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Abstract - This paper offers a comprehensive evaluation 

aimed at predicting the water content outcome of natural 

gas systems using artificial intelligence. In this study, an 

artificial intelligence model- a three layer artificial neural 

network model- has been developed using past gas 

dehydration process data to predict the water content 

outcomes in natural gas dehydration systems.  The water 
content outcomes are Class 0 which represent data points 

that meet the water content specification of 7 lb/MMscf or 

Class 1, which do not. The input features of the model are 

temperature of the reboiler in ºF, stripping gas flow rate in 

scf/gal triethylene glycol (TEG), number of equilibrium 

stages in the contactor, and TEG circulation rate in gal 

TEG/lb H2O. An exploratory data analysis was carried out 

on the training data and the optimum process parameters 

found are TEG recirculation rates between 3.2 and 3.8 gal 

TEG/lb H20, reboiler temperatures between 380ºF and 

400ºF, stripping rate of 0 – 3 scf/gal TEG, and two and 

three equilibrium stage contactors. The model was 
evaluated against test data and experimental data from 

literature and F1 scores of 0.969 and 0.987 were obtained 

respectively. This showed that the model was able to 

predict correctly the expected water content outcomes of 

new gas dehydration data points. 

 
Keywords — Natural gas dehydration, water content, 
artificial intelligence, artificial neural network, modelling. 

I. INTRODUCTION 

Natural gas is still an important source of fossil fuel in 

the energy industry today. Natural gas is obtained from oil 

and gas reservoirs and is normally saturated with water 

due to the formation water contained in the reservoir. For 

the natural gas to be saleable, the water in it must be 

dehydrated and the water content known. The water 

content of natural gas has been evaluated by several 

methods such as experimental phase equilibrium studies, 

empirical charts, mathematical correlations, and 
thermodynamic models. Physical experimental phase 

equilibrium studies of the TEG–water systems have been 

restricted by low-temperature conditions and boundless 

dilution regions. They are not as exact and dependable 

over specific temperatures and have poor extrapolation at 

these endless dilution regions [1]. Empirical correlation 

and charts show simplicity of calculations and relative 

ease of use respectively [2]. The McKetta-Wehe empirical 

graph is appropriate for sweet natural gas at low 
temperatures and pressure [3]. However, as temperature, 

pressure, and acid gas content in the natural gas increases, 

the charts gets inclined to error as the saturated water 

content in pure acid gas is higher than the saturated water 

content in sweet natural gas combinations. The 

mathematical correlation method also requires a few 

tuning boundaries and coefficients. A good number of 

them also stem from empirical charts that are already 

prone to readability errors. Thermodynamic models 

require long and troublesome calculations and need a few 

parameters to be obtained from tedious EOS calculations 
to get the activity coefficient of water. The models 

additionally require extraordinary attention to track down 

a suitable relationship for fitting experimental information 

and periodically, these strategies have lower precision at 

anticipating water content at low temperatures [2].  

However, with the huge amount of data being produced 

because of the industrialization and digitization of 

numerous areas in the industry and with the development 

of super-fast PCs, it has been possible to take this 

information and see patterns that give answers to 

engineering issues. Artificial intelligence algorithms like 

artificial neural network (ANN) take in data and make 

internal models by pattern matching with the input and 

output and updating the weights of the network 

simultaneously. Innovative research in learning cycles, for 

example, the back propagation algorithm has made it 

possible to tackle numerous non-linear complex issues 
precisely. Dreary, costly, and moderate trials needed for 

research are being supplanted with artificial intelligent 

models that gain from historical data. The benefits of 

ANN over empirical model are that ANN can consistently 

optimize its weights that fit the model when given more 

data point, henceforth prompting a more vigorous model 

[4]. Artificial intelligent models are black box models, 

which makes them simple to utilize and require negligible 

numerical correlation intricacy. However, the researcher 

equipped with broad and relevant information as found in 

the rich data being inputted into the algorithm makes the 

artificial intelligence model successful for predictive 
capacities.  

Artificial neural networks model complex non-linear 

problems; they do so by learning the frequently complex 

dynamic behaviour of a physical system. Learning is done 

by adjusting the network’s internal parameters or weights 

http://www.internationaljournalssrg.org/IJCER/paper-details?Id=43
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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typically in such a way to minimize the squared error 

between the network’s outputs and the desired outputs [5]. 

All the weights are optimized simultaneously using 

optimization algorithms like gradient descent or Adam 

[6]. 

