
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue7 September 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 13

A Proposal for Cache based Methodology and Parallel
Precedence Consolidation for Similar Workloads in Cloud

Banoth Sreenivas1, B.Narasimha2, Janapati Venkata Krishna 3

1pursuing M.Tech (CSE), Holy Mary Institute of Technology and Science, Keesara, Affiliated to JNTU- Hyderabad, A.P, India
23working as Associate Professor (CSE Department) in Holy Mary Institute of Technology and Science, Keesara, Affiliated to

JNTU- Hyderabad, A.P, India

Abstract— The complex applications are attracted by cloud
computing is increased in day to day manner to run in remote
data centers. Many applications needs parallel processing
capabilities. The nature of parallel application is decrease the
utilization of CPU resources as parallelism grows, because of the
communication and synchronization between parallel processes.
It challenging task but important for the data centers to reach a
certain level of utilization of its nodes at the time of maintaining
the level of responsiveness of parallel jobs. The existing parallel
scheduling mechanisms take irresponsibleness as the top
important and need nontrivial effort to make them work for the
data centers in the cloud era. In this we introduced a parallel
priority based technique to consolidate parallel workload in the
cloud. We influence virtualization technology to partition the
computing capacity of every node into two tiers, the fore virtual
machine (VM) tier (with high CPU priority) and the background
VM tier (with low CPU priority). They provided scheduling
algorithms for parallel jobs to make effective utilization of the
two tier VMs to improve the responsiveness of these jobs. Our
wide range experiments display that our parallel scheduling
algorithm expressively outperforms commonly used algorithms
such as extensible Argonne scheduling system in a data center
setting. This technique is practically and experimentally effective
for consolidating parallel workload in data centers.

Keywords— cloud computing, consolidation, scheduling
technique, parallel priority.

1. INTRODUCTION

 The cloud computing model promises a cost-effective
resolution for running business type of applications with the
use of virtualization technologies, highly accessible
distributed computing, and data management methods as well
as a pay as-you-go pricing models. In current years, it also
provides high performance computing capacity for
applications to resolve difficult problems. The improvement
of resource utilization is important for reaching cost
effectiveness. The low utilization is an issue in data centers.
The servers available in typical data center are worked at 10 to
50 percent of their optimum utilization level. 10 to 20 percent
of utilization is common in data centers. In a data center, or a

subset of servers that mainly handles applications with highly-
performance calculating needs and most of the time runs
parallel jobs, the problem can be significant.

There are two things that may decrease the use of nodes that
run parallel jobs:
1. A parallel job technique always requires a certain number
of nodes to run the application. A set of nodes is likely to be
disjointed by parallel jobs with different number of nodes
requirement. If the number of available nodes cannot fulfill
the requirement of an upcoming job, these nodes are may
remain idle.
2. Typical parallel programming simulations, such as BSP
often include calculating, communication, and
synchronization period. A process in a parallel job may often
wait for the data from some other processes. During waiting,
the nodes of utilization are low.
 The most initial but powerful batch scheduling algorithm for
parallel jobs is first come first serve (FCFS). Each and every
job specifies the number of nodes needed and the scheduler
processes the jobs according to the order of their arrival.
When there is a enough number of nodes to process the job at
the head of the queue, the scheduler migrate the job to run on
these nodes then, it waits till jobs now running finish and
release enough nodes for the job. FCFS may cause node split
and methods such as backfilling and Gang scheduling were
suggested to increase it. However, they do not goal on the
utilization degradation caused by parallelization itself.

In this paper we concentrate on increasing the utilization of
data centers those run parallel jobs, particularly we mean to
make use of the remaining computing capacity of data center
nodes those run parallel processes using of low resource
utilization to increase the performance of parallel job
scheduling. The similar jobs we deal with have the following
characteristics:
1. The time of job execution is unknown
2. With the supporting of check point saving and restoring the
state job is very cheap.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue7 September 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 14

