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Abstract The act of cut, copy and pasting code 

fragments and making minor, non–functional 

alterations, is a major problem for large, industrial 

software systems. It leads to duplicated code 

fragments known as code clones. The major 

consequence of cloning in the code is that it makes the 

maintenance process difficult. Finding out the reused 

fragment of code in any application is usually called 

as code clone detection. In the process of software 

maintenance, evolution clones are considered to be 

harmful because it increases the complexity of the 

system. From the evolution of the clone detection, it 

provides improved results and decreases the 

complexity of the system for better maintenance.  

 

Through the state of art in code cloning, one can 

understand clone detection process is mainly focused 

on detection of a line after line or detection based on 

tokenization. This technique makes the system complex 

and takes long time to process the source code to find 

the clones in it. If a code fragment is not an exact 

copy, but the functionality shows that it is similar to 

another code fragment, then current clone detection 

system unable to find out such type of clones. 

 

The proposed research model for detection of clone 

approach shows that the detection process is easier 

and it has produced efficient results. This approach is 

a process of combining textual approach and metric 

analysis of the given source code for detection of all 

four types of clones presented in a given set of code 

fragment in java source code. All the detected clone 

pairs are grouped together to form clone clusters and 

they are stored in files. All the detected clones can be 

automatically refactored if it is required by the 

programmer. 

 

Different semantics have been formulated and the 

values of these semantics have been used in the 

process of clone detection. These metrics along with 

textual analysis provide a very less complexity in 

figuring out the clones and provide accurate results. 

 

Efficiency of the technique is measured in terms of 

Precision and Recall values. The results of the 

proposed method are compared with the bench mark 

tools like Clone DR, CCFinder and other techniques. 

The analysis of the experimental results shows that 

Precision and Recall values are improved and they 

are better than the previous techniques.   

 of Social networking and wide range of smart devices 

and Internet applications has lead to creation of 

extremely large sets of complex data referred as 

BIGDATA. IOT is interconnection of physical things 

using intelligent devices like sensors etc. and 

operating them with ease[1].  

 

Keywords — Code Clone, Clone detection,   

refactoring, metrics, textual analysis,  

I. INTRODUCTION, OVERVIEW, CONCLUSION OF 

RESEARCH WORK AND FUTURE ENHANCEMENTS  

The act of cut, copy and pasting code fragments and 

making minor, non–functional alterations, is a major 

problem for large, industrial software systems. It leads 

to duplicated code fragments known as code clones. 

The major consequence of cloning in the code is that it 

makes the maintenance process difficult. Finding out 

the reused fragment of code in any application is 

usually called as code clone detection. In the process 

of software maintenance, evolution clones are 

considered to be harmful because it increases the 

complexity of the system. From the evolution of the 

clone detection, it provides improved results and 

decreases the complexity of the system for better 

maintenance.  

 

Through the state of art in code cloning, one can 

understand clone detection process is mainly focused 

on detection of a line after line or detection based on 

tokenization. This technique makes the system 

complex and takes long time to process the source 

code to find the clones in it. If a code fragment is not 

an exact copy, but the functionality shows that it is 

similar to another code fragment, then current clone 

detection system unable to find out such type of clones. 

 

The proposed research model for detection of clone 

approach shows that the detection process is easier 

and it has produced efficient results. This approach is 

a process of combining textual approach and metric 

analysis of the given source code for detection of all 

four types of clones presented in a given set of code 

fragment in java source code. All the detected clone 

pairs are grouped together to form clone clusters and 

they are stored in files. All the detected clones can be 
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automatically refactored if it is required by the 

programmer. 

 

Different semantics have been formulated and the 

values of these semantics have been used in the 

process of clone detection. These metrics along with 

textual analysis provide a very less complexity in 

figuring out the clones and provide accurate results. 

 

Efficiency of the technique is measured in terms of 

Precision and Recall values. The results of the 

proposed method are compared with the bench mark 

tools like Clone DR, CCFinder and other techniques. 

The analysis of the experimental results shows that 

Precision and Recall values are improved and they are 

better than the previous techniques.  CONCLUSIONS 

 

 Present Work: 

 

Software maintenance is a very important phase of 

the development life cycle. Reducing the software 

maintenance overhead is an activity that makes the 

software industry more comfortable. When it is 

compared with any other product the software product 

customers expect more of maintenance of the product 

because they feel it is flexible (i.e. it is simply writing 

few instructions). So, changes can be accommodated 

easily at any time. But software engineering literature 

says it is a myth. 

