
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 12 December 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 24

Research Methodology on Code Clone

Detection with Refactoring Using Textual and

Metrics Analysis in Software
Dr.G.Anil Kumar

Sr. Assistant Professor CSE MGIT Hyderabad T.S. India

Abstract The act of cut, copy and pasting code

fragments and making minor, non–functional

alterations, is a major problem for large, industrial

software systems. It leads to duplicated code

fragments known as code clones. The major

consequence of cloning in the code is that it makes the

maintenance process difficult. Finding out the reused

fragment of code in any application is usually called

as code clone detection. In the process of software

maintenance, evolution clones are considered to be

harmful because it increases the complexity of the

system. From the evolution of the clone detection, it

provides improved results and decreases the

complexity of the system for better maintenance.

Through the state of art in code cloning, one can

understand clone detection process is mainly focused

on detection of a line after line or detection based on

tokenization. This technique makes the system complex

and takes long time to process the source code to find

the clones in it. If a code fragment is not an exact

copy, but the functionality shows that it is similar to

another code fragment, then current clone detection

system unable to find out such type of clones.

The proposed research model for detection of clone

approach shows that the detection process is easier

and it has produced efficient results. This approach is

a process of combining textual approach and metric

analysis of the given source code for detection of all

four types of clones presented in a given set of code

fragment in java source code. All the detected clone

pairs are grouped together to form clone clusters and

they are stored in files. All the detected clones can be

automatically refactored if it is required by the

programmer.

Different semantics have been formulated and the

values of these semantics have been used in the

process of clone detection. These metrics along with

textual analysis provide a very less complexity in

figuring out the clones and provide accurate results.

Efficiency of the technique is measured in terms of

Precision and Recall values. The results of the

proposed method are compared with the bench mark

tools like Clone DR, CCFinder and other techniques.

The analysis of the experimental results shows that

Precision and Recall values are improved and they

are better than the previous techniques.

 of Social networking and wide range of smart devices

and Internet applications has lead to creation of

extremely large sets of complex data referred as

BIGDATA. IOT is interconnection of physical things

using intelligent devices like sensors etc. and

operating them with ease[1].

Keywords — Code Clone, Clone detection,

refactoring, metrics, textual analysis,

I. INTRODUCTION, OVERVIEW, CONCLUSION OF

RESEARCH WORK AND FUTURE ENHANCEMENTS

The act of cut, copy and pasting code fragments and

making minor, non–functional alterations, is a major

problem for large, industrial software systems. It leads

to duplicated code fragments known as code clones.

The major consequence of cloning in the code is that it

makes the maintenance process difficult. Finding out

the reused fragment of code in any application is

usually called as code clone detection. In the process

of software maintenance, evolution clones are

considered to be harmful because it increases the

complexity of the system. From the evolution of the

clone detection, it provides improved results and

decreases the complexity of the system for better

maintenance.

Through the state of art in code cloning, one can

understand clone detection process is mainly focused

on detection of a line after line or detection based on

tokenization. This technique makes the system

complex and takes long time to process the source

code to find the clones in it. If a code fragment is not

an exact copy, but the functionality shows that it is

similar to another code fragment, then current clone

detection system unable to find out such type of clones.

The proposed research model for detection of clone

approach shows that the detection process is easier

and it has produced efficient results. This approach is

a process of combining textual approach and metric

analysis of the given source code for detection of all

four types of clones presented in a given set of code

fragment in java source code. All the detected clone

pairs are grouped together to form clone clusters and

they are stored in files. All the detected clones can be

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 12 December 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 25

automatically refactored if it is required by the

programmer.

Different semantics have been formulated and the

values of these semantics have been used in the

process of clone detection. These metrics along with

textual analysis provide a very less complexity in

figuring out the clones and provide accurate results.

Efficiency of the technique is measured in terms of

Precision and Recall values. The results of the

proposed method are compared with the bench mark

tools like Clone DR, CCFinder and other techniques.

The analysis of the experimental results shows that

Precision and Recall values are improved and they are

better than the previous techniques. CONCLUSIONS

 Present Work:

Software maintenance is a very important phase of

the development life cycle. Reducing the software

maintenance overhead is an activity that makes the

software industry more comfortable. When it is

compared with any other product the software product

customers expect more of maintenance of the product

because they feel it is flexible (i.e. it is simply writing

few instructions). So, changes can be accommodated

easily at any time. But software engineering literature

says it is a myth.

