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Abstract - Segmentation of tumors from multimodal 

MRI images is a challenging and time consuming task 

done manually by radiologists. Automation of this task 

is challenging because of the high variance in 

appearance of glial cells, among different patients 

and, similarity between tumor and normal tissue. In 

this paper we present the results of our survey on 

recent progress in the segmentation of brain tumors 

from multimodal MRI images Multimodal Brain 

Tumor Segmentation. 
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I. INTRODUCTION  

Glioblastoma multiformes are the frequent brain 

tumors in humans, originating from glial cells and 

invading the surrounding tissues [1]. In spite of 

advances in glioma research, diagnosis of the patient 

remains very poor. The patients with GBMs, require 

immediate treatment, because they have a median 

survival rate of two years or less [2], [3]. For low 

grade gliomas treatment is often delayed as long as 

possible. To evaluate the progress of the disease and 

the success of the treatment modal, neuroimaging 

methods are used for both categories. In clinical 

routines and clinical studies, the resulting images are 

evaluated either based on qualitative criteria only or 

by relying on quantitative measures as the largest 

diameter visible from axial images of the lesion [4], 

[5]. 

 Tumor segmentation in Brain MRI is one of 

the crucial procedures in surgical and treatment 

planning. However, at present, tumor segmentation in 

brain images is performed manually in clinical 

practice. Apart from being time consuming, manual 

tumor delineation process is complex and depends on 

the expert. Currently, multimodal MRI images are 

used by clinical experts in segmenting brain tumor 

images because they provide various data on brain 

tumors. In GBMs, the tumor portion is divided into 

necrosis, contrast-enhancing tumor, nonenhancing 

tumor, and edema [6]. Different image modalities 

reveal different parts in the tumor area. For example, 

T1-C (T1-weighted modal images with contrast 

enhancement) highlights contrast-enhancing regions, 

whereas T2 highlights edema regions. Though 

multimodal MRI images can provide complementary 

information in the tumor region, brain tumor 

segmentation is still a challenging and difficult task. 

 

  

 

Fig. 1. Different modalities reveal different parts in 

the tumor area. The edge 

of the tumor area is visually vague. In addition, the 

brain structure is deformed because of the occurrence 

of edema. (a) T1C-weighted brain tumor MRI image. 

(b) T2-weighted brain tumor MRI image. (c) Contour 

of the actual brain tumor. ―t‖ represents the 

combination of contrast-enhancing and necrotic parts, 

and ―e‖ represents the edema part. 

 

Tumors in brain can have various shapes and sizes and 

may appear at different locations. In addition to tumor 

heterogeneity, tumor edges can be vague and visually 

complex (Fig. 1). Moreover, some tumors may 

infiltrate surrounding tissues in the brain because of 

the mass effect or edema (Fig. 1). Additionally, 

artifacts and noise in brain MRI images increase the 

difficulty of segmentation process. Thus, designing of 

a semiautomatic or automatic brain tumor 

segmentation approach is necessary to provide an 

acceptable performance. 

 By replacing the current assessment methods 

with highly accurate and reproducible measurements 

of the tumor structures, image processing algorithms 

that can automatically analyze brain tumor image 

slices would be of great potential value for treatment 

planning, improved diagnosis, and follow-up of 

individual brain tumor patients. However, design and 

development of automated brain tumor segmentation 

techniques is challenging, because tissue areas are 

defined through intensity variations that are relative to 

surrounding normal lesions, and even manual 

segmentations by experts show significant changes 

when intensity variations between adjacent lesion 

structures are smooth or suppressed by partial 

voluming and field artifacts. Further, tumor lesions 

vary considerably across tumor patients in terms of 
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shape, size, extension, and localization, hindering the 

use of strong priors on shape and location that are 

important components in the segmentation of many 

other anatomical lesion structures. Moreover, the mass 

effect induced by the growing tissue may infiltrate 

normal brain tissues, thereby limiting the reliability of 

spatial prior knowledge for the healthy part of the 

brain. Finally, a variety of MRI imaging modalities 

can be used for mapping tumor affected tissue 

changes, including T2 and FLAIR MRI (highlighting 

changes in tissue water relaxational properties), post-

Gadolinium T1 MRI (showing pathological 

intratumoral take-up of contrast agents), perfusion and 

diffusion MRI (local water diffusion and blood flow), 

and MRSI (relative concentrations of selected 

metabolites).   These imaging modalities provide 

different types of biological information, and therefore 

poses somewhat different important information 

processing tasks. 

