-Huang Transform (HHT). Some of the common 

extract features are signal energy, peak frequency, the ratio 

of amplitude between sensors, and the difference in arrival 

time between sensors. These are some of the discriminative 

indicators that are used to differentiate between intact and 

damaged states. Intelligent classification of crack states is 

performed with the results of the machine learning models 

fed on the extracted features. SVM has been popular in binary 

classification (crack/no crack) as it is very strong in cases 

where they are required to deal with high-dimensional data. 

Random Forests (RF) also increase the interpretability and 

the ability to deal with noisy inputs by incorporating several 

decision trees. In more complicated patterns,  
 

4. Results and Discussion 
The intelligent crack detection of the building structures 

through the use of the Coupled Ultrasonic Guided Wave 

(UGW) and Acoustic Emission (AE) Sensing applies to the 

experimental research of building structures as a carefully 

constructed laboratory setup designed to recreate the realistic 

structural conditions and controlled damages. The analysis 

will focus mainly on the reinforced concrete beam and the 

mild steel plate, which are representative structural 

components of the buildings. In the case of steel plates, 

Electric Discharge Machining (EDM) is used to induce 

narrow fatigue cracks or slits so that the geometry of the 

defects can be reproducible, which is useful in the systematic 

evaluation of sensor response and crack detectability. 
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Table 1. Experimental setup parameters of intelligent crack detection 

P
a

ra
m

et
er

 

C
a

te
g

o
ry

 

Parameter 
Concrete 

Beam 
Steel Plate 

UGW 

Sensor 

AE 

Sensor 
DAQ/Acquisition Notes 

S
p

ec
im

e
n

 

D
im

en
si

o
n

s Length (mm) 500 300 — — — Standard test 

size 

Width (mm) 100 300 — — — — 

Thickness (mm) 100 3–5 — — — 
Matches 

practical 

structures 

M
a

te
r
ia

l 

P
ro

p
er

ti
es

 Type 
Reinforced 

concrete 
Mild steel — — — 

Mechanical 

behaviour for 

wave 

propagation 

Elastic Modulus 

(GPa) 
25–30 200 — — — 

Used for 

wave speed 

calculations 

A
rt

if
ic

ia
l 

C
ra

ck
 

Type 
Notch / pre-

crack 

Slit/fatigue 

crack 
— — — 

Controlled 

defect 

introduction 

Depth (mm) 2–8 1–3 — — — 
Simulates 

early-stage 

damage 

U
G

W
 

E
x

ci
ta

ti
o

n
 Frequency (kHz) 50–250 50–250 50–250 — — 

Tone-burst 

signals 

Signal Type 
5-cycle 

sinusoidal 

burst 

5-cycle 

sinusoidal 

burst 

5-cycle 

sinusoidal 

burst 

— — 
Ensures wave 

reflection 

detection 

A
E

 M
o

n
it

o
ri

n
g

 Frequency 

Response (kHz) 
— — — 150–300 — 

Captures 

microcrack 

events 

Coupling — — — 
Coupling 

gel 
— 

Ensures 

efficient 

wave 

transmission 

D
a

ta
 A

cq
u

is
it

io
n

 Sampling Rate 

(MHz) 
— — 5–10 1–2 5–10 

High 

temporal 

resolution 

Channels — — 
Multi-

channel 

Multi-

channel 
Multi-channel 

Supports 

synchronized 

UGW and AE 

signals 

L
o

a
d

in
g

 

C
o

n
d

it
io

n
s 

Load Type 
Three-point 

bending 

Point / 

distributed 

load 

— — — 

Progressive 

loading to 

initiate cracks 

Load Range (% 20–80 20–80 — — — Incremental 

load to 
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ULT) capture AE 

and UGW 

P
re

p
ro

ce
ss

in
g

 