Software clone is more dangerous in large software

systems. Most of the times cloning happens due to

copy and paste activity only. Almost every developer

thinks to save developing time, so he uses this activity

because developing code from the scratch takes more

time. Sometimes time constraints force developers to

turn towards cloning. Some maintenance engineers

accidentally produce these clones. Although it seems

to be an effective and simple solution to the

developer’s problems, usually these cloning activities

are documented and it leads to number of negative

effects on the quality of the software. It increases the

total number of lines of code of the system and lines

of code that needs to be maintained.

Clone detection is an ongoing research area and the

existing literature is overwhelmed in detecting and

eliminating clones from software systems. The

literature presented in literature survey topic of this

research work gave several dimensions of code

cloning. Many existing methods and tools have been

compared and discussed. It is very important to

identify the clones present in the code, at the same

time there should be some solution proposed to this

problem. The existing refactoring methods can give

solutions to the code cloning problems. Refactoring

has been used effectively in the proposed method.

In this work, a light-weight method has been

proposed to identify functional clones. This method

uses the computation of several metrics in

combination with simple textual analysis technique.

The usage of metrics with existing exponential rate of

comparison overhead of the other methods is reduced

to minimum number of comparisons. This is possible

by early analysis of potential clones and applying

comparisons only on code fragments that are

identified as clones in this analysis. Since the string

matching/textual comparison is performed over the

short listed candidates, a higher amount of recall could

be obtained.

The Proposed work is divided into two stages. The

first one is selection of potential clones and the second

one is comparison of potential clones. The proposed

technique detects exact clones on the basis of metric

match and then by text match. Potential clones are

compared line-by-line to determine whether two

potential clones really are clones of each other. The

experiments proved that this method can do better

than existing systems in finding and classifying the

clones in JAVA. The Precision and Recall values that

are obtained describe the efficiency of the work

proposed. It has been proved that Precision 98% and

Recall 96% is achievable in code cloning. In addition

it also identifies the functional clones.

 Future Enhancements

Though the proposed technique is working

efficiently for Programming languages like JAVA, it

can be extended to find clones in multiple languages.

When it comes to identify only type I, type II and type

III clones this method can identify clones in almost all

object oriented programming languages. Research

work can be extended not only to find the clones but

also to remove the actual clones. Though refactoring

process has been used, it can be fully automated and

implemented so that no human intervention is required.

The proposed method is experimented on medium

sized software applications only. These applications

are of 10 to 15 KLOC only. Experiments on large

scale systems can be conducted to observe efficiency

of the method. The parameters for the efficiency are

taken only in the form of precision and recall values. It

also can be extended to scalability, portability and

robustness etc.

II. APPENDIX

Programs of the case study are presented earlier..

This is a class which is taken from a package where

only few methods were present. These classes are

taken because the methods which are present in these

classes are useful to demonstrate the code duplication.

Program 1

 import java.util.*;

 import java.lang.*;

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 12 December 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 26

 public class TestFileOne{

 intp,q=1,r;

 double VALUE; /* the number which we

 need to find factrorial */

 public int factorial(int n) { /* factorial

function

 using recursive function */

 if(n == 0) {

 return 1;

 } else {

 return n * factorial(n-1);

 }

 }

 public intgcdOne(int a, int b) {

 while (b != 0) {

 if (a > b)

 {

 a = a - b;

 } else

 {

 b = b - a;

 }

 }

 return a;

 }

 public intmul(int a, int b){

 int n = 0, p=0;

 p=p+1;

 for(int i = 0; i < b; i++) {

 n += a;

 }

 return n;

 }

 public int factorial1 (int VALUE){ /*

factorial using for loop */

 for (p=1; p<=VALUE; p++)

 q = q*p;

 return q;

 }

 }

This program is similar to the program.1 with few

changes in it

Program 2

 import java.util.*;

 import java.lang.*;

 public class TestFileTwo {

 public int factorial2 (int n){ /* factorial using

recursive function */

 if(n == 0) {

 return 1;

 } else {

 return n * factorial2(n-1);

 }

 }

 public intgcdTwo(int c, int d) {

 while (d != 0) {

 if (c > d) {

 c = c - d;

 } else {

 d = d - c;

 }

 }

 return c;

 }

 public double mulTwo(double a, long b)

 {

 double n = 0.0;

 for(long i = 0l; i < b; i++)

 n += a;

 return n;

 }

 }

REFERENCES

[1] IEEE Standards for Software Maintenance, IEEE Standard
1219, 1998.

