
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 1 January 2015 

ISSN: 2348 – 8387                      www.internationaljournalssrg.org                               Page 1 

Aspect oriented software development using clustering GEA Techniques 

M.K.Mathiyazhagaan 

R.B.Vinothkumar 

Asst. Professor 

Sona College of Technology 

 

Abstract: 

Early aspects focus on the problem domain, representing the 

goals and constraints of users, customers, and other 

constituencies affected by a software intensive system. 

However, analysis of early aspects is hard because 

stakeholders are often vague about the concepts involved, and 

may use different vocabularies to express their concerns. In 

that the Goal modeling fits model-driven engineering (MDE) 

in that it captures stakeholder concerns and the 

interdependencies using concepts that are much less bound to 

the underlying implementation technology and are much 

closer to the problem languages. Aspect-oriented 

Programming (AOP) provides language constructs to facilitate 

the representation of multiple perceptions. Synthesis of AOP 

and MDE not only manages software complexity but also 

improves productivity, as well as model quality and longevity. 

In this paper, we propose a model-driven framework for 

tracing aspects from requirements. These aspects can be 

discovered during goal-oriented requirements analysis. This 

proposal includes a systematic process for discovering aspects 

from relationships between functional and nonfunctional goals. 

Keywords: 

Discovering Early aspects, Goal-oriented Requirements, 

Aspect-oriented Programming(AOP), Model-driven 

Engineering(MDE) 

Introduction: 

The early aspects can help to improve modularity in 

the requirements and architecture design and to detect 

conflicting concerns early, when trade-offs can be resolved 

more economically. Analyzing early aspects also enables 

stakeholder interests to be traced throughout the software 

development Aspect-oriented programming (AOP) is founded 

on the idea of aspect as a cross-cutting concern during 

software development. Aspects are usually “units of system 

decomposition that are not functional”, such as “no 

unauthorized access to data” or “efficient use of memory”. 

Aspects cut across different components of a software system. 

The Requirements goal models use goal decomposition to 

support the description and analysis of stakeholder intentions 

that underlie the required software system. Our analysis 

focuses on clarifying the problem domain concepts that 

underlie the candidate early aspects. By investigating the 

meanings of the terms that stakeholders use to describe these 

high-level goals, we can determine whether they do indeed 

represent concerns that crosscut requirements and design 

artifacts. 

Aspect Oriented Software Development (AOSD) 

should be used from the early stages of software development 

such as domain analysis and requirements engineering. 

Identifying aspects at an early stage helps to achieve 

separation of concerns in the initial system analysis, instead of 

deferring such decisions to later stages of design and code, 

and thus, having to perform costly solutions. The use of 

models in engineering software is pervasive across different 

phases, from requirements and design, to verification and 

validation. It is the emerging paradigm of model-driven 

engineering (MDE) that advocates the systematic use of 

models as primary engineering artifacts throughout the 

software system. 

Goal-oriented requirements engineering focuses on 

goals which are” roughly speaking, precursors of 

requirements”. Goal-based models support the description and 

analysis of intentions that underlie a new software system. 

The aspect-oriented programming is a programming 

methodology. However, this methodology does not deal with 

the origins of aspects. This framework for tracing aspects 



SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 1 January 2015 

ISSN: 2348 – 8387                      www.internationaljournalssrg.org                               Page 2 

from requirements goal models to implementation and testing. 

Goal-oriented requirements engineering uses goal models to 

elicit, specify, and analyze requirements. We provide 

language support for modeling goal aspects and mechanisms 

for transforming models to aspect-oriented programs. Test 

cases are derived from requirements models to guide 

verification and validation of aspects. 

Literature survey: 

Goal-directed  requirements Acquisition, Most  existing  

specification  languages  focus  on  functional  requirements-

that  is, requirements  about  what  the  software  system  is  

expected  to  do.  Nonfunctional requirements  are  most  often  

left  outside  of  any  kind  of  formal  treatment.  Such 

requirements  form  an  important  part  of  real  requirements  

documents;  they refer  to  operational  costs,  responsibilities,  

interaction  with  the  external  environment, reliability,  

integrity,  flexibility,  and  so  forth.  The  limited  scope  of  

current  formal specification  languages  results  from  the  

restricted  set  of  built-in  abstractions  in  terms of  which  

the  requirements  must  be  captured.   

Early Aspects: Aspect-Oriented Requirements 

Engineering and Architecture Design, Aspects provide the 

mechanism that enables the source code to be structured to 

facilitate the representation of multiple perceptions and to 

alleviate tangling and scattering concerns. Many of these 

concerns often arise in the problem domain. Therefore, it is 

important to identify and represent concerns that arise during 

the early phases of software development, and to determine 

how these concerns interact. A combination of qualitative and 

quantitative analyses is needed to examine more quality 

attributes of the concept-driven framework, such as scalability, 

scope of applicability, relevance to functional requirements, 

and capability to deal with complex specifications. 

Aspect-Oriented Refactoring of Legacy Applications: An 

Evaluation, In this Paper To highlight aspect-specific test 

coverage data, we measure join point coverage. Join point 

coverage requires executing each join point that is matched by 

each aspect, focusing on testing each aspect in all of the 

contexts where it is woven. We developed tools to gather 

information about coverage of advised join points. Using 

aspect-specific coverage information helps us check whether 

the aspect was woven in the right places. We cannot just rely 

on passing the regression tests because in general, no test suite 

can be guaranteed to test everything in a system. 

Obvious or Not? Regulating Architectural Decisions Using 

Aspect-Oriented Programming, 

This model tends not to be enforced on the system, leaving 

room for the implementors to diverge from it, thus 

differentiating the designed system from the actual 

implemented one. The essence of the problem of enforcing 

such models lies in their globality. The principles and 

guidelines conveyed by these models cannot be localized in a 

single module, they must be observed everywhere in the 

system. A mechanism for enforcement needs to have a global 

view of the system and to report breaches in the model at the 

time they occur. 