Filtering 

Bandpass 

50–300 

kHz 

Bandpass 

50–300 

kHz 

Bandpass 

50–300 

kHz 

Bandpass 

150–300 

kHz 

— 

Removes 

noise and 

enhances 

signal clarity 

Normalization Yes Yes Yes Yes — 

Compensates 

for sensor 

variation 

The experiment parameters and specifications used in 

the study on intelligent crack detection based on Coupled 

Ultrasonic Guided Wave (UGW) and Acoustic Emission 

(AE) Sensing are summarized in Table 1. The table is 

structured in such a way that it addresses important categories 

such as the geometry of the specimen, material 

characteristics, artificial cracks, sensor characteristics, data 

collection environment, loading, and signal preprocessing. In 

order to model representative building components, two 

representative structural materials, reinforced concrete beams 

and mild steel plates, were chosen. The beams 

(500×100×100mm) of concrete reinforced with rebars that 

are embedded inside the beam replicate the real-life 

experience of transferring stress, whereas the steel plates 

(300×300×3 -5 mm) can consistently serve as a certain 

uniform medium through which the guided-wave 

propagation can take place. Artificial cracks are 

systematically imposed in the two types of specimens, 

controlled notch depths of 2 -8 mm in concrete and 1 -3 mm 

in steel are used, and controlled defect scenarios reproducible 

by both UGW and AE responses in each case can be 

calibrated. The UGW subsystem is based on piezoelectric 

wafer transducers (PZT-5A, 10 mm diameter) to produce 5-

cycle sinuoidal bursts of 50250 kHz frequency of wave 

propagation that are suitable for the material thickness and 

wave propagation properties. AE sensors, which have a 

broadband frequency response of 150300 kHz, record 

spontaneous micro-crack events during loading. The two 

sensor networks are synchronized by a multi-channel data 

acquisition system running at high speed, which allows 

temporal synchronization of actively produced UGW signals 

and passive AE hits. The universal testing machine is used to 

apply incremental mechanical loading (20 to 80 percent of 

ultimate capacity), which is a simulation of realistic stress 

conditions under which crack initiation and propagation can 

occur. Signal preprocessing involves bandpass filtering, 

wavelet denoising, and amplitude normalization to provide 

robust, noise-free extraction of features to be correlated and 

classified further. This setup is experimentally validated by 

repeated measurements in controlled conditions. Comparison 

of the UGW reflections with the predetermined artificial 

crack locations is done, and AE events are examined to be 

consistent in terms of energy, amplitude, and timing with 

relation to load increments. Multi-specimen cross-validation 

guarantees reproducibility, and time-of-flight calculations 

and AE event arrival times triangulation are used to identify 

damage localization. 

 

Figure 5 provides a flowchart of an Intelligent Crack 

Detection System (UGW + AE), which combines both the 

Ultrasonic Guided Waves (UGW) and Acoustic Emission 

(AE) into a single device to perform complete monitoring of 

the health of the structure. System Initialization is the first 

step, which includes powering up, calibration, and sensor 

synchronization. The system is further divided into two 

concurrent operations, Continuous UGW Active Scan and 

AE Passive Monitoring, whereby the former is a script that 

periodically emits Lamb waves and records the response, and 

the latter is a script that listens to acoustic events that occur 

as noise. The two will both feed Signal Acquisition & 

Preprocessing, which will filter and de-trend data and test 

Signal-to-Noise Ratio (SNR) before marking channels as 

subpar. It is followed by Feature Extraction that determines 

UGW properties such as Time Of Flight (TOF) and 

amplitude, and AE properties such as arrival times and 

energy. The Event Detection phase encompasses these 

features that are used to detect whether a possible event has 

taken place. In case an event has been detected, the 

Classification and Filtering step is used to differentiate 

between real damage and noise. Then Data Fusion takes the 

evidence between UGW and AE and synchronizes the arrival 

time and considers different cues to improve its reliability. 

This is then followed by the Localization Module to 

determine the location of the damage, and then by the 

Quality/Confidence check. In case of low confidence level 

(poor SNR or geometry), a re-scan is issued, and otherwise, 

the system passes through Damage Characterization to 

determine the size and kind of damage. A Decision and 

Action block identifies the response that needs to be taken 

regarding the incident; this may include an immediate alarm 

in case of severe damage or planned maintenance in case of 

minor damage. Last but not least, Recording & Learning 

stores data and updates models, whereas the Maintenance and 

Fault Handling route claims sensor health failures. 