[2] ISO/IEC. Software Engineering –

SoftwareMaintenance.ISO/IEC 14764,1999.
[3] L. Arthur. Software Evolution: The Software Maintenance

Challenge. Wiley,1988.

[4] S.W.L.Yip and T. Lam,“A software maintenance survey”, In
Proc. of the 1stAsia-Pacific Software Engineering

Conference, pp 70–79, Dec 1994.

[5] S. Chidamber and C. Kemerer “A metric suite for object-

oriented design” IEEE Transactions on Software Engineering,

25(5):476–493, Jun 1994.

[6] Jennie Brown, MattiTeinonen “Software configuration
management A ClearCase for IBM Rational” IBM Redbooks,

2004

[7] Robert Tairas, “Clone detection and refactoring”, Proceeding
of OOPSLA '06 Companion to the 21st ACM SIGPLAN

symposium on Object-oriented programming systems,

languages, and applications, pp. 780-781, New York, USA,
2006

[8] Chanchal K. Roy, James R. Cordya and Rainer Koschkeb,

“Comparison and Evaluation of Code Clone Detection

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 12 December 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 27

Techniques and Tools: A Qualitative Approach”, Journal

Science of Computer Programming, Vol. 74, No.7, pp. 470-

495, May 2009.

[9] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo

Sant Anna and Lorraine Bier, “Clone Detection Using
Abstract Syntax Trees”, Proceedings of the International

Conference on Software Maintenance, pp. 368, Washington

DC, USA 1998
[10] Douglas Martin, James R. Cordy, "Analyzing Web Service

Similarity Using Contextual Clones", ACM Journal, 2011.

[11] M.Fowlor, “Refactoring: improving the design of existing
code”, Addison Wesley, 1999.

[12] William C Wake, “Refactoring work book”, Pearson

Education Inc, 2004.
[13] Magiel Bruntink, Arie van Deursen,Remco van Engelen, and

Tom Tourwe, "On the Use of Clone Detection for Identifying

Crosscutting Concern Code", IEEE Transactions On
Software Engineering, Vol. 31, No. 10, pp. 804-818, October

2005

[14] Abouelhoda M.I., Kurtz S.andOhlebusch E, "The enhanced
suffix array and its applications to genome analysis", In Proc.

Workshop on Algorithms in Bioinformatics, vol.2452, pp.

449–463, Berlin, 2002

[15] Hamid Abdul Basit and Stan Jarzabek, "Detecting Higher-

level Similarity Patterns in Programs", European Software

Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pp. 1-10 Lisbon,

Sept. 2005
[16] Lingxiao Jiang, Zhendong Su and Edwin Chiu, “Context-

based detection of clone-related bugs”, Proceedings of the

6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The

foundations of software engineering, pp. 55 – 64, New York,

USA, 2007.
[17] Chanchal Kumar Roy and James R Cordy, “A Survey on

Software Clone Detection Research”, Computer and

Information Science, Vol. 115, No. 541, pp. 115, 2007
[18] J Howard Johnson “Identifying Redundancy in Source Code

Using Fingerprints” In Proceeding of the 1993 Conference of

the Centre for Advanced Studies Conference (CASCON'93),
pp. 171-183, Toronto, Canada, October 1993.

[19] Zhenmin Li, Shan Lu, SuvdaMyagmar, and Yuanyuan

Zhou,“CP-Miner: Finding Copy-Paste and Related Bugs in

Large-Scale Software Code”, In IEEE Transactions on

Software Engineering, Vol. 32(3): 176-192, March 2006.

[20] Christopher Brown, Simon Thompson. "Clone Detection and
Elimination for Haskell", ACM journal, 2010.

[21] Elizabeth Burd and Malcolm Munro “Investigating the

maintenance implications of the replication of code” in
Proceedings of the 13th International Conference on

Software Maintenance (ICSM'97), Bari, Italy, September

1997.
[22] Matthias Rieger. “Effective Clone Detection without

Language Barriers” Ph.D. Thesis, University of Bern,

Switzerland, June 2005.
[23] Magiel Bruntink, “Aspect Mining using Clone Class

Metrics”, In Proceedings of the 1stWorkshop on Aspect

Reverse Engineering, 2004.
[24] Fabio Calefato, FilippoLanubile, Teresa Mallardo, "Function

Clone Detection in Web Applications: A Semi automated

Approach", Journal of Web Engineering, Vol. 3, No.1,
pp.003-021, 2004.