Artificial intelligence in chemical engineering was first 

seen in expert systems. Expert systems showed a lot of 

promise to artificial intelligence in chemical engineering 

in the 80’s. Expert problem-solving typically involves 

large amounts of specialized knowledge, called domain 

knowledge, often in the form of rules of thumb, called 
heuristics, typically learned and refined over years of 

problem-solving experience. The amount of knowledge 

manipulated is often vast, and the expert system rapidly 

narrows down the search by recognizing patterns and by 

using the appropriate heuristics [7]. 

The works of Banares-Alcantara et al. [8], [9] showed 

the early researches done on expert systems on physical 

property predictions, catalyst selection & malfunction 

diagnosis respectively. Chemical engineering researchers 

in the 80’s adapted AI theories into chemical engineering 

problems, mostly process systems engineering problems, 

notable of which is Basila et al.’s work on chemical 

reactor control [10] and Takagi et al [11]. Very early 

works of Kramer [12] also used expert systems and 

Hoskins et al. [13] and several others used artificial 

network to model fault diagnosis in chemical plants [14], 

[15] – [17].  

Early neural networks research such as Thompson and 

Kramer [18] and Bakshi and Stephanopoulos [19] showed 

the usefulness of artificial neural network in solving non-

linear problems in chemical engineering. Elgibaly & 

Elkamel [4] developed several artificial neural networks 

(ANN) for the prediction of hydrate formation pressure 
(output) of various pure gases, gas mixtures and various 

inhibitors using hydrate phase equilibrium data. Gas 

gravity and temperature were inputs in one model while 

varying gas compositions, inhibitors and temperature were 

inputs in the other models.  

The ANN gravity models were compared with 

empirical correlations based on gas gravity and achieved 

better accuracy while the ANN composition models were 

compared with statistical thermodynamic models. Katare 

et al. [20] did early work on intelligent system for reaction 

kinetic modelling and catalyst. Efforts were made to work 

on hybrid system researches, and these have been reported 

by Sundaram et al. [21]. AI can also be seen to predict the 

rate of corrosion damage in carbon steel pipes [22]. With 

the increase in automation and integrated process controls 

and increased competitive nature of the manufacturing 

industry, the use of artificial intelligence to solve some 
chemical engineering problems is a wise decision. 

Architecturally, a neural network consists of nodes or 

neurons or perceptrons in a layer that have weights 

attached to them and are connected from the input layer 

through the hidden layers to the output layer through an 

activation function. The accuracy of model representation 
is dependent directly on the architecture of the neural 

network [2]. Neural networks have always existed in the 

80’s but funding and research decreased due to the high 

computation cost and handicapped technology [7]. 

A simple neural network takes in multiple inputs in a 

layer called input layer and creates an internal or hidden 

layer using a non-linear activation function, a , like 

sigmoid function, σ(x) =
1

1+e−x
 , of the input layer values 

and weights. Values from this hidden layer now map out 

to a last layer called output layer where the activated 

values in the hidden layer serve as its own input values. 

This process is called forward propagation. Having too 

little neurons in the hidden layer will lead to a model with 

low accuracy while having too many neurons will lead to 
over complication of the model, overfitting, poor 

generalization, and more computation time. 

When the final hypothesis is obtained, the cost function 

for fitting the weights of the neural network is calculated. 

The cost function is minimized by doing the computation 

of the error values using the back propagation method that 
is, the gradient of the error values are calculated from the 

back of the neural network structure [23]. The gradient of 

the error values of the output layer is calculated before the 

gradient of the error values of the hidden layers.  

LeCun et al. [24] have indicated the back propagation 

of errors procedure to compute the gradient of an 

objective function with respect to the weights of a 

multilayer stack of modules is a practical application of 

the chain rule for derivatives. The gradients of the input 

layer weights are obtained from the gradients of the output 

layer weights backwardly. The back propagation 

algorithm is a very effective method to adjust the weights 

of a neural network till the calculated hypothesis matches 

the desired output value.  

Due to the fact that the sigmoid function always maps 

its inputs to either a 0 or 1 output, neural networks are 

very useful for complex classification type problems 

where it is either something is or is not. As with logistic 

regression, when a neural network’s hypothesis gives a 

value of 0.9 for example, it means that the hypothesis has 

a 90% chance of belonging to output class 1. Many 

applications of deep learning use feed forward neural 

network. 