Surajit Mohanty & Subhendu Kumar Pani / IJCE, 13(2), 226-246, 2026 

 

 

237 

 
Fig. 5 Flowchart for the crack detection using the proposed technique 

 

4.1. Material Selection and Structural Specimens 

The Intelligent Crack Detection System Experimental 

assessment based on the Coupled Ultrasonic Guided Wave 

(UGW) and Acoustic Emission (AE) Sensing starts with the 

selection of representative structural materials and 

specimens. There are two basic materials: reinforced concrete 

beams and mild steel plates, which are used to replicate the 

elements of the real-world building structure, which includes 

columns, slabs, and structural connectors. A standard M25 

mix is normally used to cast concrete beams with dimensions 

of 100 x 100 x 500mm, with uniform mechanical properties. 

Embedded steel rebars ensure that structural integrity is 
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maintained and that stress transfer is enabled, just as in in-

situ conditions. In the case of metallic structures, steel plates 

with a thickness of 3-5mm and a surface area of 300x300mm 

are selected such that they can be used to investigate the 

guided wave propagation in homogeneous media. Defect 

geometry and depth are controlled with the introduction of 

artificial cracks. In concrete beams, the cracks are created by 

either a three-point bending test or notch cutting with a 

precision diamond saw at mid-span, creating depths of pre-

cracks that range between 28 mm. In the case of steel 

specimens, the Electric Discharge Machining (EDM) is used 

to make narrow cuts or fatigue cracks to mimic those formed 

at an early stage of degradation. 

 

4.2. Laboratory Setup and Instrumentation 

The laboratory facility incorporates UGW excitation and 

AE monitoring subsystems that are attached to a solid test 

frame. Epoxy adhesive is used to attach piezoelectric wafer 

active sensors (PZT-5A) of diameter 10 mm to the face of the 

specimen. The use of such PZTs has two purposes: excitation 

and reception of guided waves. Common excitation signals 

are five-cycle tone bursts with frequencies ranging between 

50kHz and 250kHz and optimized to various material 

thicknesses and any scales of the crack. The AE subsystem 

consists of broadband AE sensors (resonant frequency 

150300 kHz) attached with preamplifiers (gain 40 dB) and 

bonded to the specimen with the help of a coupling gel in 

order to provide effective acoustic transmission. Both sensing 

networks are linked to a multi-channel Data Acquisition 

System (DAQ) that has a high sampling rate (510 

MHz/channel) synchronized on a common master clock so 

that the UGW excitation and the response of an AE are time-

aligned. It consists of a signal generator, a power amplifier, a 

digital oscilloscope, and an AE monitoring unit that has real-

time event detection software. 

 

 
Fig. 6 Laboratory setup for the proposed work (BPUT, Rourkela) 

The laboratory design surrounding the intelligent crack 

detection research with coupled Ultrasonic Guided Wave 

(UGW) and Acoustic Emission (AE) sensors is shown in 

Figure 6. The system incorporates the use of several 

subsystems in order to recreate the structural monitoring 

conditions in the real world. A metallic specimen platform on 

the tabletop has a number of piezoelectric transducers and AE 

sensors placed on it to record active UGW signal as well as 

passive AE signal.  
 

Excitation of the UGW and signal capture are controlled 

through waveform generators and high-speed amplifiers, 

which makes the tone-burst generation of the specified 

frequencies precise. Spontaneous micro-crack activity is 

recorded by AE monitoring equipment, such as preamplifiers 

and threshold controllers, with a high time resolution. All the 

sensors are linked to a multi-channel data acquisition system, 

which coordinates the UGW and AE signals and sends the 

data to a central processing PC.  
 

The PC represents real-time graphical feedback, which 

displays signal waveforms, event detection, and preliminary 

metrics of localising cracks, and allows real-time analysis and 

system verification. Other instrumentation modules, 

including power supplies, calibration modules, and filtering 

controllers, are incorporated in order to keep the excitation 

amplitude, sensor coupling, and noise suppression at a 

constant level. Signal routing is done through a well-

organized cabling system, where we have visible loops where 

the flexibility of the sensor can be used, and testing of various 

geometries can be performed. Altogether, this laboratory 

setup offers a controlled, reproducible setting of experimental 

validation of hybrid UGW-AE crack detection that can 

acquire data simultaneously, preprocess signals, and monitor 

structural defects in real time in different loads and 

environmental conditions. 
 