3. The usage of CPU process of the job can be
estimated during design phase.

 Parallel discrete event simulation pertained to this category
of jobs, and there are struggles, to run this type of jobs in the
cloud. We proposed in this paper a priority-based
consolidation method for scheduling these types of parallel
jobs with the following aims: 1) it will improves the
utilization of servers allocated to these jobs; 2) reserve the
FCFS order of jobs when available resources fulfill the needs
of these jobs. Our technique gives a methodical way to
consolidate parallel workload. The elementary idea is to put a
background virtual machine (VM) in every node so that the
background virtual machine can use calculating the resources
when the foreground virtual machine cannot fully use them.
We will make the following contributions:
1. We will conduct extensive experimentations for workload
consolidation. We establish that using virtualization
technologies with suitable assignment of significances to
virtual machines, we can effectively allow jobs collocated in a
physical node to efficiently use the computing capacity
without significant impact to the performance of the high-
priority job.
2. Constructed on the above surveillance, we give a parallel
priority based workload consolidation method with the
support of primary VM collocation mechanism. We panel the
calculating capacity of each physical node into two layers,
namely foreground VM (with high CPU priority) and
background VM (with low CPU priority) by pinning two VMs
to the node. They can concurrently process different jobs. The
contextual job can therefore use the underutilized calculating
capability whenever the foreground job cannot fully use it.
The proposed method supports backfilling in such a two-layer
setting.

 Our appraisal results show that our consolidation based
algorithm (Aggressive Migration and Consolidation supported
Back Filling (AMCBF)) expressively outperforms FCFS and
Extensible Argonne Scheduling Ystem (EASY) (accurate job
execution time is available for EASY in our experiment) on
famous traces. In adding, our method outperforms EASY even
when it only knows the information of the jobs’ node number
needed. Finally, our algorithm can accomplish two commonly
conflicting goals in parallel job scheduling: improving the
system use and the job reaction.

2. RELATED WORK
The scheduling appliances for parallel jobs in clusters have

been several efforts. FCFS is the elementary but commonly
used batch scheduling algorithm. Backfilling, which was

developed as the EASY for IBM SP1, it is a mechanism that
allows short or small jobs to use indolent nodes while the job
at the head of the queue do not have much number of nodes to
run. Backfilling can increase node consumption, but it
requires each job to specify its maximum execution time so
that only jobs that will not delay the start of the job at the head
of the queue are backfilled. Additionally, a preempted job is
oalways given a reservation for a future time to run. Different
techniques of handover reservations differentiate several
variances of backfilling techniques. Backfilling techniques
had shown the low-utilization problem reason by different
node number requirements of parallel jobs. However, due to
parallel jobs the backfilling does not deal with low resource
utilization themselves.

 Gang scheduling permits resource sharing from multiple
parallel jobs. The calculating capacity of a node is bifurcation
into time slices for the purpose of sharing among the
processes of jobs. The gang scheduling algorithm will
manages for making all the processes of a job progress
together so that even one process will not be in sleeping state
when the remaining process needs to communicate with it.
The allocating time slices of different nodes to parallel
processes are synchronized, which OS needs support. Some of
gang scheduling algorithms, such as paired gang scheduling
inspect how to place processes with accompaniment resource
needs composed to minimize their interference, e.g., when a
process do some I/O works and leaves CPU without any work,
the paired gang scheduling algorithm can choose a procedure
to use the idle CPU resources. A same approach is used in
cloud resource consolidation with correlation investigation of
resource use surrounded by VMs. Processes of parallel jobs
share the calculation capacity of a node equally in common
scheduling algorithms. This method can improve the optimum
usage to a convinced degree, but is likely to expanse the
execution time of separate jobs. There is attempt to
incorporate backfilling and gang scheduling [22], but it only
results in a comparable performance to that of the simple
backfilling algorithm [23].
Both backfilling and gang scheduling intend to improve
utilization caused by node destruction. They will not aim on
the utilization degradation caused by parallelization itself.

3 WORKLOAD CONSOLIDATION METHOD

To a parallel application with the dependency from
its parallel processes, reaching optimum usage on
the nodes on which these processes run is regularly

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue7 September 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 15

difficult. For a cloud service provider to runs this
kind of applications, how to report this issue is
important for its effectiveness in the market. We
will do two workload consolidation
experimentations in endeavoring to improve node
utilization and inspect the effect to the execution
time of parallel jobs.
 In the first research, we calculate two VMs in each physical
node and give these VMs having the same priority, i.e., each
VM is assigned a weight of 256. In the second test, the
calculated two VMs having different priorities, in which one
is allocated a weight of 10,000 and the other is allocated a
weight of 1. We call the foreground VM is high-priority and
the background VM one is low-priority. In this setting, the
background VM only runs when the foreground VM is
unemployed.

Throughout the experimentations, we had been made the
following observations:

1. Priority-based VM apposition experiences trivial
performance effect on jobs running in high-priority VMs.
The medium performance loss of jobs running in the front
layer is between 0.0 and 3.7 percent matching to those running
in the nodes entirely. We simply model the loss as a constant
spreading.