The following works have used one form of artificial 

intelligence model to estimate water content in natural 

gas. Amir & Dominique [2] developed an artificial neural 

network using a three layer feed-forward neural network 

and a modified Levenberg-Marquardt algorithm for 
estimating the water content of natural gases in 

equilibrium with liquid water and gas hydrates at low 

temperatures using experimental data. The output, 

logarithm of the water content was a function of the 

inputs, inverse of temperature and pressure. The 

architecture of the model was one input layer with two 

neurons, one hidden layer with six neurons and one output 

layer with one neuron. An average absolute deviation 

value of 4.4% was obtained from the experimental and 

predicted values when compared with independent 

experimental data and the results of past predictive 

approaches.  
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Ahmadi & Bahadori [25] used intelligent systems in 

artificial neural network  least square support vector 

machine (LSSVM) coupled with genetic algorithm to 

estimate the water dew point(output vector) of a natural 

gas stream at different TEG concentrations and contactor 
temperature (input vectors). The R2 value and mean 

square error of the model was calculated. 

Ghiasi et al. [26] developed two mathematical-based 

models to estimate the water content of natural gas dried 

by solid calcium chloride dehydration units. The first was 

a simple empirical correlation where water content was a 
function of temperature and pressure. The second was a 

three layer neural network with temperature and pressure 

as the input. Both models were compared with reported 

literature and were quite accurate with average absolute 

deviation of less than 0.2%.  

Tatar et al. [27] used radial basis function neural 

network, LSSVM to predict the water content in a 

dehydration system using solid dehydrator CaCl2 for both 

fresh charging and before recharging conditions. The 

input parameters were temperature and pressure of the 

dehydrator and MATLAB was used for the computation. 

The developed model was compared with previously 

proposed intelligent models and classic correlations.  

II. METHODOLOGY 

This part focuses on the methodology employed in 

building a model that predicts the water content outcomes 

in natural gas dehydration systems using artificial 
intelligence. In the dehydration of natural gas, sales gas 

suppliers have to meet up with a water content 

specification of 7 pounds of water per million standard 

cubic feet of gas (7 lb/MMscf) or lower. When there is 

any deviation from this, the gas is tagged off-spec and a 

lower monetary value is placed on it. Therefore, the two 

water content outcomes are gas that meets the water 

content specification and gas that do not meet the water 

content specification. 

 

Exploratory Data Analysis (EDA) 

An exploratory data analysis was carried out on the 
training data used in building the artificial neural network 

model. The EDA carried out show the effects of varying 

the dehydration process parameters on the dehydration 

process parameters and water content outcome and 

invariably the expected water content outcomes of new 

dehydration process parameters. It also shows the 

optimum value for each dehydration process parameters to 

ensure the water content specification is met. The EDA 

was carried out by making a visualisation plot of all the 

input features, and their relationship with each other and 

the output, water content outcome. 
 

Source and Nature of Data 

The source of the training data used in this work is 

quantitative secondary data from the work of Hernandez-

Valencia et al., [28]. They designed and optimized a 

typical TEG dehydration unit with PROSIM software by 

varying the following process parameters; temperature of 

the reboiler in ºF, stripping gas flow rate in scf/gal TEG, 

number of equilibrium stages in the contactor, and TEG 

circulation rate in gal TEG/lb H2O. The residual water 

content of the sales gas was calculated for each variation. 

The base set of dehydration process parameters used to get 

the data in their work is suitable for this work and is 
shown in Table 1. The data from the work of Hernandez-

Valencia et al., [28] was comprehensive enough to serve 

as training data for this study. 
 

Table 1: Base Dehydration Unit Process Parameters 

[28] 

Inlet gas temperature 90ºF 

Inlet gas pressure 500 psia 

Inlet gas composition: 
 

Methane 85.1 mol % 

Ethane 8.5 mol % 

Propane 3.8 mol% 

n-Butane 1.9 mol % 

n-Pentane 0.7 mol% 

Lean glycol temperature 90ºF 

Rich glycol flash pressure 65 psia 

Regenerator pressure 1 atm 

Equilibrium trays in contactor 2 

Data Manipulation 

This work is a classification type problem and 

classification type problems require the output training set 
data be labelled either 0 or 1. Using the water content 

specification limit of 7 lb/MMscf, the discrete water 

content values in the work of Hernandez-Valencia et al. 

