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Abstract 

The effect of superficial gas and liquid 

velocities, particle diameter and sphericity, physical 

and rheological properties of liquids on gas holdup 

were studied in a three phase internal loop airlift 

fluidized bed reactor. Air was used as a gas phase. 

Water, n-butanol, various concentrations of glycerol 

(60 % and 80 %) were used as Newtonian liquids and 

different concentrations (0.25 %, 0.6 % and 1.0 %) of 

carboxy methyl cellulose (CMC) solutions were used 

as non-Newtonian liquids. Spheres, Bearl saddle and 

Raschig ring with different diameters were used as 

solid phases. Superficial gas velocity varied from 

0.000142 m/s to 0.005662 m/s and superficial liquid 

velocity varied from 0.001 to 0.12 m/s. The 

experimental result shows that increase in particle 

size and superficial gas velocity increases gas holdup 

and decreases with increase in concentration of 

Newtonian and non-Newtonian systems. Based on the 

experimental results a separate correlation was 

developed to predict gas holdup for both Newtonian 

and non-Newtonian liquids for wide range of 

operating conditions. 
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I. INTRODUCTION 

Internal loop airlift fluidized bed reactors are 

widely used in chemical and petrochemical industries 

for their advantages like high efficiency of 

homogeneities and intense mixing in the absence of 

moving parts. In biochemical industries these reactors 

are used for high oxygen transfer rate, minimum cell 

rupture compared to external driven mixing system 

such as agitated vessels. In order to design, scale-up 

and for flexible operation of three-phase internal loop 

air-lift fluidized bed reactors for continuous effluent 

treatment process or biochemical applications, 

knowledge of the hydrodynamic parameter gas holdup 

is essential. Internal loop airlift fluidized bed reactor is 

constructed by mounting a draft tube inside a bubble 

column, the column is divided into two zones; one is 

gas sparged riser, an unsparged down comer, and a 

degassing zone at the top to remove the gas bubble 

from the riser. The compressed gas is sparged into the 

riser zone. The gas hold up in riser creates a density 

difference between the riser and down comer which 

induces liquid circulation. This liquid circulation 

enhances heat and mass transfer between phases are 

totally depends on the gas hold up, which is major 

hydrodynamic parameter for scale up. Many authors 

experimentally studied the gas holdup in three phase 

internal loop airlift fluidized bed reactors (Koide et 

al.1983 &1984, Freitas et al.1999, Lo et al.2003, 

Garcia-Calvo et al.1999, Sun et al.2005 & 2006, 

Tobajas et al.1999, Olivieri et al.2003, Zhang et 

al.2005) with Newtonian liquid systems. Only few 

authors dealt with non-Newtonian liquids in three 

phase internal loop airlift fluidized bed reactor 

(Kennard and Janekeh 1991, Li et al.1995, Hwang et 

al.1997, Jin et al.2006) but they restricted their studies 

only with stagnant liquid systems. Since effluent 

treatment is a continuous process and nature of 

effluent may behave either Newtonian or non-

Newtonian depending on the source and concentration 

of pollutants, there is need to study the influence of 

fundamental and operating variable on the above said 

parameters and hence in this paper an attempt has been 

made to study the influence of particle diameter, 

sphericity, superficial gas and liquid velocities, 

physical and rheological properties of Newtonian and 

non-Newtonian liquids on gas holdup and to develop a 

correlation to determine the gas holdup from the 

fundamental and operating variable. 

 

II. EXPERIMENTAL SET UP AND 

PROCEDURE 

The schematic diagram of the experimental 

setup is shown in Fig. 1.The reactor was constructed 

of 0.15 m id Perspex column and 1.63 m in height. 

Inside diameter of the draft tube was 0.084 and 1.54 m 

in height. The draft tube was located above 0.09 m 

from the gas distributor. Air was sparged into the draft 

tube through sparger which is 0.08 m in diameter with 

holes of 0.0008 m each located slightly below the 

perforated plate. Gas holdup was measured by volume 

expansion method (Chisti, 1989).The densities of the 

liquids were measured by specific gravity method and 

the rheological properties of non-Newtonian liquids 

were measured by using Brookfiled Rheometer. 

Superficial gas velocities are varied from 0.000142– 

0.005662 m/ s. Superficial liquid velocities are varied 

from 0.001 to 0.12 m/s. The liquids used in this study 

were tap water, n-butanol and 60% and 80% 

concentrations of glycerol were used as Newtonian 

fluids and various concentrations of (0.25 %, 0.6 % 
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and 1.0 %) CMC was used as non-Newtonian fluids. 

Different diameters of Spheres, Bearl saddle and 

Raschig ring were used as solid phases. Experiments 

have been carried out in an atmospheric temperature 

with oil free compressed air as gas phase. The 

properties of liquids and solid particles used in the 

present study are given in Tables 1 and 2. 

 

III. RESULTS AND DISCUSSIONS 

 

A. Effect of Phase Flow Rates on Gas Holdup 

Effect of superficial gas and liquid velocity 

on gas holdup for air-water system is shown in the 

Fig. 2. From the Fig. 2 it is observed that an increase 

in superficial liquid velocity increases the velocity of 

the gas bubble and hence gas holdup decreases. 

Increase in superficial gas velocity increases the 

fraction of gas bubbles in the column resulting 

increase in gas holdup. Similar results were also 

obtained by Koide et al. (1983) for air-water system. 