2. When a job is running by foreground VM with CPU usage
more than 96 percent, apposition a VM to run in background
does not get any benefit either the foreground or the
background job because of that context switching incurs
overhead and the background VM having very small chances
to get physical resource to run.

3. Whenever a foreground Virtual Machine will runs a job
with low CPU utilization, to run the job running in the
collocated background VM can get significant share of
physical resources. The utilization of the idle CPU cycles is
between 80 and 100 percent for a single-process background
job and simply follows uniform distribution; for a multi-
processes background job, the value should be between 19.8
and 76.6 percent and it can be modeled by a normal
dissemination with _ ¼ 0:428 and _ ¼ 0:144. By these
observations, we would discuss our scheduling algorithms in
the following section.

4 SCHEDULING ALGORITHMS

In this session we are going to discuss about our scheduling
algorithms that parallel priority based workload consolidation.
Prior to discuss our consolidation strategies based algorithms
we will discuss about the basic scheduling algorithms.

4.1 Basic Algorithms
 Our prior scheduling algorithm, Conservative Migration
supported Back Filling (CMBF) it is backfill based. This
algorithm imagining that the position of job could be saved
restored; so, this scheduler is capable to stop a job and then it
will resume on the remaining nodes in later time.

4.2 Scheduling with workload consolidation
 In the above we discussed the prior algorithm only considers
the mapping one parallel process to one node. As we
discussed in section 1 and 3 that node utilization can be very
for these nodes because of that high efficiency in parallel
computing is always difficult to reach. In this session, we
elaborate the basic algorithms to be node usage awareness in
Algorithm 1:
Initial queue: J1(1,20), J2(2,25), J3(6,5), J4(4,5), J5(2,15), J6(1,10)

 P1 P2 P3 P4 P5 P6 backfill backfill

t = 0 queue: J3(6,5),J4(4,5)

t = 5 queue: J3(6,5),J4(4,5)

t=10 queue: J3(6,5),J4(4,5)

 backfill

t=15 queue: J3(6,5)

t=20

improving the node utilization in the cloud.

J1 J2 J2 J5 J5 J6

J1 J5 J5 J6

J1 J5 J5 J6

J1 J4 J4 J4 J4

J3 J3 J3 J3 J3 J3

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue7 September 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 16

Algorithm 2: CMCBF – On the departure of foreground job

input : Q: the queue for incoming jobs;
 M: a map between jobs and nodes;
Output : M’: the updated allocation map;
begin
 j get the first job from Q;
 while j ≠ null do
 Nj the number of nodes required by j;
 Nidle the number of idle nodes;
 if Nj ≤ Nidle then
 remove j from Q and dispatch it any Nj idle
 nodes;
 update M accordingly;
 if j is not the head of Q then
 insert j into Qbackfull ;
 else
 Nbackfill the number of nodes running
 Jobs arriving later than j;
 if Nj ≤ (Nbackfill + Nidle) then
 suspend jobs in Qbackfill that arrive later than j
 and move them back to Q according to
 descending order of their arrival time until
 the number of idle node is greater than Nj;
 remove j from Q and dispatch it to Nj idle
 nodes;
 update M;
 j get the next job from Q;

 Based on our notice in Section 3, we will bifurcate the
calculating capacity of a physical node into two layers, named
as foreground and background. We imagine that a physical
node can be run at most two VMs one in the foreground and
another one in the background. While running in foreground
the Virtual Machine is assigned a high CPU priority and while
running in background the VM is assigned as a low CPU
priority. In the following paragraph, we will give a scheduling
algorithm to handle two types of VM resources.
 Conservative Migration and Consolidation supported
Backfilling (CMCBF), as display in the three parts as
Algorithms is based whatever policy is used in CMBF. It
confirm that the is dispatched to foreground for running
whenever the most number of foreground VMs are idle or
having more nodes than its capacity arriving later than to
satisfy the node requirement. Meanwhile it will run the
background VM by allowing jobs simultaneously by this
foreground VM will improve its node utilization. Compare
with CMBF, CMCBF also be deals with whatever the work
will not effected in the background job. CMCBF will
dispatches a job to run in background VMs whenever the

corresponding foreground VM is busy means lower utilization
of threshold. The foreground VM utilization also get the
details from its profile of job or from the runtime displaying
data.

 We are using the example to demonstrate the proposed
algorithm. Here we take 5 nodes (P1-P2) for a job queue it has
job j1 to j10 at the time consideration. Each node having two-
tier computing capacity specified as fg and bg for simplicity of
describing the example.