[28] were turned into categorical data and classified as 

either 0 or 1. Class 1 represents data points that do not 

meet the water content specification(water content 

numbers greater than 7 lb /MMscf) and Class 0 represents 

data points that meet the water content specification 

(water content values of 7 lb /MMscf and below). After 

data manipulation, the discrete water content values 

became qualitative as they are now represented as either 0 
or 1. Table 2 shows the new characteristics of the data. 

2020 data points were obtained from Hernandez-Valencia 

et al. [28], of which 985 data points are class 1 and 1035 

data points are class 0. Table 3 shows a sample of the 

2020 data collected.  

 
Input Features and Output of the Model 

The features (input) chosen to be used in building this 

model are temperature of the reboiler in ºF, stripping gas 

flow rate in scf/gal TEG, number of equilibrium stages in 

the contactor, and TEG circulation rate in gal TEG/lb 

H2O. These four input features were chosen because they 

are the critical parameters important for the optimization 
of a gas dehydration system in order to get the most 

optimal water content outcome [29]. The target (output) is 

the water content outcome usually in lb H20/MMscf but 

will be represented as 0 or 1 because this is a binary 

classification problem. These features were chosen 

because in order to design an optimal dehydration system, 
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these are the most important variables that affect the water 

dehydration efficiency [28]. These input features and 

output, water content outcome make up the training data. 

Data Preparation 

Using the Pandas library in Python programming 
language, the data set in Table 3 and the URL stated 

below, which contains 2020 data points, was vectorized 

and the input features and output were specified. The 

entire input features, TEG recirculation rate, number of 

equilibrium stages, temperature of the reboiler, and 

stripping gas flow rate, are represented as X  and the 

labelled output, water content outcome is represented as y 

in this model. The data was split randomly into three parts 

using the 60/20/20 ratio. Each part was set apart for 

training, validating, and testing the model respectively. 
All the input features of the training data were 

standardized by subtracting the mean of each input feature 

from each input feature’s data point and dividing by the 

standard deviation. Standardization of input features is 

important for the model to run faster. The standardized 

data was fed into the model algorithm. 

Life Cycle of the ANN Model Building 

    The following steps were employed in building the 

ANN model. 

Model Definition 

The model architecture chosen for this artificial neural 

network (Fig. 1) consists of three layers, these are the 

input layer, hidden layer and output layer. One hidden 

layer is chosen because it is sufficient for a large majority 

of chemical engineering problems [26]. Using Python 

programming language, the Sequential model in the 

TensorFlow library is the choice of model as this creates a 
stack of layers that map the input layer to the output layer 

linearly. The input layer will contain four nodes which 

represents the four standardized input features of the 

model. The input layer of the model is a 4 x 2020 matrix, 

representing the four input features and 2020 data points. 

The hidden layer will contain seven nodes, which contain 

the hidden layer activation values. Seven was chosen in 

accordance with a rule of thumb on the size of hidden 

layer which says the hidden layer should never be more 

than twice as large as the input layer [30].  

 

Figure 1. Model architecture 

The hidden layer is a 7 x 2020 matrix, representing the 

seven hidden layer nodes and 2020 data points. The output 

layer has one node, the target variable water content 

outcome, represented as 0 or 1 as this is a classification 

problem. The activation function used for the hidden layer 
is rectified linear unit because it is computationally 

efficient (Equation 1 and 2). The sigmoid activation 

transfer function is used for the output layer which 

computes the final hypothesis (Equation 3 and 4). The 

output layer is a 1 x 2020 matrix, representing the output 

layer single node and 2020 data points. As discussed in 

chapter 2, since the activation function for the final output 

of the model, aOi , is a sigmoid function, the output layer 

single node aOi  which is the prediction of the model 

outputs values between 0 and 1. And for any value of aOi 
that is obtained, it means the probability of the water 

content outcome to belong to class 1 is aOi. A decision 

boundary of 0.5 is employed, so for any aOi  value less 

than 0.5, it means the water content outcome of that set of 

dehydration parameters is class 0. The model contains 35 

weights; 28 (7x4 matrix) weights (θ1 to θ28) between the 

input layer and the hidden layer and seven (1x7 matrix) 

weights (θ29 to θ35 ) between the hidden layer and the 
output layer. The weights of the model are initialized 

randomly with the He initialization method [31], [32].  