4.3. Data Collection Protocol 

In testing, the specimens are also loaded with a Universal 

Testing Machine (UTM) to incrementally impose mechanical 

loading on the specimens to mimic crack formation and crack 

growth. The applied loads are normally between 20 and 80 

percent of the ultimate capacity of the specimen. In the case 

of UGW excitation, the signal generator produces the bursts 

of controlled frequency (e.g., 100 kHz, 150 kHz, 200 kHz) 

which are repeated every 1 second. These frequencies are 

determined with respect to the dispersion curves of the 

material so that there is a high level of propagation of the 

wave with minimum attenuation. At the same time, the AE 

sensors capture automatically generated acoustic emissions 

during micro-crack activities. UGW data are sampled at 5 

MHz to record high-frequency waveforms, whereas AE 

acquisition is sampled at 1-2MHz to provide high temporal 

resolution. The loading cycles are separated by a short dwell 

period to measure AE events without any extra mechanical 

excitation, and clean datasets to be used in correlation 

analysis between external and internal damage events. 
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4.4. Signal Preprocessing 

Both UGW and AE signals are subjected to a lot of 

preprocessing followed by feature extraction. Digital filters 

bandpass (50300 kHz) and wavelet-based denoising are used 

in the noise reduction step to eliminate ambient vibration and 

electromagnetic interference. Normalization is used in order 

to remove amplitude differences caused by sensor coupling 

differences or distance attenuation. Temporal alignment 

needs to be preserved by ensuring time synchronization 

between the two sensing channels is performed with a 

reference marker of the trigger signal of the waveform 

generator. Additional preprocessing involves the division of 

the continuous AE stream into discrete events by crossing the 

threshold and amplitude. Meanwhile, the UGW signals are 

windowed to expected arrival times so as to extract the 

reflections due to the defect-induced scattering. This is to 

guarantee that the two datasets, AE hits as well as UGW 

reflections, have a temporal correlation so that they can be 

later fused into features. 

 

Bandpass-Filtered Signal Representation: 

𝑦(𝑡) = ∫ 𝑥(𝜏)ℎ𝐵𝑃(𝑡 − 𝜏)𝑑𝜏
∞

−∞

 

Here  𝑥(𝜏) = raw input signal (AE or UGW), ℎ𝐵𝑃(𝑡 − 𝜏) 

= impulse response of the digital bandpass filter (typically 

50–300 kHz), 𝑦(𝑡) = filtered output signal. 

 

Amplitude Normalization for Sensor Consistency: 

𝑥𝑛𝑜𝑟𝑚(𝑡) =
𝑥(𝑡) − 𝜇𝑥

𝜎𝑥

 

Here 𝑥(𝑡) = filtered signal, 𝜇𝑥 = mean of the signal, 𝜎𝑥 

= standard deviation of the signal amplitude. 

 

 
Fig. 7 Propose a MATLAB model of the Crack Detection  

 

This z-score normalization ensures amplitude 

consistency across sensors, compensating for coupling 

strength variations and distance-based attenuation, thereby 

enabling fair comparison and accurate temporal correlation 

between AE and UGW channels. Figure 7 illustrates the 

MATLAB model that describes the proposed intelligent 

system of crack detection in building structures using both 

coupled Ultrasonic Guided Wave (UGW) and Acoustic 

Emission (AE) sensors. This is initiated by UGW transducers 

and AE sensors capturing raw signals of the structure. These 

signals are first processed as a wavelet transform and 

denoising (in UGW) and coupled feature extraction (in AE) 

and then subjected to time of flight and frequency domain 

analysis. An important part is the creation of a complete 

material database that contains damage signatures, which will 

be used in the analysis that follows. The raw time-series data 

are then stored and pre-processed, and utilized to produce 

training data for machine learning models like CNN, RNN, 

or SVM. The feature engineering acquires the statistical and 

time-frequency features of the data. The machine learning 

model (trained with a crack localization and sizing algorithm) 

is capable of detecting and describing cracks accurately. 

Eventually, the localized crack points are overlaid onto the 

structural geometry to create damage maps, giving a detailed 

visualization of the structural health. This combined method 

was developed in MATLAB to permit the intelligent and 

powerful evaluation of structural integrity. 