At time of 0, job J1, J2, and J3 are allocated for five nodes and
run in foreground VMs according to Algorithm. As J1 has a
single-process job, therefore P1 cannot provide allocation to
another VM running in background. However, J4 and J5 can
run in background VMs at node P2-P5. How to collocate a
background VM which a foreground VM is determined
through a simple process

5. CONCLUSION

 For computing the number of complex applications the in
the cloud for parallel computing the computing power should
be efficiency to manage the compute resource utilization
along with increase of parallelism. For scheduling parallel
jobs for both efficient resource utilization and job
responsiveness is very important.
 Workload consolidation is supported by virtualization
technology it’s commonly used for improving utilization in
the data centers to make the resource utilization is very
efficiency. Our method divided the node’s computing capacity
into foreground VM (High priority) and background VM
(Low priority) tier. The performance of job running inside
foreground VMs is almost near to the jobs which running
inside dedicated nodes. Then idle CPU cycle also can be well
used by the jobs running in the background VMs. The
proposed algorithm is the combination of Backfilling and
Migration to make effective use of two types of VMs.

REFERENCES
[1] D. Feitelson, A Survey of Scheduling in Multiprogrammed
Parallel Systems. IBM TJ Watson Research Center, 1994.
[2] J. Hamilton, “Cloud Computing Economies of Scale,”
Proc. AWS Genomics Cloud Computing Workshop,
http://www.mvdirona. com/jrh/Talk
sandpapers/JamesHamilton_GenomicsCloud
20100608.pdf, 2010.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue7 September 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 17

[3] L. Barroso and U. Holzle, “The Case for Energy-
Proportional Computing,” Computer, vol. 40, no. 12, pp. 33-
37, Dec. 2007.
 [4] “High Performance Computing (HPC) on AWS,”Amazon
Inc., http://aws.amazon.com/hpc-applications/, 2011.

[5] J. Jones and B. Nitzberg, “Scheduling for Parallel
Supercomputing: A Historical Perspective of Achievable
Utilization,” Proc. Workshop Job Scheduling Strategies for
Parallel Processing, pp. 1-16, 1999.

[6] D. Feitelson and B. Nitzberg, “Job Characteristics of a
Production Parallel Scientific Workload on the Nasa Ames
ipsc /860,” Proc. Workshop Job Scheduling Strategies for
Parallel Processing, pp. 337- 360, 1995.

[7] U. Schwiegelshohn and R. Yahyapour, “Analysis of First-
Come- First-Serve Parallel Job Scheduling,” Proc. Ninth Ann.
ACM-SIAM Symp. Discrete Algorithms, pp. 629-638, 1998.

[8] L.G. Valiant, “A Bridging Model for Parallel
Computation,” Comm. ACM, vol. 33, no. 8, pp. 103-111,
1990.

[9] D. Feitelson and M. Jettee, “Improved Utilization and
Responsiveness
with Gang Scheduling,” Proc. Workshop Job Scheduling
Strategies for Parallel Processing, pp. 238-261, 1997.

 [10] D. Lifka, “The Anl/Ibm SP Scheduling System,” Proc.
Workshop Job Scheduling Strategies for Parallel Processing,
pp. 295-303, 1995.

[11] Y. Lin, “Parallelism Analyzers for Parallel Discrete
Event Simulation,” ACM Trans. Modeling and Computer
Simulation, vol. 2, no. 3, pp. 239-264, 1992.

[12] R. Fujimoto, “Parallel and Distributed Simulation,” Proc.
31st Conf. Winter Simulation: Simulation—A Bridge to the
Future, vol. 1, pp. 122-131, 1999.

 [13] Z. Juhasz, S. Turner, K. Kuntner, and M. Gerzson, “A
Performance Analyser and Prediction Tool for Parallel
Discrete Event Simulation,” J. Simulation, vol. 4, no. 1, pp. 7-
22, 2003.

BANOTH SREENIVAS,
pursuing M.Tech (CSE) from
Holy Mary Institute of
Technology and Science,
Keesara, Ranga Reddy Dist.,
Affiliated to JNTU-
HYDERABAD.

B. NARSIMHA, Associate
Professor (CSE Department),
Holy Mary Institute Of
Technology and Science,
Keesara, Ranga Reddy Dist.,
Affiliated to JNTU-
HYDERABAD.

Janapati Venkata Krishna,
Associate Professor & H O D
(CSE Department), Holy Mary
Institute Of Technology and
Science, Keesara, Ranga Reddy
Dist., Affiliated to JNTU-
HYDERABAD.