Background: 

This section aims to situate the existing literature on 

requirements engineering (RE), MDE, and AOSD. Aspect-

oriented software development (AOSD) emerged from a 

rethinking of the relationship between modularization 

(partitioning software into discrete, non overlapping 

implementation units) and the time-honored principle of 

separation of concerns. Any separation-of-concerns criterion 

leads to a particular partitioning, as though the software were 

sliced into pieces in a particular direction. 

Work in aspects has been mostly limited to the 

implementation phase, dealing with concerns that 

implementation units have in common, factoring those out as 

aspects, and employing programming-language-level support 

to weave the aspects back at loading time, compilation time, 

or runtime. In fact, AOSD has become nearly synonymous 

with aspect-oriented programming (AOP) and dominant 

decomposition usually refers to the system’s decomposition 

into implementation units, such as subsystems, classes, and 

objects. 



SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 1 January 2015 

ISSN: 2348 – 8387                      www.internationaljournalssrg.org                               Page 3 

Most AOSD approaches place the burden for aspect 

identification and management on the programmer. But 

crosscutting concerns are often present well before the 

implementation, such as in domain models, requirements, and 

the architecture. Dominant decomposition, however, means 

something different in the early software development 

activities. A requirements aspect, then, is a concern that cuts 

across other requirement-level concerns or artifacts of the 

author’s chosen organization. It is broadly scoped in that it’s 

found in and has an (implicit or explicit) impact on more than 

one requirement artifact. Broadly scoped properties can be 

quality attributes (nonfunctional requirements) as well as 

functional concerns that the requirements engineer must 

describe with relation to other concerns. 

The Requirements has generated a number of 

notations for modeling stakeholder goals and the relationships 

between them. Goals express, at various levels of abstraction, 

stakeholders’ many objectives for the system under 

consideration. Goal-oriented RE uses goal models to elicit, 

elaborate, structure, specify, analyze, negotiate, document, 

and modify requirements. Goal modeling shifts the emphasis 

in requirements analysis to the actors in an organization, their 

goals, and the interdependencies between those goals, rather 

than focusing on processes and objects. 

AOSD applies the principle of separation of concerns 

to make systems modular so that the intended software is 

easier to produce, maintain, and evolve. The AOSD 

community has recognized the importance of considering 

aspects early on in the software system. Aspects at the 

requirements level present stakeholder concerns that crosscut 

the problem domain. Discovering aspects early can help detect 

conflicting concerns early, when trade-offs can be resolved 

more economically. 

 

Fig: Process overview of the aspect-tracing 

framework 

Aspect-oriented concepts are modeled explicitly in 

requirements at the beginning of the development process. 

Advising tasks, which operationalize soft goals and relate to 

hard goals, are modularized as aspects and weaved into the 

goal model to enable aspect-oriented requirements analysis? 

Goal modeling has become a central activity in RE. It shifts 

the emphasis in requirements analysis to the actors within an 

organization, their goals, and the interdependencies between 

those goals, rather than focusing on processes and objects. 

Conclusion: 

The initial AOP claim that it is natural to implement 

the globally concerns NFRs as aspects that cut across the 

subsystems. AOSD offers language constructs to tackle 

software complexity. Aspects provides the mechanism that 

enables the source code to be structured to facilitate the 

representation of multiple perceptions and to alleviate tangling 

and scattering concerns. Many of these concerns often arise in 

the problem domain. Therefore, it is important to identify and 

represent concerns that arise during the early phases of 

software development, and to determine how these concerns 

interact. 

MDE tackles conceptual complexity in software 

development. The major advantage of MDE is that we express 

models using concepts that are much less bound to the 



SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 1 January 2015 

ISSN: 2348 – 8387                      www.internationaljournalssrg.org                               Page 4 

underlying implementation technology and are much closer to 

the problem languages. Goal modeling fits in the MDE picture 

in that it captures stakeholder intentions, beliefs, commitments, 

and the relationships among the various concerns. This higher 

level of abstraction makes the goal model easier to specify, 

understand, and maintain. A goal based framework that 

synthesizes AOSD and MDE, thereby managing complexity 

in both language and conceptual dimensions. A goal aspect 

models a system from a stakeholder-defined viewpoint.  

 

References: 

[1] L. Liu, E. Yu, and J. Mylopoulos. Security and privacy 

requirements analysis within a social setting. In RE 2013, 

pages 151–161, 2013. 

[2] J. Mylopoulos, L. Chung, and B. Nixon. Representing and 

using nonfunctional requirements: A process-oriented 

approach. IEEE Transactions on Software Engineering, 

18(6):483–497, June 2012. 

[3] J. Mylopoulos, L. Chung, and E. Yu. From object-oriented 

to goal-oriented requirements analysis. Communications of 

the ACM, 42(1):31–37, Jan. 2011. 

[4] pair Networks. Os commerce: Open Source E-Commerce 

Solutions, http://www.oscommerce.com. 

[5] A. Rashid, P. Sawyer, A. M. D. Moreira, and J. Arajo. 

Early aspects: A model for aspect-oriented requirements 

engineering. In RE 2012, pages 199–202, 2012. 

[6] C. Rolland and N. Prakash. From conceptual modelling to 

requirements engineering. Annals of Software Engineering, 

10:151–176, 2010. 

[7] G. Sousa, I., and J. Castro. Adapting the NFR framework 

to aspect-oriented requirement engineering. In The XVII 

Brazilian Symposium on Software Engineering, Manaus, 

Brazil, October, 2013, 2013. 