 

5. Results and Discussion 
5.1. Detection Performance Comparison 

The comparison of detection performance to identify and 

localize structural cracks is conducted between different 

methods of UGW-only, AE-only, and hybrid UGW-AE. 

Although detection based on UGW is very sensitive to 

geometric discontinuities, it might not be able to deal with 

dynamic crack propagation. On the other hand, AE-based 

detection is effective in capturing fracture events in real time, 

but it is inaccurate in localizing spatial fracture locations. The 

hybrid UGW-AE model combines the advantages of the two 

approaches to give time sensitivity and place accuracy. 

Quantitative analysis based on the performance measures of 

detection accuracy, localization error, and false alarm rate 

illustrates that the integrated sensing system has a remarkable 

improvement in reliability and resolution of intelligent crack 

detection. 

 
Fig. 8 Coupled UGW & AE Data for Intelligent Crack Structures 



Surajit Mohanty & Subhendu Kumar Pani / IJCE, 13(2), 226-246, 2026 

 

 

240 

Figure 8 demonstrates the effective integration of 

Ultrasonic Guided Waves (UGW) and Acoustic Emission 

(AE) techniques for crack detection. The UGW response 

indicates noticeable attenuation and reflections when 

transitioning from a healthy reference state to a damaged one, 

highlighting structural degradation. At the same time, AE 

parameters, including cumulative hits and energy levels, 

sharply increase with load, signaling crack initiation and 

propagation. This synchronized behavior of UGW and AE 

offers a more reliable and comprehensive assessment of 

structural health. Together, they precisely identify the onset, 

location, and progression of cracks, enhancing accuracy in 

monitoring damage under real-time loading conditions. 

 
 

Table 2. Detection performance comparison 

Method 
Detection 

Accuracy (%) 

Localization Error 

(mm) 

False Alarm Rate 

(%) 

Processing Time 

(ms) 

UGW-only 91.4 8.6 5.8 42 

AE-only 88.7 12.3 6.5 37 

Hybrid UGW–AE 97.9 3.2 2.1 55 

Statistical Fusion 95.6 5.0 3.8 51 

Decision Fusion 96.4 4.1 3.0 53 

A comparison of the detection performance of the 

various sensing techniques is presented in Table 2, which 

shows that the hybrid UGW -AE method provides the poorest 

overall results with a detection accuracy of 97.9%, the 

localization error of 3.2 mm, and the lowest false alarm rate 

of 2.1%, but has a higher processing time of 55 ms. The 

statistical and decision versions also work with an accuracy 

of 96.4 percent and 95.6 percent, respectively. In the 

meantime, the UGW-only and AE-only methods show 

comparatively lower accuracy and increased localization 

error, highlighting the fact that the hybrid UGW -AE fusion 

technique boosts considerably crack detection reliability and 

error. 

 

5.2. Sensitivity to Crack Depth and Orientation 

This result indicates that the detection accuracy varies 

with different crack sizes and orientations. 

 

Figure 9 highlights the key Ultrasonic Guided Wave 

(UGW) features used for crack detection. The top plot 

compares a healthy reference signal with one from a cracked 

structure, showing clear amplitude reduction and scattered 

waves indicative of structural damage. The bottom plot 

presents a combined Time-of-Flight (TOF) shift and 

amplitude analysis, quantifying the effect of the crack. The 

crack introduces a measurable time delay (ΔT) in wave 

arrival, significant amplitude attenuation, and mode 

conversion, producing scattered waves. These variations in 

TOF and amplitude serve as reliable indicators for detecting 

and characterizing cracks within the structure. 

 

Table 3 shows how the detection performance is 

sensitive to changes in the depth of the crack and the 

orientation. Findings show that with an increase in depth of 

the cracks and variation of orientation at 0 degrees to 90 

degrees, there is an improvement in detection accuracy in all 

the methods. 