Table 2: Training Data Process Parameters [13] 

 Process parameters 
Data range Data type 

Reboiler temperature (°F) 360, 380,400 

Ordinal 

categorical 

data 

Number of equilibrium stages 1, 2, 3 

Ordinal 

categorical 

data 

Stripping rate (scf/gal TEG) 0, 1,3,6 

Ordinal 

categorical 

data 

TEG recirculation rate (gal TEG/lb H2O ) 0.6 to 8.3 

Numerical 

continuous 

data 

Output   

Water content outcomes 0,1 

Ordinal 

categorical 

data 

 

 

Table 3: Sample of Training Data Collected [13] 
TEG 

recirculati

on rate 

Equilibrium 

stages 

Reboiler 

temperature 

Stripping 

rate 

Water 

content 

outcome 

0.600 3 400 0 1 

1.200 3 400 0 1 

1.400 3 400 0 1 

1.413 3 400 0 1 

6.118 2 400 6 0 

2.422 3 400 0 0 

1.452 3 400 0 0 

1.465 3 400 0 0 

1.478 3 400 0 0 

3.700 2 400 0 0 
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3.714 2 400 0 0 

3.729 2 400 0 0 

3.743 2 400 0 0 

3.757 2 400 0 0 

6.571 1 360 0 1 

6.707 1 360 0 1 

6.843 1 360 0 1 

6.979 1 360 0 1 

7.114 1 360 0 1 

1.700 1 380 0 1 

2.000 2 400 3 0 

4.886 1 380 0 1 

5.007 1 380 0 1 

3.057 1 400 0 1 

1.771 2 400 1 1 

3.071 1 400 0 1 

 

 𝑧𝐻𝑖 = 𝜃𝐻𝑖𝑥𝐼𝑖 (1)  

 𝑓(𝑧𝐻𝑖) = 𝑎(𝑧𝐻𝑖) = 𝑚𝑎𝑥(0, 𝑧𝐻𝑖) = 𝑎𝐻𝑖 (2)  

 𝑧𝑂𝑖 = 𝜃𝑂𝑖𝑎𝐻𝑖 (3)  

 𝑓(𝑧𝑂𝑖) = 𝑔(𝑧𝑂𝑖) =
1

1 + 𝑒−𝑧𝑂𝑖
= 𝑎𝑂𝑖 

(4)  

Where: 

x= input features 

θ= weights of the model 

z= weights and input summation 

a= activation value 

i= 1 to n, where n = number of nodes in the layer the i 
is attached to 

I= Input layer 

H= Hidden layer 

O= Output layer 

aOi=final output of the model 
 

Model Compilation 

The model was compiled by specifying the loss 

function, the optimization algorithm for updating the 

weights of the model, and the metrics for evaluating the 

model. The loss function will be calculated using the 

labeled output y  of the training data and the final 

hypothesis/output of the model aOi with the binary cross-

entropy/log loss function as the output has only two 

classes. The derivatives of the cost function will be 

calculated using back propagation. The weights of the 

model will be updated with Adam optimizer until the 

difference between the labeled output y  of the training 

data and the final hypothesis/output of the model aOi  is 
very low. Adam optimizer was chosen because it is the 

most efficient optimizer for solving deep learning 

problems [6]. The metric chosen is accuracy. 

 
 

Model Fitting 

The model was then fitted with the training data using 

epochs of 150 and a batch size of 32. An epoch of 150 

means the model went through the entire training data 150 

times, with batch sizes of 32 data points per batch. Fitting 

the model produced outputs, model loss and model 

accuracy, for the training and validation data as specified 

in the model compilation cycle. Figure 1 shows the code 

used for the model definition, compilation, and fitting.  

The full dataset and code can be found in this URL 

https://github.com/miracleolayemi/Prediction-of-water-
content-outcomes-in-gas-dehydration-systems-using-AI. 

Part of the code is given below: 

from pandas import read_csv 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn import preprocessing 

from sklearn.preprocessing import LabelEncoder,  

StandardScaler 

from tensorflow.keras import Sequential 

from tensorflow.keras.layers import Dense 

from sklearn.metrics import confusion_matrix, f1_score, 
recall_score,precision_score 

np.random.seed(42) 

%matplotlib inline 

#Predicting the test set values 

y_predict=model.predict_classes(X_test) 

#Making the confusion_matrix 

cm=confusion_matrix(y_test,y_predict) 

print('CM:',cm) 
pscore=precision_score(y_test,y_predict) 

print('PS:',pscore) 

rscore=recall_score(y_test,y_predict) 

print('RS:',rscore) 

fscore=f1_score(y_test,y_predict) 

print('F1S:',fscore) 
 