[25] Andrew Walenstein and Arun Lakhotia, “The Software

Similarity Problem in Mal-ware Analysis”, In Proceedings

Dagstuhl Seminar 06301: Duplication, Redundancy, and

Similarity in Software, pp.10, Dagstuhl, Germany, July 2006.

[26] Giuliano Antoniol, Gerardo Casazza, Massimiliano Di Penta,
and Ettore Merlo,“ModelingClones Evolution through Time

Series”, In Proceedings of the 17th IEEE International

Conference on Software Maintenance (ICSM'01), pp. 273-
280, Florence, Italy, November 2001.

[27] W-K. Chen, B. Li, and R. Gupta, “Code Compaction of

Matching Single-Entry MultipleExit Regions”, In
Proceedings of the 10th Annual International Static Analysis

Symposium (SAS’03), pp. 401-417, San Diego, CA, USA,

June 2003.

[28] Magiel Bruntink, Arie van Deursen, TomTourwe and Remco

van Engele, "An Evaluation of Clone Detection Techniques

for Identifying Crosscutting Concerns", In Proceedings of the
20th IEEE International Conference on Software

Maintenance, pp. 200- 209, Washington DC, USA 2004.

[29] Ira D. Baxter and Dale Churchett, "Using Clone Detection to
Manage a Product Line", proceedings of International

conference on Clone detection using abstract syntax trees, pp.

1-3,1998.
[30] Heejung Kimy, Yungbum Jungy, Sunghun Kimx and

Kwangkeun Yi, "MeCC: Memory Comparison-based Clone

Detector", 33rd International Conference on Software
Engineering, Waikiki, Honolulu, Hawaii, May 21-28, 2011

[31] Florian Deissenboeck, Benjamin Hummel, Elmar Jurgens,

Bernhard Schatz, Stefan Wagner, Jean-François Girard and
Stefan Teucher, "Clone detection in automotive model-based

development", Proceedings of the 30th international

conference on Software engineering, pp. 613-622,New York,
NY, USA,2008

[32] Robert Tairas, Jeff Gray and Ira Baxter, "Visualization of

clone detection results", In Proceedings of the 2006

OOPSLA Workshop on Eclipse Technology Exchange ACM,

pp. 50-54, New York, USA, 2006.

[33] Minhaz F.Zibran and ChanchalK.Roy, "Towards Flexible
Code Clone Detection, Management, and Refactoring in

IDE", Fifth International Workshop on Software Clones,
Waikiki, Hawaii, USA, May 23, 2011

[34] M. Kim, L. Bergman, T.A. Lau, and D. Notkin, “An

Ethnographic Study of Copy and Paste Programming
Practices in OOPL,” In Proceedings of International

Symposium on Empirical Software Eng. (ISESE ’04), pp. 83-

92, Aug. 2004
[35] M. Rieger, S. Ducasse, and G. Golomingi, “Tool Support for

Refactoring Duplicated OO Code,” In Proceedings of

European Conference on Object- Oriented Programming
(ECOOP ’99), pp. 177-178, June 1999.

[36] Rainer Koschke, RaimarFalke and Pierre Frenzel, "Clone

Detection Using Abstract Syntax Suffix Trees," In Proc. of
the 13th Working Conference on Reverse Engineering,

Benevento, pp. 253 - 262, Oct 2006.

[37] Stephane Ducasse, Oscar Nierstrasz and Matthias Rieger,

"Research On the effectiveness of clone detection by string

matching," Journal of Software Maintenance and Evolution:

Research and Practice, Vol. 18, No. 1, pp. 37-58, 2006.
[38] Michael Toomim, Andrew Begel and Susan L. Graham,

“Managing Duplicated Code with Linked Editing”, In the

Proceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computing(VL/HCC'04), pp. 173-180,

Rome, Italy, September 2004.

[39] YueJia, David Binkley, Mark Harman, Jens Krinke and
Makoto Matsushita, "KClone: A Proposed Approach to Fast

Precise Code Clone Detection," In Proceedings of the Third

International Workshop on Detection of Software Clones
(IWSC 2009), pp. 12-16, 2009.

[40] R. R. Brooks, P. Y. Govindaraju, M. Pirretti, N.