 
Fig. 9 Ultrasonic Guided Wave Mode Conversion & Time-of-Flight 

Analysis for Crack Detection 

 

The hybrid UGW -AE method is always more accurate, 

with the highest accuracy of 98.0 at a crack depth of 2.5 mm, 

compared to 90.2 at 0.5 mm crack depth, and even higher 

compared to that of UGW and AE. UGW accuracy also 

increases gradually between 82.1 and 95.8, but the same is 

true of AE between 78.6 and 90.3. These findings affirm that 

the further and more pronounced cracks are the more 

detectable they would be, especially during hybrid sensing 

integration. 
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Table 3. Sensitivity to crack depth and orientation 

Crack Depth (mm) Orientation (°) UGW Accuracy (%) AE Accuracy (%) Hybrid Accuracy (%) 

0.5 0 82.1 78.6 90.2 

1.0 30 89.7 84.3 94.5 

1.5 45 92.3 86.5 96.2 

2.0 60 94.1 88.9 97.1 

2.5 90 95.8 90.3 98.0 

5.3. Signal Fusion Efficiency 

This result discusses improvements in feature-level fusion versus decision-level fusion. 

 

 
Fig. 10 Frequency domain analysis of UGW signal 

 

Figure 10 represents crack detection through frequency 

domain analysis of UGW signals. The top graph, an FFT 

amplitude spectrum, compares a healthy structure's UGW 

response to a cracked one. A crack typically causes an 

amplitude drop at the main excitation frequency and 

increased energy in sidebands or harmonics. The bottom 

graph shows a "Frequency Feature Metric," the centroid 

frequency shift plotted against the loading cycle. A sharp 

upward shift in this metric often signals crack initiation or 

significant growth, providing a sensitive indicator for 

damage. 

 

Table 4. Signal fusion efficiency 

Fusion Type 
Feature-Level Fusion 

Accuracy (%) 

Decision-Level 

Fusion Accuracy (%) 

Feature 

Dimensionality 

Computational 

Cost (ms) 

UGW-only 91.4 92.1 8 42 

AE-only 88.7 89.3 6 37 

Linear Feature 

Fusion 
96.8 95.7 14 53 

PCA-Based 

Fusion 
95.9 94.5 10 49 

Wavelet Fusion 97.2 96.3 16 55 
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Table 4 shows that different methods of signal fusion are 

effective in improving detection accuracy and computation. 

The findings demonstrate that the wavelet fusion is the best 

in terms of the feature-level and decision-level accuracies at 

97.2 and 96.3, respectively, because it is more effective in the 

representation of both time-frequency domain features. 

Linear feature fusion continues to do well at 96.8 and 95.7 

with accuracy, which reflects the advantage of taking 

complementary information between UGW and AE signals. 

  

5.4. Machine Learning Classification Accuracy 

This result finds a report on confusion matrices, ROC 

curves, and feature importance analysis. 

 

Figure 11 demonstrates the use of time-frequency 

analysis, via Continuous Wavelet Transform (CWT), for 

crack detection in UGW signals. The top plot compares the 

time-domain signals from a healthy reference and a cracked 

structure, showing attenuation and scattering caused by the 

crack. The bottom heatmaps display the CWT of the healthy 

(left) and cracked (right) signals, highlighting changes in 

energy distribution across the time-frequency plane. In the 

cracked structure, the CWT reveals blurring, shifts, and new 

frequency components resulting from wave-crack 

interactions. These alterations provide robust indicators for 

detecting and localizing structural damage effectively. 

 

 
Fig. 11 Time-frequency analysis of UGW signals using continuous 

wavelet transform for crack detection 

 
 

Table 5. Machine learning classification accuracy 

Model Type Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

SVM (RBF Kernel) 94.5 93.2 94.1 93.6 

Random Forest 96.7 96.2 96.8 96.5 

CNN-LSTM Hybrid 97.1 96.9 97.0 97.0 

Decision Tree 90.8 89.5 91.0 90.2 

KNN (k=5) 92.3 91.6 92.0 91.8 

Table 5 demonstrates comparative performance in terms 

of classification in different machine learning models applied 

in detecting cracks. CNN-LSTM is the hybrid model that has 

the best total performance, 97.1% accuracy, 96.9% precision, 

97.0% recall, and a F1-score of 97.0, and it is able to learn 

the features of space-temporal using the fused UGW-AE 

data.  