 
Figure 2. Code used for the model definition, 

compilation, and fitting 

https://github.com/miracleolayemi/Prediction-of-water-content-outcomes-in-gas-dehydration-systems-using-AI
https://github.com/miracleolayemi/Prediction-of-water-content-outcomes-in-gas-dehydration-systems-using-AI
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III. RESULTS AND DISCUSSION 

 

Optimum Value for Dehydration Process Parameters 

From the EDA, the optimum value for each 

dehydration process parameters to ensure the water 

content specification is met has therefore been seen to be 

TEG recirculation rates between 3.2 and 3.8 gal TEG/lb 

H20 and above, reboiler temperatures between 380ºF and 

400ºF, and two and three equilibrium stage contactors 

only. Specifically, the optimum values of  input features 

for number of equilibrium stage, reboiler temperature and 
TEG recirculation rates respectively are (2,400,3.6) or  (3, 

380,3.8) or (3,400,3.2). 

Accuracy 

Figure 3 shows the model’s training and validation data 

accuracy per epoch. It can be observed that the accuracy 

increases for both training and validation datasets as the 
model learns from the data. It can also be seen that the 

training accuracy is higher than the validation accuracy, 

showing that the model is not overfitting. The ANN’s 

model final training and validation data accuracy were 

97.3% and 96.3% respectively. This shows that the model 

got 97.3% of its water content outcome prediction right 

for the training data and 96.3% for the validation data. 

Also, the accuracy of the model when evaluated with the 

test data is 96.8%. This shows that the model got 96.8% of 

its water content outcome prediction right. This means 

that for every new prediction for an unseen dehydration 
data set, the model is poised to get the prediction of the 

water content outcome right 96.8% of the time.  

 
Figure 3. Model accuracy for training and 

validation dataset 

Loss 

 Figure 4 shows the model’s training and validation loss 

per epoch. It can be observed that the loss reduces as the 

model learns from the data. It can also be seen that the 

training loss is lower than the validation loss, showing that 

the model is not overfitting. The ANN’s model final 

training and validation data loss was 0.084 and 0.097 

respectively. Also, the loss of the model when evaluated 

with the test data set is 0.076.  The loss function 

represents how far apart the predicted water content 

outcome is from the water content outcome. The loss is 

close to zero, and it shows the model performed well.  

 
Figure 4. Model loss for training and validation 

dataset 

F1 Score 

The F1 score of the model when evaluated with test 

data was obtained. The F1 score of the model is 0.969. 

This is the most important metric for the model. This puts 

the precision and recall score into consideration and a F1 

score close to 1 is very efficient.  

Evaluation with Experimental Data Result 

The ANN model was evaluated with dehydration 

process data from Arubi & Duru [14]. Table 4 shows the 

summary of the ANN result when evaluated with the test 

data and experimental data. It can be seen that the 

accuracy and F1 score are high showing good 

generalization capability of the model.  

Result of new predictions 

From the result of the EDA, data points that meet water 

content specifications are TEG recirculation rates between 

3.2 and 3.8 gal TEG/lb H20 and above, reboiler 

temperatures between 380ºF and 400ºF, and two and three 

equilibrium stage contactors and stripping gas rate value 

of 3 scf/gal TEG. Therefore, using the following unseen 

input feature values for TEG recirculation rate, number of 

equilibrium stage, reboiler temperature and stripping rate 

respectively, (2.9, 1, 360, 0) for data points that do not 
meet water content specification, the model predicted the 

final activation output and because the final activation 

output was greater than the decision boundary of 0.5, the 

model successfully predicted class 1. Using these unseen 

(3.2, 2, 400, 3) input features for data points that meet the 

water content specification, the model predicted the final 

activation output and because the final activation output 

was less than the decision boundary of 0.5, the model 

predicted successfully class 0. 
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IV. CONCLUSIONS 

The ANN model was successfully built and had an 

accuracy of 96.8%, loss of 0.076, and F1 score of 0.969 

when evaluated with test data. The ANN model had an 

accuracy of 98.1%, loss of 0.088, and F1 score of 0.987 

when evaluated with data from Arubi & Duru [14]. The 

ANN model was able to predict correctly the expected 

water content outcomes of new dehydration process 

parameters for both classes. 
 

Table 4: Summary of ANN Result with Different Evaluation Data 

Data used Data points Accuracy Loss F1 score 

Test data  404 96.8 0.076 0.969 

Arubi & Duru [14] 104 98.1 0.088 0.987 
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