Vijaykrishnan and M. Kandemir, "Clone Detection in Sensor
Networks with Ad Hoc and Grid Topologies," International

Journal of Distributed Sensor Networks, Vol. 5, pp. 209–223,

2009.
[41] Shinji Kawaguchi, TakanobuYamashinay, HidetakeUwanoz,

KyhoheiFushida, Yasutaka Kamei, MasatakaNagura and

Hajimu Iida, "SHINOBI: A Tool for Automatic Code Clone

Detection in the IDE," In Proceedings of the 16th Working

Conference on Reverse Engineering, pp. 313 - 314, Oct 2009.

[42] Nam H. Pham, HoanAnh Nguyen, Tung Thanh Nguyen,
Jafar M. Al-Kofahi and Tien N. Nguyen, "Complete and

Accurate Clone Detection in Graph-based Models," In

Proceedings of the 31st International Conference on Software
Engineering, Washington, DC, 2009.

[43] Kodhai. E, Kanmani. S, Kamatchi. A, Radhika.R and

VijayaSaranya. B, "Detection of Type-1 and Type-2 Code
Clones Using Textual Analysis and Metrics," In Proceedings

of the 2010 International Conference on Recent Trends in

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 12 December 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 28

Information, Telecommunication and Computing,

Washington, DC, pp. 241-243, 2010.

[44] ArmijnHemel, Karl TrygveKalleberg, Rob Vermaas, and

EelcoDolstrac, "Finding Software License Violations

Through Binary Code Clone Detection," In Proceedings of
the 8th working conference on Mining software repositories,

New York, NY, May 2011.

[45] Kodhai.E, Perumal.A, and Kanmani.S, "Clone Detection
using Textual and Metric Analysis to figure out all Types of

Clones," In Proceedings of the International Joint Journal

Conference on Engineering and Technology (IJJCET 2010),
pp. 99 - 103, 2010.

[46] F.Calefato, F.Lanubile and T.Mallardo, “Function Clone

Detection in WebApplications: A Semiautomated
Approach,” Journal of Web Engineering, Vol.3, No. 1, pp. 3–

21, 2004.

[47] T.Kamiya, S.Kusumoto, and K.Inoue, “CCFinder: A
MultiLinguistic Token-Based Code Clone Detection System

for Large Scale Source Code,” IEEE Trans. Software Eng.,

Vol. 28, No. 7, pp. 654-670, July 2002.
[48] B.Baker, “On Finding Duplication and Near-Duplication in

Large SoftwareSystems”, In Proceedings of the Second

Working Conference on Reverse Engineering (WCRE’95),

pp. 86–95, Toronto, Ontario, Canada, July 1995.

[49] Ettore Merlo1, “Detection of Plagiarism in University

Projects Using Metrics based Spectral Similarity,” In the
Dagstuhl Seminar: Duplication, Redundancy, and Similarity

in Software, 2007.
[50] S.Ducasse, M.Rieger and S.Demeyer, “A Language

Independent Approach for Detecting Duplicated Code,” In

Proceedings of the 15th International Conference on
Software Maintenance (ICSM’99), pp. 109–118, September

1999.

[51] [52] Richard Wettel, RaduMarinescu “Archeology
of Code Duplication: Recovering Duplication Chains From

Small Duplication Fragments”, In Proceedings of the 7th

Inter-national Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC'05), pp.8,

Timisoara, Romania, September 2005.

[52] Andrian Marcus and Jonathan I. Maletic,“Identification of
high-level concept clones in source code”, In Proceedings of

the 16th IEEE International Conference on Automated

Software Engineering (ASE'01), pp. 107-114, San Diego, CA,

USA, November 2001.

[53] B.Baker, “Finding Clones with Dup: Analysis of an

Experiment,” IEEETransactions on Software Engineering,
Vol. 33, No. 9, pp. 608–621, 2007.

[54] J.R. Cordy and C.K. Roy, “The NiCad Clone Detector,” In

19th International Conference on Program Comprehension,
Kingston, Canada, June 2011.

[55] Aoun Raza, Gunther Vogel, Erhard Plaodereder,“Bauhaus: A

Tool Suite for Program Analysis and Reverse Engineering”,
In Proceedings of the 11th Ada-Europe International

Conference on Reliable Software Technologies, LNCS 4006,

pp. 71-82, Porto, Portugal, June 2006.
[56] W.Yang, “Identifying Syntactic Differences Between Two

Programs,” Software Practice and Experience, Vol. 21, No. 7,

pp. 739–755, July 1991.
[57] V. Wahler, D. Seipel, J. Gudenberg and G. Fischer, “Clone

Detection in Source Code by Frequent Itemset Techniques”

In Proceedings of the 4th IEEE International Workshop
Source Code Analysis and Manipulation (SCAM), pp.128–

135, Chicago, IL, USA, September 2004.