 

Random Forest model is next, and its classification 

measures are impressive, meaning that it deals with the 

nonlinear relationship effectively. The SVM and the KNN are 

moderately and reliably displayed, whereas the Decision Tree 

model is the lowest, with an accuracy of 90.8. These findings 

support the idea that deep hybrid models are better in terms 

of their detection accuracy and consistency. 

 

5.5. Robustness under Environmental Variations 

This result evaluates system stability under changing 

temperature, humidity, and loading conditions. 
 

Fig. 12 System robustness analysis for intelligent crack detection 
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Figure 12 presents a robustness analysis of the intelligent 

crack detection system under challenging conditions. The 

top-left graph shows detection accuracy across varying noise 

levels, with the UGW–AE fusion method (blue line) 

outperforming individual approaches. 

 
 

Table 6. Robustness under environmental variations 

Condition 
Temperature 

(°C) 

Humidity 

(%) 

UGW–AE 

Accuracy (%) 

SNR 

(dB) 

Localization 

Error (mm) 

Baseline 25 40 97.9 38.4 3.2 

High Temp 45 35 95.6 36.7 4.1 

High Humidity 30 80 94.8 34.9 4.5 

Mechanical Load Applied 25 45 96.3 37.8 3.8 

Combined Stress Test 40 70 93.7 33.5 5.2 

Table 6 shows the strength of the hybrid UGW-AE crack 

detection system in different environmental conditions, such 

as temperature variations, humidity variations, and 

mechanical stress variations. These findings indicate that the 

base condition in its purest form has the highest accuracy 

(97.9%), a Signal-to-Noise Ratio (SNR) of 38.4 dB, and a 

minimum localization error of 3.2 mm. Even though there is 

a slight performance degradation in conditions of high 

temperature, high humidity, and combined stress, with the 

accuracy dropping to 93.7% and error in localization 

increasing to 5.2 mm, the system still has a high level of 

resilience. 

 

5.6. Discussion on Practical Implementation 

These results address scalability, cost, and field 

applicability for real-time SHM.

  
Table 7. Practical implementation and system scalability 

Parameter 
UGW-

only 

AE-

only 

Hybrid UGW–

AE 

Field System 

(Proposed) 
Remarks 

Average Cost per Node 

(USD) 
450 380 520 500 

Cost-effective hybrid 

setup 

Power Consumption (W) 2.5 2.1 3.2 3.0 Moderate energy usage 

Real-Time Response (s) 0.42 0.38 0.33 0.35 
Faster hybrid 

processing 

Data Transmission Rate 

(kbps) 
230 200 275 260 

High bandwidth 

efficiency 

Field Deployment 

Reliability (%) 
92.5 90.7 97.4 96.8 

Excellent field 

applicability 

Table 7 shows the feasibility of various sensing designs 

and how these can be scaled into practice, with the proposed 

field-deployable hybrid UGW-AE system being most 

efficient. The hybrid setup shows better performance in real-

time, using a 0.33-second response time, a high data 

transmission rate of 275 kbps, and a high field deployment 

reliability rate of 97.4. Although it is a little more expensive 

in terms of its average cost per node (USD 520) and power 

consumption (3.2 W) than a single UGW or AE system, the 

increased performance and reliability of the system are worth 

the expense. The proposed field system has balanced 

performance, which guarantees cost-efficiency, intermediate 

energy consumption, and strong real-world performance. 

 

Figure 13 illustrates the Intelligent Crack Detection in 

Building Structures with the aid of Coupled Ultrasonic 

Guided Wave (UGW) and Acoustic Emission (AE) Sensing, 

proving the efficiency, dependability, and innovation of the 

hybrid method in the strengthening of the structural health 

monitoring results. The UGW and AE modalities are 

integrated by taking advantage of the spatial distribution of 

guided waves and the time sensitivity of acoustic emission, 

thus yielding better accuracy of crack detection, the early 

detection of faults, and localization accuracy. The 

experimental findings indicate that the hybrid UGW-AE 

system has an outstanding detection and localization error of 

97.9 percent and 3.2 mm, respectively, which is even better 

than single UGW-only and AE-only systems. The 

consistency of the system to various crack depths and 

orientations is further verified by sensitivity analysis, with 

results showing that the more severe the crack, the better the 

performance of the system. Fusion at the feature level, 

especially the use of wavelet-based feature-level fusion, 

offers significant advantages in detection reliability, namely, 

the effective combination of frequency-time domain details, 

the lowering of false alarms, and the introduction of signal 

clarity towards the enhancement of signal clarity. The results 

of machine learning classification indicate that the CNN-

LSTM hybrid model has the best overall performance with 

an accuracy of 97.1 and an F1-score of 97.0, which is due to 

the fact that it can learn both space and time features using 

complex hybrid datasets. Stress testing in fluctuating 
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temperature, humidity, and mechanical conditions assures a 