 

Software clone is more dangerous in large software 

systems. Most of the times cloning happens due to 

copy and paste activity only. Almost every developer 

thinks to save developing time, so he uses this activity 

because developing code from the scratch takes more 

time. Sometimes time constraints force developers to 

turn towards cloning. Some maintenance engineers 

accidentally produce these clones. Although it seems 

to be an effective and simple solution to the 

developer’s problems, usually these cloning activities 

are documented and it leads to number of negative 

effects on the quality of the software. It increases the 

total number of lines of code of the system and lines 

of code that needs to be maintained.   

 

Clone detection is an ongoing research area and the 

existing literature is overwhelmed in detecting and 

eliminating clones from software systems. The 

literature presented in literature survey topic of this 

research work gave several dimensions of code 

cloning. Many existing methods and tools have been 

compared and discussed. It is very important to 

identify the clones present in the code, at the same 

time there should be some solution proposed to this 

problem. The existing refactoring methods can give 

solutions to the code cloning problems. Refactoring 

has been used effectively in the proposed method. 

 

In this work, a light-weight method has been 

proposed to identify functional clones. This method 

uses the computation of several metrics in 

combination with simple textual analysis technique. 

The usage of metrics with existing exponential rate of 

comparison overhead of the other methods is reduced 

to minimum number of comparisons. This is possible 

by early analysis of potential clones and applying 

comparisons only on code fragments that are 

identified as clones in this analysis. Since the string 

matching/textual comparison is performed over the 

short listed candidates, a higher amount of recall could 

be obtained.  

 

The Proposed work is divided into two stages. The 

first one is selection of potential clones and the second 

one is comparison of potential clones. The proposed 

technique detects exact clones on the basis of metric 

match and then by text match. Potential clones are 

compared line-by-line to determine whether two 

potential clones really are clones of each other. The 

experiments proved that this method can do better 

than existing systems in finding and classifying the 

clones in JAVA. The Precision and Recall values that 

are obtained describe the efficiency of the work 

proposed. It has been proved that Precision 98% and 

Recall 96% is achievable in code cloning. In addition 

it also identifies the functional clones. 

 

 Future Enhancements 

Though the proposed technique is working 

efficiently for Programming languages like JAVA, it 

can be extended to find clones in multiple languages. 

When it comes to identify only type I, type II and type 

III clones this method can identify clones in almost all 

object oriented programming languages. Research 

work can be extended not only to find the clones but 

also to remove the actual clones. Though refactoring 

process has been used, it can be fully automated and 

implemented so that no human intervention is required. 

 

The proposed method is experimented on medium 

sized software applications only. These applications 

are of 10 to 15 KLOC only. Experiments on large 

scale systems can be conducted to observe efficiency 

of the method. The parameters for the efficiency are 

taken only in the form of precision and recall values. It 

also can be extended to scalability, portability and 

robustness etc. 

 

II. APPENDIX  

Programs of the case study are presented earlier.. 

This is a class which is taken from a package where 

only few methods were present. These classes are 

taken because the methods which are present in these 

classes are useful to demonstrate the code duplication. 

Program 1 

 import java.util.*; 

 

 import java.lang.*; 
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 public class TestFileOne{ 

 

 intp,q=1,r; 

 

 double VALUE; /* the number which we   

                                     need to find factrorial */ 

 

 public int factorial(int n) { /* factorial 

function  

      using recursive function */ 

 

    if(n == 0) { 

 

       return 1; 

 

     } else { 

  

      return n * factorial(n-1); 

        } 

    } 

    

   public intgcdOne(int a, int b) { 

     while (b != 0)    { 

       if (a > b)     

 { 

         a = a - b; 

       } else    

 { 

         b = b - a; 

        } 

     } 

     return a; 

   } 

    

   public intmul(int a, int b){ 

 

     int n = 0, p=0; 

 

     p=p+1; 

  

     for(int i = 0; i < b; i++) { 

 

       n += a; 

     } 

 

     return n; 

   } 

 public int factorial1 ( int VALUE ){ /* 

factorial using for loop */ 

 

 for (p=1; p<=VALUE; p++) 

 

 q = q*p; 

 return q; 

 } 

 } 

  

 

This program is similar to the program.1 with few 

changes in it 

 

 

Program 2  

 

 import java.util.*; 

 

 import java.lang.*; 

  

  

 public class TestFileTwo { 

  

   public int factorial2 (int n){ /* factorial using 

recursive function */ 

     if(n == 0) { 

       return 1; 

       } else { 

       return n * factorial2(n-1); 

     } 

   } 

    

   public intgcdTwo(int c, int d) { 

     while (d != 0)  { 

       if (c > d)   { 

         c = c - d; 

       } else  { 

         d = d - c; 

        } 

     } 

     return c; 

   }   

  

   public double mulTwo(double a, long b)

 { 

     double n = 0.0; 

     for(long i = 0l; i < b; i++) 

       n += a; 

      

     return n; 

   } 

 } 
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