
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue10 Dec 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 39

The Just-In-Time Hypermedia Engine

Zong Chen1, Li Zhang2
1(School of Computer Sciences and Engineering, Fairleigh Dickinson University, USA)

2(Computer Science Department, New Jersey Institute of Technology, USA)

 ABSTRACT: Many analytical or computational
applications create documents and display screens
in response to user queries “dynamically” or in
“real time”. Hypermedia features must be
generated “just in time” – automatically and
dynamically. This paper presents a just-in-time
hypermedia engine to provide hypermedia support
of virtual documents.

Keywords - Just-in-time, Hypermedia, Virtual
document

1. INTRODUCTION
Many analytical applications, especially legacy
systems, create documents and display screens in
response to user queries “dynamically” or in “real
time”. These documents and displays do not exist
in advance, and thus hypermedia must be generated
“just in time”—automatically and dynamically.

A Just-In-Time Framework has been proposed
[1]. To implement and evaluate the just-in-time
hypermedia framework, the JIT hypermedia engine
(JHE) needs to be designed. The Just-in-time
Hypermedia Engine (JHE) executes as a
middleware between an application and its user
interface, providing additional hypermedia
navigational, structural and annotation
functionality, with minimal modification to the
application.

JHE should have the following functions to
supplement hypermedia functionalities for the
“just-in-time” environment:
(1) JHE assigns unique, persistent identifiers
for documents, elements and anchors in the
documents;
(2) JHE stores links, comments, etc., in an
external link base;
(3) JHE does the regeneration by intercepting
the messages between the user interface and the
applications.
(4) JHE relocates and re-identifies the anchors
in the documents efficiently.

This paper proposed a Just-in-time Hypermedia
Engine design based on the Dynamic Hypermedia
Engine (DHE) [2]. DHE is a hypermedia system
that can supply hypermedia services for analytical
applications by intercepting documents between
application computation and the user interface.
DHE can automatically generate links based on the
application’s underlying relationships. But DHE
currently does not support re-identification,

relocation or regeneration. The “Just-in-time
Hypermedia Engine” (JHE) is an extension to
DHE. It can supplement analytical applications
with hypermedia functionality for virtual
documents.

2. DYNAMIC HYPERMEDIA ENGINE
2.1 Analytical Applications
Analytical or computational applications logically
can be split into two parts: the computational part
that performs calculations and generates screens
and documents for display; and the user interface
— the users’ viewer or browser that displays the
screen or document [3]. Microcosm’s Universal
Viewer and Freckles seamlessly integrate with
applications but provide only manual linking. OO-
Navigator provides a seamless hypermedia support
for computational systems that execute within a
single Smalltalk environment. The Dynamic
Hypermedia Engine (DHE) [2] supplies dynamic
linking that applies to any Web-based service
(including, but not exclusively, “Web services”).
The Just-in-time Hypermedia Engine (JHE)
extends the concepts in DHE for just-in-time
hypermedia and fully supports hypermedia for
virtual documents.

2.2 DHE Architecture
To supplement analytical applications with
hypermedia functionality, the Dynamic
Hypermedia Engine (DHE) [2] intercepts
documents and screens as they are about to be
displayed on the browser, adding link anchors
dynamically over elements it can recognize. When
the user selects one of these supplemental anchors,
DHE generates a set of relevant links. Choosing
one of these links prompts DHE to send a
command (e.g., a query) to the target analytical
application that will cause it to generate a virtual
document containing the calculation results. The
target application can be the same one that
generated the original display or a different one.
DHE can often provide this supplemental
hypermedia functionality with minimal or no
changes to the analytical applications through the
use of application wrappers [4]. A wrapper is an
interface between the hypermedia engine and the
application, which mediates between them.
Wrappers are described in more detail later.

DHE provides the following features in a
dynamic environment:

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue10 Dec 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 40

• A Web interface for legacy systems.
• Automatically generated meta-information and

hypermedia functionality.
• Support for virtual documents. Virtual

documents in DHE are source documents from
analytical applications. The application wrapper
has the ability to parse elements in the source
documents and dynamically generates links
based on underlying relationships. However,
DHE does not provide rich hypermedia
functionality for elements and does not support
dynamic regeneration, re-location and re-
identification.

• Mapping rules to represent an application’s
internal structure. Mapping rules provide a
mechanism to add commands to a link. When a
user selects a link from the list of links
generated, its mapping rule defines the
commands for that link and the application
wrapper will send those commands to the
application to execute.

• Wrappers to integrate applications with minimal
changes.
The current DHE architecture consists of several

well-defined and separate processes, each possibly
running on different platforms. It is shown in
Figure 1.