The same trend was also observed for different 

particle sizes in air-butanol, air-80 % glycerol, and 

air-0.6% CMC system which are shown in Figs. 3- 6. 

 

B. Effect of Particle Diameter and Sphericity on 

Gas Holdup 

Effect of particle diameter on gas holdup for 

air-water system is shown in Fig. 7 which is drawn 

between superficial liquid velocity and gas holdup. 

From the Fig. 7 it is observed that an increase in 

particle diameter increases gas holdup. Figs. 8-11 

show the effect of sphericity of particles on gas 

holdup for different superficial gas velocities .From 

the Figs it is observed that increase in particle 

sphericity does not have any significant influence on 

gas holdup. 

 

C. Effect of Physical Properties of Liquids on Gas 

Holdup 

Figs. 12 & 13 show the effect of physical 

properties of air-water, air-butanol, air-60 % glycerol 

and air-80% glycerol systems on gas holdup for the 

superficial gas velocities 0.001415 m/s and 0.005662 

m/s respectively. The Figs. 12 & 13 show that an 

increase in concentration of liquid decreases the gas 

holdup; this may be due to the formation of large 

bubbles at higher concentrations of solutions. The 

same trend was also observed by Hwang et al. (1997) 

and Wen et al. (2005). From these Figs it is also 

observed that decreasing surface tension of liquid 

increases gas holdup. Fig. 14 shows the effect of fluid 

behavior index for 0.25, 0.6 and 1.0 % CMC liquids. 

From the Fig. 14 it is observed that an increase in fluid 

behavior index of liquid decreases the gas holdup. The 

same trend was also observed for the superficial gas 

velocity 0.005662 m/s which is shown in Fig. 15. 

 

From the analysis of literature it is found that 

none of the authors developed correlation to predict 

gas holdup for wide range of operating variables using 

Newtonian and non-Newtonian liquids. From the 

experimental data, a separate dimensionless 

correlation was developed to predict the gas holdup, 

which can be used for Newtonian and non-Newtonian 

liquids for continuous flow. 

 

  d  0.8  ρ  − ρ  −0.55   
0.1 −0.036 p   P  L −0.04  

εg = 0.98(Frg ) ( Frl ) 
 

  

  

   

 

(MO ) ---- Eq. 1 d   ρ  
   c    L     

The comparisons of our experimental and 

calculated values of the gas holdup for Newtonian and 

non-Newtonian liquids are shown in Figs. 16 and 17. 

They show good agreement between the experimental 

and calculated gas holdup with the average deviation of 

15 % for 1580 data 

 

IV. CONCLUSION 

The experimental results show that the increase 

in particle diameter increases the gas holdup and 

decreases with increase in superficial gas velocity for 

air-water, air-butanol, air-80% glycerol and air-0.6 % 

CMC systems with different particle sizes. The increase 

in concentration and fluid behaviour index of liquids 

decreases gas holdup. 

 

Nomenclature                

dp- Diameter of the particle, m             

dc- Diameter of the column, m             

Frg- Froude number for gas- 
 

Frg = 
   U g 2     

          

    

g.d p 

 

           

Frl- Froude number for liquid- Frl = 
   
U

l 2     
   

g.d p 

 

g - Acceleration due to gravity, m/s
2 
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K – Fluid behavior index           

4 
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K 
    

  

 

       

  d       

Mo-Morton number- Mo = 
   p    

g  

ρ σ 3 
    

       

    l   l      

n- Fluid consistency index 

 

Ug- Superficial gas velocity, m/s Ul- 

Superficial liquid velocity, m/s ρs- 

Density of the solid, kg/m
3 

 

ρl- Density of the liquid, kg/m
3
 

εg- Gas holdup 

 

σl – Surface tension of liquid, N/m 
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Table 1. Properties of Liquids          
         

 
System Liquid density 

 
Surface tension 

Viscosity  
      

 
description 

 
(ρl) kg/m3 

 
(σl) N/m 

K  
n 

 
   

kg m-1sn-2 

  

          

 Water 1000 0.0700 0.00083  1  
        

 n-Butanol 1008 0.0350 0.00098  1  
        

 80 % Glycerol 1180 0.0650 0.030  1  
        

 60 % Glycerol 1155 0.0660 0.0185  1  
        

 0.25 % CMC 1026 0.0730 0.0197  0.87  
        

 0.6 % CMC 1020 0.0735 0.0308  0.86  
        

 1.0 % CMC 1017 0.0740 0.0565  0.85  
           

Table 2. Properties of Solids          
          

 Particle description  Size, dp, m  Density, kg/m
3 

Particle sphericity  
           

 Particle 1   0.001  2478 1    
           

 Particle 2   0.002  2478 1    
           

 Particle 3   0.003  2478 1    
           

 Particle 4   0.004  2478 1    
           

 Particle 5   0.005  2478 1    
           

 Particle 6   0.006  2478 1    
           

 Particle 7   0.01036  2478 1    
           

 Particle 8   0.0115  2456 0.33    
           

 Particle 9   0.01366  2083 0.58    
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Figure 1. Effect of Phase Flow Rates on Gas Holdup 
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Figure 2. Effect Of Phase Flow Rates On Gas 

Holdup 
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Figure 3. Comparison Between the Experimental and Calculated Values of Gas Holdup for Newtonian Liquids 
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Figure 4. Comparison Between The Experimental And Calculated Values of Gas Holdup For Non-Newtonian Liquids 