 Because of its high clinical relevance and its 

challenging nature, the process of computational brain 

tumor segmentation has attracted attention during the 

past 20 years, resulting in a wealth of different 

techniques for automated, semi-automated 

segmentation of tumor tissues. All of these methods 

were validated on small private datasets with varying 

metrics for performance quantification, making 

comparisons between these methods a highly 

challenging task. Exacerbating this problem is the fact 

that various combinations of imaging modalities are 

used in validation studies, and that there is no 

consistency in the tumor sub-regions that are 

considered. Because of this, it remains difficult to 

judge which image segmentation techniques may be 

worthwhile for use in clinical practice and research; 

what exactly the performance is of the best image 

processing algorithms available today; and how well 

current automated segmentation algorithms perform in 

comparison with groups of expert clinical raters. 

 In order to review the current state-of-the-art 

in automated brain tumor segmentation and compare 

between different strategies, in 2012 and 2013 a 

Multimodal Brain Tumor Image Segmentation 

Benchmark (BRATS) challenge in conjunction with 

the international conference on Medical Image 

Computing and Computer Assisted Interventions 

(MICCAI) was organized. For this, a unique dataset of 

MR scans of low- and high-grade glioma patients with 

repeat manual tumor delineations by several human 

experts was prepared, as well as realistically generated 

synthetic brain tumor datasets for which the ground 

truth segmentation is known. On this data set, each of 

twenty different brain tumor segmentation methods 

was optimized by their respective developers. In this 

paper we report the results of this BRATS benchmark. 

 The paper is organized as follows. We briefly 

review the current state-of-the-art in automated brain 

tumor segmentation in Section II. Evaluation process 

is described in Section III. Section VI concludes the 

paper. 

II. RELATED WORK 

Brain tumor segmentation techniques can be divided 

into two categories — automatic and semiautomatic. 

Automatic segmentation algorithms for segmenting 

and classifying brain tumors include fuzzy c-mean 

clustering [7–9], region-growing methods [5–9], atlas-

based methods [10,11], neural network-based 

techniques [12,13] and watershed methods [14,15]. 

These methods generally require postcontrast T1-

weighted images (where the tumor is either fully 

enhanced or shows peripheral enhancement) and work 

on lesion homogeneity. They still remain a challenge 

for heterogeneous brain tumors and for other MR 

modalities. 

 Research on semiautomatic methods has been 

done for medical image segmentation (for 

segmentation of brain tumors on MRI images). Most 

of these works have used parametric active contour 

models [16–20] and level-set active contour models 

[21–23]. These semiautomatic methods provide more 

accurate results than the automatic methods because 

the initial region of interest is labeled by humans. This 

reduces the search space and helps in locating and 

segmenting brain tumors with more accuracy. 

 Caselles[17] have conducted experiments 

using geodesic active contours. His approach used a 

snake based on energy minimization and the level-set 

technique for segmenting an object. The interior and 

exterior edges of the object are detected without 

contour-tracking process. The similar experiments 

were conducted on tumor images, but the tumor was 

not extracted properly as the evolved curve did not 

stop at the exact location due to the large changes of 

the gradient along the brain tumor boundary. 

Xu and Prince [18] have conducted 

experiments using gradient vector flow (GVF). In 

their work contour was initialized across the object 

boundary. by the bidirectional nature of the vector 

field. In this bidirectionality prevented the contour 

from leaking through small boundary holes or weak 

edges.  However, the same bidirectionality caused 

GVF contour to collapse on approach to the same 

object boundary. The contour failed to evolve at 

saddle points. GVF active contour performance was 

tested on MR of the left ventricle of a human heart; 

however, due to the presence of irregular boundary, 

many details of the endocardia border were left out. 

Xie and Mirmehdi's [23] have proposed magneto 

static active contour (MAC). Their model is based on 

magnetostatics and hypothesized magnetic 

interactions between the active contour and object 

boundaries. This MAC model is able to capture 

complex geometries, weak edges and broken 

boundaries. However, this MAC model is slower than 

parametric methods and detects multiple false objects 

in the presence of noise, leading to the arising of 

multiple zero-level sets (as in the case of 

heterogeneous brain tumors). 

Wang et al. [20] proposed a model for brain 

tumor segmentation based on fluid vector flow (FVF). 
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Their model simulates fluid flowing along object 

boundary and generates external force field to drive 

the contour evolution. Their FVF model works well on 

postcontrast T1-weighted images, particularly in 

extracting brain hemorrhage and tumor (high-intensity 

regions). However, their method was not tested on 

other MRI modalities(T1- weighted and T2-weighted 

brain tumor MR images) and with different tumor 

types (isointense and heterogeneous tumors). 