2.3 Component Functionality
Component functionality is described as follows:
• User Interface (UI): This usually runs on the

user’s computer (Web browser).
• Gateway (GW): This enables the communication

among the DHE modules and works as the
router for all the DHE internal messages. All
DHE messages pass through the GW, which
then redirects them to the appropriate module.

Figure 1. DHE Architecture

• User Interface Wrapper (UIW): This serves three

important functions: First, it translates the
displayable portion of the internal messages,
from DHE’s standard format to a format the UI
can process, and vice versa; second, it handles
the communication between the UIW and the
UI; and third, it implements any functionality the
DHE requires of the UI, which the UI cannot
provide itself.

• Bridge Law Element Wrapper (BLEM): This
maps the application data and relationships to
hypertext objects at run-time. Bridge laws are
another name for mapping rules [3]. BLEM
maps the element instances in the virtual
document to the global element types, and finds
the links for them.

• Dynamically Mapped Information System
(DMIS): This is an application system that
dynamically generates the data requested by the
user.

• Dynamically Mapped Information System
Wrapper (DMISW): This manages the
communication between the DMIS and the
application system, translates the user requests
from the DHE internal format to the application
API, receives the output from the DMIS and
converts it to the DHE format. The DMISW also
identifies and marks the elements within the
DMIS output to which hypermedia components
are mapped.

3. THE JUST-IN-TIME HYPERMEDIA ENGINE
While DHE dynamically generates link anchors
and links for virtual documents, it currently does
not support re-identification, relocation or
regeneration. The “Just-in-time Hypermedia
Engine” (JHE) is an extension to DHE. It can
supplement analytical applications with
hypermedia functionality in this “just-in-time”
environment. JHE’s architecture is shown in Figure
2. The following sections describe identifiers, the
architectural components and the information flow
within JHE.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue10 Dec 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 41

Figure 2. JHE Architecture

3.1 Component Functionality
JHE’s architecture from Figure 2 uses many of the
same component modules as DHE. Underlined
components are entirely new to JHE and support
re-identification, relocation and dynamic
regeneration.

User Interface (UI): This usually runs on the
user’s computer (e.g., a Web browser providing a
Web interface for the underlying analytical
system). JHE displays virtual documents, anchor
markers, and lists of comments and links on the UI.

Document Translator (DT): This translates a
page in JHE’s internal XML format to an HTML
page for display if required according to the
stylesheet template file. How virtual documents
display varies on different Web browsers. Some
Web browsers need stylesheet templates only;
others may only be able to display HTML pages. In
the latter case, a Document Translator is needed.

StyleSheet Templates: A stylesheet template is
supplied for a virtual document or a set of virtual
documents for display on the Web browser.

Selection Manager (SM): When the user selects
a span of content on the UI in order to create an
anchor, the SM gets the selection, and generates the
anchor location information.

Hypermedia Service Module (HSM): This
receives the hypermedia construct information
from the user, then stores hypermedia construct
information into the database. When user visits the
hypermedia construct, HSM retrieves hypermedia
construct information into the database and sends

back to the user.
User Interface Wrapper (UIW): This serves three

important functions: First, it translates the
displayable portion of the internal messages from
the JHE’s standard format to a format the UI can
process, and vice versa; second, it handles the
communication between the UIW and the UI; and
third, it implements the hypermedia functionality to
allow users add hypermedia constructs (comments,
links, bookmarks).

Application: A computer application external to
the hypermedia system. This research focuses on
analytical applications that dynamically generate
virtual documents as the result of user queries.
These may be any kind of user requests, not only
database queries.

Application Wrapper (AW): This manages the
communication between JHE and the application
system, translates the user requests from the JHE
internal format into the protocols the application
requires and receives documents and screens for
display from the application and converts each to
an XML document and embeds it in an internal
JHE message.

Document Schema Database (DSS): Application
specific metadata for virtual documents and virtual
elements are generated and maintained by the
Application Wrapper and stored into the Document
Schema Database.

Regeneration Engine (RE): This serves three
important functions: First, the RE gets the
necessary commands and parameters from the JHE
database according to the virtual document ID.
Second, to regenerate documents it sends
commands to the appropriate AW for execution
and gets back resulting virtual documents from the
AW in XML page format. Third, it compares the
newly-generated virtual document with the history
information stored in RE database to revalidate it.

Document Manager (DM): This looks for the
hypermedia components (links, comments, etc.)
associated with a re-generated virtual document
and virtual elements within it, marks the pre-
existing anchors as elements, and generates a table
of the hypermedia components for the virtual
document. Re-locates and re-identifies the virtual
elements to decide if they are the same as
previously marked ones.

Virtual Document Identifier Manager (VDIM):
This generates and maintains a table of identifiers
for virtual documents, virtual elements and
hypermedia components (such as anchors, links,
and comments).