high level of environmental versatility with detection 

accuracy of at least 93. The originality in this work is the 

intelligent multi-Sensor data fusion framework that is backed 

up by the deep learning-based classification, which facilitates 

real-time, with high accuracy, and stability in crack detection. 

Moreover, the hybrid system developed as a field-deployable 

device is practical in terms of scalability, moderate energy 

usage, and cost-efficient design, which means that it can be 

deployed in a large-scale setting on the foundations of actual 

structures. In general, the paper creates a new, smart, and 

experimentally approved hybrid UGW-AE sensing system 

that provides a breakthrough in the automated, dependable, 

and effective operational health assessment of a current 

infrastructure network. 

 

 
Fig. 13 Practical implementation and system scalability 

 

6. Conclusion 
This research highlights that the intelligent crack 

detection system that uses the combination of Ultrasonic 

Guided Wave (UGW) and Acoustic Emission (AE) sensors 

has a better performance than single-modality systems in all 

the aspects analyzed. The hybrid system of UGW and AE 

demonstrated the maximum detection accuracy and 

minimum localization error, which proves that it is possible 

to combine the spatial sensitivity of UGW and the time-

sensitivity of AE signals. It was found that sensitivity 

analysis confirmed that the reliability of detection increased 

steadily with the depth of a crack and was also consistent over 

various directions, which confirmed that the system was 

flexible enough to handle complex structural geometries. The 

signal interpretation was greatly boosted by feature- and 

decision-level fusion, and the wavelet and PCA-based fusion 

was better in terms of augmenting the richness of features and 

the ability to discriminate. Machine learning models also 

enhanced the accuracy rates of classification, with the hybrids 
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of random forest and CNN-LSTM showing better results 

compared to traditional algorithms, manifesting successful 

learning based on multimodal feature representations. 

According to the environmental robustness tests, the 

accuracy showed low degradation in different temperature, 

humidity, and loading conditions, which revealed the 

appropriateness of the framework to be used in the real world. 

The general findings of the experiment confirm the intelligent 

smart crack-detecting system that combines Ultrasonic 

Guided Wave (UGW) and Acoustic Emission (AE) sensors 

in every aspect of performance. The hybrid UGW-AE system 

was also found to be more accurate in detection, 97.9% 

(compared to UGW-only, 91.4%), and also minimized 

localization error, 3.2 mm, and false alarm rate, 2.1% 

confirming an increased diagnostic accuracy. Sensitivity 

analysis has shown that the accuracy increases with an 

increase in crack depth, with the highest level of accuracy of 

98.0 showing a great responsiveness to the depth of the defect 

and stability of the evaluation to a maximum 90-degree 

orientation. The accuracy of feature-level fusion was 96.8-

97.2% which is higher than decision-level fusion (94-96%), 

which confirms the benefit of combined feature extraction. 

The classification of machine learning was used to prove the 

strength of the fused dataset, with the highest accuracy of 

96.7%, CNN-LSTM 97.1%, and superior precision and F1-

scores of over 96. Environmental robustness testing further 

confirmed the resilience of the system, with the accuracy of 

more than 93% and SNR of greater than 33 dB even with the 

changes in temperature (45 °C), humidity (80%), and loads. 

The results of practical implementation demonstrated the 

reliability of the hybrid system (97.4) with the average 

response time (0.33 s) and moderate power consumption (3.2 

W), which made the hybrid system efficient and field-

deployable. Taken together, these confirmed findings attest 

to the fact that the hybrid UGW-AE sensing system provides 

the best accuracy, sensitivity, robustness, and scalability, 

making it a promising and smart solution to the ongoing, 

high-resolution crack detection and durability structural 

health monitoring of the current building infrastructure. 
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