 

A. Context-sensitive Classification Forests for  

Segmentation of Brain Tumor Tissues 

Zikic et al [24] proposed the segmentation as 

a classification task, and the discriminative power of 

context information was used. They realize this idea 

by modeling the classification forest with spatially 

non-local features to represent the data, and by 

providing the CF with initial probability estimates for 

the single tissue classes as additional input (along-side 

the MRI channels). The initial probabilities are 

patient-specific, and computed at test time based on a 

learned model of intensity. Through the combination 

of the initial probabilities and the non-local features, 

their approach was able to capture the context 

information for each data point. Their method was 

fully automatic, with segmentation run times in the 

range of 1-2 minutes per tumor patient.  

B. Segmentation of Brain Tumor mages Based on 

Integrated Hierarchical Classification and 

Regularization  

 

S.Bauer et al [25] presented a fully automatic 

method for brain tumor segmentation, which is based 

on classification with integrated hierarchical 

regularization. Their method not only offer to separate 

healthy from pathologic tissues, but it also 

subcategorizes the healthy tissues into CSF, WM, GM 

and the pathologic tissues into necrotic, active and 

edema compartment. 

 

C. Spatial Decision Forests for Glioma 

Segmentation in Multi-Channel MR Images 

A fully automatic algorithm was proposed by 

Geremia [26] for the automatic segmentation of 

gliomas in 3D MR images. Their algorithm was built 

on the discriminative random decision forest 

framework to provide a voxel-wise probabilistic 

classification of the volume. Their method uses multi-

channel MR intensities (T1, T1C, T2, Flair), spatial 

prior and long-range comparisons with 3D regions to 

discriminate lesions. A symmetry feature was 

introduced accounting for the fact that gliomas tend to 

develop in an asymmetric way.  

 

D. Multimodal Brain Tumor Segmentation Using 

The ―Tumor-cut‖ Method on The BraTS 

Dataset 

Hemamci et al. used ―Tumor-cut‖[28] 

method to multi-modal data which includes edema 

segmentation. Their method was semi-automatic, 

requiring the user to draw the maximum diameter of 

the tumor. Their algorithm takes about a minute user-

interaction time per case. The typical run-time for 

each patient case is around 10-20 minutes depending 

on the size of the brain tumor. The Dice overlap with 

the expert segmentation is 0.36 ± 0.25 for the edema 

and 0.69 ± 0.20 for the tumor region. 

E. Brain tumor segmentation based on GMM and 

active contour method with a model-aware edge 

map 

 

A model for tumor segmentation was 

proposed by Zhao [28] based on GMM. Their method 

integrates the model of gray distribution of pixels 

(Gaussian Mixture Models, GMM) with the edge 

information between two difference classes of tissue 

in the brain. They reported that High detection 

precision could be achieved. 

 

F. Probabilistic Gabor and Markov Random Fields 

Segmentation of Brain Tumours in MRI 

Volumes 

N. K. Subbanna et al [29] presented a 

techniques for segmenting tumors from brain MRI 

using probabilistic and MRFs. Their method was a 

two stage process for segmenting tumors from 

multispectral brain magnetic resonance images 

(MRIs). From the training volumes, they modeled the 

tumor, edema and the other healthy brain tissues using 

space characteristics. They reported that their 

segmentation technique worked on a combination of 

Bayesian classification of the Gabor decomposition of 

the MRI volumes to produce an initial classification of 

tumors, along with the other classes. They followed 

their initial classification with a MRF classification of 

the Bayesian output to resolve local inhomogeneities, 

and impose a smoothing constraint. Their results show 

a Dice similarity coefficient of 0.668 for the brain 

MRI tumors and 0.56 for the edema. 

 

G. Hierarchical Random Walker for Multimodal 

Brain Tumor Segmentation 

  A Random Walker (RW) based method was 

proposed for brain tumor MR images segmentation 

with interaction by Xiao [01]. Their method was not 

only designed to achieve the final segmentation result, 

but also it was a convenient tool for users to modify 

their final results on iterative basis. They have 

extended their model to feature space for soft 

clustering to overcome the shortcoming of typical RW 

algorithm, and they carried out pixel-wise 

segmentation in image space. Their proposed 

technique was performed on multimodal brain MR 

images, including T2- weighted, contrast enhanced 

T1-weighted, and FLAIR sequences. 

H. Automatic Brain Tumor Segmentation based on 

a Coupled Global-Local Intensity Bayesian 

Model 
Tomas-Fernandez [31] presented a technique 

for localizing and quantifying the  tumor volume of 
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brain  from magnetic resonance images, which is a 

key task for the analysis of brain cancer. Based in the 

well established global gaussian mixture model of 

brain tissue segmentation. They proposed a tissue 

model which combines the patient global intensity 

model with a population local intensity model that was 

derived from an aligned reference of healthy subjects. 