[58] Williams Evans, and Christopher Fraser, “Clone Detection

via Structural Abstraction”, In the Proceedings of the 14th

Conference on Reverse Engineering (WCRE'07), Vancouver,

BC, Canada, October 2007.
[59] Robert Tairas, Jeff Gray, “Phoenix-Based Clone Detection

Using Suffix Trees”, In the Proceedings of 44th annual

Southeast regional conference (ACM-SE'06), pp. 679-684,
Melbourne, Florida, USA, March 2006.

[60] J.Mayrand, C.Leblanc and E.Merlo, “Experiment on the

Automatic Detection ofFunction Clones in a Software
System Using Metrics,” In the Proceedings of the 12th

International Conference on Software Maintenance

(ICSM’96), pp. 244–253, Monterey, CA, USA, November

1996.

[61] UdiManber, “Finding similar files in a large file system” In

Proceedings of the Winter1994 Usenix Technical Conference,

pp. 110, San Francisco, USA,January 1994.
[62] Seunghak Lee, IryoungJeong,“SDD: High Performance Code

CloneDetection Systemfor Large Scale Source Code”, In

Proceedings of the Object Oriented Programming Systems
Languages and Applications Companion to the 20th annual

ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications (OOP-
SLA Companion'05), pp. 140-141, San Diego, CA, USA,

October 2005.

[63] Neil Davey, Paul Barson, Simon Field, Ray J Frank, “The
Development of a Software Clone Detector”, International

Journal of Applied Software Technology, Vol. 1, pp. 219-236,

1995
[64] B. BoUobas, “Random Graphs”, Cambridge University Press,

2001.

[65] Mohammed Abdul Bari and Dr. Shahanawaj Ahamad, “Code
Cloning: The Analysis, Detection and Removal”,

International Journal of Computer Applications (0975 – 8887)

Volume 20, No.7, April 2011

[66] Khurram Zeeshan Haider, Tabassam Nawaz, Sami ud Din,

and Ali Javed, "Efficient Source Code Plagiarism

Identification Based on Greedy String Tilling", International
Journal of Computer Science and Network Security, Vol.10

No.12, December 2010.
[67] Florian Deissenboeck, Benjamin Hummel, Elmar Jurgens,

Stefan Wagner, "Do Code Clones Matter", In the Proceedings

of the 31st international conference on Software engineering,
pp. 485-495,New York, NY, USA,2009.

[68] Bettenburg, Nicola, Weyi Shang , Ibrahim, and W.Adams

“An Empirical Study on Inconsistent Changes to Code
Clones at Release Level”, Conference on Reverse

Engineering, 2009.

[69] Suresh Thummalapenta, Luigi Cerulo, LerinaAversano,
Massimiliano Di Penta, "An empirical study on the

maintenance of source code clones", Empirical Software

Engineering, February, Volume 15, Issue 1, pp. 1-34, 2010.
[70] Foyzur Rahman, Christian Bird, PremkumarDevanbu,

"Clones: what is that smell?", Empirical Software

Engineering, August, Vol. 17, Issue 4-5, pp. 503-530, 2012.

[71] Jeremy R. Patel, Robert Tairas and Nicholas A. Kraft, "Clone

evolution: a systematic review", Journal of Software:

Evolution and Process, Volume 25, Issue 3, pp. 261–283,
March 2013.

[72] Florian Deissenboeck , Benjamin Hummel, Elmar

Juergens, Michael Pfaehler, Bernhard Schaetz, "Model clone
detection in practice", In the Proceedings of the 4th

International Workshop on Software Clones, pp. 57-64, 2010.

[73] Robert Tibshirani, Pei Wang, "Spatial smoothing and hot
spot detection for CGH data using the fused lasso",

Biostatistics, pp.1-7, 2007.

[74] HiranDhanjia, Michel Doumitha, Olivier Clermontb, Erick
Denamurb, Russell Hopea, David M. Livermorea, Neil

Woodforda, "Real-time PCR for detection of the O25b-

ST131 clone of Escherichia coli and its CTX-M-15-like
extended-spectrum lactamases", International Journal of

Antimicrobial Agents, Vol.36, pp.355–358, 2010.

www.internationaljournalssrg.org