Gateway (GW): This enables the communication
between the JHE modules and works as the router
for JHE internal messages.

3.2 DHE Architecture
Information flows through the architecture are

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue10 Dec 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 42

shown as flowcharts in Figure 3 and Figure 4.
Figure 3 shows how to visit a virtual document.
Figure 4 shows how to add or display a hypermedia
construct. Details are described as follows.

There are two ways to visit a virtual document,
either by creating a new document or revisiting a
bookmark. In the first case, the user should enter
parameters on the application’s home page (which
is already integrated into JHE), and then submits it
to UIW. In the latter case, he chooses the bookmark
from the bookmark list displayed on the UI menu,
and submits it to UIW. UIW gets the user
commands from the UI, translates the necessary
information into an internal JHE message and
passes this message to the Gateway. The Gateway
forwards it to the AW, which passes the commands
to its application for execution. The application
performs the request and sends the resulting screen
or document to the AW for display.

When the AW receives the resulting document,
it translates the source document into an XML
document. If it is a regenerated document, the
Regeneration Engine revalidates the document by
applying the criteria information recorded in
database. If it is a new document (i.e., there is no
bookmark information about this document), the
Document Manager generates a unique identifier
for the virtual document and records the virtual
document information (document identifier,
application command, parameters, etc.) into
database. Then the Document Manager looks for
the hypermedia objects associated with this virtual
document from the database. The Document
Manager also relocates and re-identifies virtual
elements in this virtual document. Then this virtual
document is sent back to the browser for display.

After the virtual document is generated and
displayed on the screen, users can add new
hypermedia constructs for this document. Users
also can browse the hypermedia construct
information. Following explains how to add or
display a hypermedia construct. Figure 4 shows the
information flow.

When a user adds a hypermedia construct, he
chooses a function (“add bookmark”, “add
comment”, “add link”, etc.) from the UI menu list.
To add a comment or a link, he needs to select
some texts from the screen. The Selection Manager
generates anchor location information for the
selected texts. Then the user enters other anchor
information, such as name, granularity and re-
identification criteria on the screen. Then UIW
packs the commands into a message and sends
them to Gateway. To add a bookmark, the user
does not need to select some texts from the screen.
He just enters the bookmark information, such as
name and revalidation criteria. Then UIW packs
the commands into messages and sends them to
Gateway. Gateway receives the message, and calls

the Hypermedia Service Module (HSM) to process
the commands. For a bookmark, HSM stores
bookmark information into database. To add a
comment or a link, HSM stores the anchor
information into database, and then it stores
comment or link information into database. After
all the information has been stored into database
successfully, Gateway sends a message to UIW.
Finally, UIW refreshes the document and inserts
signs at the side of the newly created anchors for
UI to display.

 When a document is generated, it is displayed
with anchors. Each anchor has a small icon inserted
at its side. When the user clicks on the icon, JHE
pops a new window to display a list of comment
and link titles on the screen. This is called “display
hypermedia constructs” in Figure 4. In this case,
HSM retrieves all comment and link information
for the anchor from database. When the user clicks
on the comment or a link title on the screen, HSM
retrieves the comment and link information from
database. For a comment, UI displays comment
title and content on the screen. For a link, if the link
destination is an anchor or a bookmark, Gateway
calls AW and RE to do regeneration and UI
displays the destination virtual document. If the
link destination is a URL, UI displays the page
content on the URL.

For a bookmark, it is shown in the UI menu.
When JHE starts up, Gateway retrieves all
bookmark information and all bookmark titles are
listed in the UI menu.

4. CONCLUSION
A Just-In-Time Hypermedia Engine has been
designed in this paper. The JHE provides a solution
to supplementing virtual documents for real time
hypermedia work. The future works include
implementing the JHE and evaluate its
performance.

REFERENCES

[1] Z. Chen, L. Zhang, “Just-In-Time Hypermedia”,
Journal of Software Engineering and Application,
Vol. 6, No. 5B: 32-36, 2013.

[2] R. Galnares, “Augmenting Applications with
Hypermedia Functionality and Metainformation.”
Ph.D. Dissertation, New Jersey Institute of
Technology, 2001

[3] M. Bieber, “Automating Hypermedia for Decision
Support.” Hypermedia. Vol. 4(2): 83-110, 1992.

[4] A. Bhaumik, D. Dixit, R. Galnares, M. Tzagarakis,
M. Vaitis, M. Bieber, V. Oria, A. Krishna, Q. Lu, F.
Aljallad, and L. Zhang, “Towards Hypermedia
Support for Database Systems”, Proceedings of the
34th Hawaii International Conference on System
Sciences, 2001.