They used the Expectation-Maximization algorithm to 

estimate the parameters which maximize the tissue 

maximum a posterior probabilities. Further, they 

modeled the brain tumors as outliers with respect to 

coupled global/local intensity model. Tumor 

segmentation from MRI was validated using the 30 

glioma patients scans from the training dataset from 

MICCAI BRATS 2012 challenge. 

 

I. Segmenting Glioma in Multi-Modal Images 

using a Generative Model for Brain Lesion 

Segmentation 

B.H.Menze et al [32], proposed and 

evaluated a fully automated method for channel-

specific tumor segmentation in multi-dimensional 

images. Their method represents a tumor appearance 

model for multi-dimensional sequences that provides 

channel-specific segmentation of the tumor. Their 

generative model shares data about the spatial location 

of the tissue among channels while making use of the 

specific multi-modal signal of the healthy lesion 

classes to segment the normal tissues in the brain. For 

voxel encoding, their model includes a latent variable, 

the probability of observing tumor at that voxel, based 

on the ideas from [2, 3].  

III. EVALUATION PROCESS 

In MICCAI 2012 BRaTs workshop the following 

performance metrics were used for segmenting edema 

and tumor. 

 

 Jaccard: This coefficient is used to compare 

diversity as well as similarity between 

sample objects.  

 Sensitivity 

This metric measures the proportion of positives 

that are identified as correct as such (e.g., the 

percentage of sick people who are correctly 

identified as having the sick condition). It is 

measured as the ratio of number of true positives 

to sum of true positives and false negatives. 

 Specificity 

This measures the proportion of negatives that are 

correctly identified as such (e.g., the percentage 

of healthy people who are correctly identified as 

not having that sick condition). It is measured as 

the ratio of number of true negatives to sum of 

true negatives and false positives. 

 Dice similarity coefficient 

Dice coefficient is used to compare the similarity 

between two objects. 

 Hausdorff distance 

Two sample sets are close in the Hausdorff 

distance if every point of either sample set is 

close to some point of the other sample set. Then 

the Hausdorff distance is the longest distance you 

can be forced to travel by an adversary who 

chooses a point in one of the two sample sets, 

from where you then must travel to the other 

sample set. It is the greatest of all the distances 

from a point in one sample set to the closest point 

in the other sample set. 

 

Table 1 Performance evaluation of segmentation 

algorithms in MICCAI 2012. 

 

Core 

 Clinical Synthetic 

High-grade Low Grade High Grade Low Grade 

Automatic     

Shin et al. 0.14391536 0.23246645 0.28434818 0.07247578 

Bauer et 

al. 0.51166622 0.33183625 0.7787252 0.8577578 

Zikic et 

al. 0.47582122 0.33885775 0.8688745 0.84243 

Subbanna 

et al. 0.13343608 0.00095839 0.3978257 0.4199778 

Xiao et al. 0.33688352 0.22405493 0.41422405 0.4689204 

Zhao et 

al. 0.05811677 0 0 0 

Hamamci 

et al. 0.69408752 0.32417005 0 0 

Edema Clinical  Synthetic  

Automatic     

 High-grade Low Grade High Grade Low Grade 

Shin et al. 0.03835941 0.06120145 0.31215886 0.21312157 

Bauer et 

al. 0.53603 0.1790644 0.7852322 0.7460034 

Zikic et 

al. 0.597521 0.32403075 0.8502734 0.7490424 

Subbanna 

et al. 0.06922264 0 0.6953803 0.6451742 

Xiao et el. 0.53900664 0.27857825 0.3433091 0.10039676 

Zhao et 

al. 0.00348448 0 0 0 

Hamamci 

et al. 0.53916273 0.0330265 0 0 
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IV. CONCLUSION 

In this paper we presented the report on the 

performance evaluation of segmentation 

techniques in BRATS brain tumor segmentation 

challenge. These techniques are evaluated on the 

largest dataset which was made available for the 

public. Our results in the report indicate that, 

while tumor segmentation in brain MRI is 

difficult for human raters, currently available state 

of art techniques can reach Dice scores of over 

80% for whole brain tumor segmentation. 

Segmenting the brain tumor core region, and 

especially the high active core region in GBMs, 

proved more challenging, with Dice scores 

reaching 70% and 60%, respectively. Of the 

segmentation algorithms tested, no single 

technique performed best for all tumor regions 

considered. However, the errors of the best 

algorithms for each individual region fell within 

human inter-rater variability.  
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