
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 2 February 2015 

ISSN: 2348 – 8387          www.internationaljournalssrg.org                                   Page 17 

TDT- An Efficient Clustering Algorithm for 

Large Database 
Ms. Kritika Maheshwari, Mr. M.Rajsekaran 

         M-Tech Scholar, Department of Computer Science and Engineering, SRM University, India 

              Assistant Professor, Department of Computer Science and Engineering, SRM University, India 

           

ABSTRACT: A lot of side-information is available 

along with the text documents in online forums. 

Such side information may be of different kinds, as 

it may be the links in the document, access 

behavior from web histories or other non-textual 

attributes which are embedded into the text 

document. Such attributes contain huge amount of 

information for clustering purposes. However, the 

importance of this side-information is difficult to 

calculate, mostly when some of the information is 

noisy. Therefore in these cases it is risky to 

incorporate side information into the clustering 

process, because it may either improve the quality 

of the clustering process, or it can even add some 

noisy information to it. Therefore, a principled way 

to perform the clustering process is needed, so as to 

maximize the advantages from using this side 

information. And to result the search query 

efficiently and effectively.  An algorithm for text 

clustering with side-information is described here 

i.e. COATES Algorithm. 
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1. INTRODUCTION 

 In recent years, new ways of collecting 

data have resulted in a need for applications which 

work effectively and efficiently with data streams. 

The most important problem in the data stream 

domain is that of clustering. We will examine the 

problem of massive domain stream clustering. 

Massive-domains are those data domains in which 

the number of possible values for one or more 

attributes is very large. Examples of such domains 

are, in network applications, many attributes like IP 

addresses are drawn over millions of possibilities. 

In a multi-dimensional application, this problem is 

further magnified because of the multiplication of 

possibilities over different attributes. 

In text clustering, a text or document is 

always represented as a bag of words. This 

representation involves one major problem: the 

high dimensionality of the feature space and the 

inherent data sparsity. Obviously, a single 

document has a sparse vector over the set of all 

terms. The performance of such clustering 

algorithms will decline dramatically due to the 

problems of high dimensionality and data 

sparseness. Therefore it is highly desirable to 

reduce the feature space dimensionality. There are 

two commonly used techniques to deal with this 

problem: feature extraction and feature selection. 

In many real data mining applications, 

data comes in as a continuous stream and presents 

several challenges to traditional static data mining 

algorithms. Application examples include topic 

detection from a news stream, intrusion detection 

from continuous network traffic, object recognition 

from video sequences, etc. Challenges lie in aspects 

such as: high algorithm efficiency is required in 

real time; huge data volume that cannot be kept in 

memory all at once; multiple scans from secondary 

storage is not desirable since it causes intolerable 

delays; and mining algorithms need to be adaptive 

since data patterns change over time. 

In many application domains, a 

tremendous amount of side-information is also 

associated along with the documents. Since text 

documents mostly occur in the context of a variety 

of applications in which there may be a large 

amount of other kinds of database attributes or 

meta information which may be useful to the 

clustering method.     

2. RELATED WORK  

In the paper [1] Charu C Agrawal discuss 

about massive-domain data streams are those in 

which the number of possible domain values for 

each attribute are very large and cannot be easily 

tracked for clustering purposes. Examples of such 

streams include IP-address streams, streams of 

credit-card transaction or streams of sales data over 

large numbers of items. So in these cases, it is well 

known that simple stream operations like counting 

000can be extremely difficult because of the 

difficulty in maintaining summary information over 

the different distinct values. The clustering task is 

significantly more challenging in such cases, as the 

intermediate statistics for the different clusters is 

difficult to be maintained efficiently. 

  Here, Charu C. Aggarwal proposes a 

method for clustering massive-domain data streams 

with the use of sketches. Charu C. Aggarwal proves 

probabilistic results which show that a sketch-based 

clustering method can provide similar results to an 

infinite space clustering algorithm with high 
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probability. The problem of massive-domain 

clustering naturally occurs in the space of discrete 

attributes, whereas most of the known data stream 

clustering methods is designed on the space of 

continuous attributes. He proposes a sketch-based 

approach in order to keep track of the intermediate 

statistics of the primary clusters. These statistics are 

used to make approximate determinations of the 

assignment of data points to clusters.  

He also provides probabilistic results[2] 

which indicate that these approximations are 

sufficiently accurate to provide similar results to an 

infinite-space clustering algorithm with high 

probability. He also presents experimental results 

which illustrate the high accuracy of the 

approximate assignments. In the next section, we 

will propose a technique for massive-domain 

clustering of data streams. He provides a 

probabilistic analysis which shows that our sketch-

based stream clustering method provides similar 

results to an infinite space clustering algorithm 

with high probability. And this literature from the 

title of A Framework for Clustering Massive-

Domain Data Streams. 

  In many real data mining applications, 

data comes in as a continuous stream and presents 

several challenges to traditional static data mining 

algorithms. Application examples include topic 

detection from a news stream, intrusion detection 

from continuous network traffic, object recognition 

from video sequences, etc. And challenges lie in 

several aspects like high algorithm efficiency is 

required in real time; huge data volume that cannot 

be kept in memory all at once; multiple scans from 

secondary storage is not desirable since it causes 

intolerable delays; and mining algorithms need to 

be adaptive since data patterns change over time. 

  In this paper[3] Douglass R Cutting and 

David R. Kargel discuss that document clustering 

has not been well received as an information 

retrieval tool. Problem in its use occur into two 

main categories , the one where that clustering is 

too slow for large corpora; and the other, that 

clustering doesn’t appreciably improve retrieval. 

These problems arise only when clustering is used 

in an attempt to improve conventional search 

techniques. Well, considering clustering as an 

information access tool in its own right prevent 

these problems, and provides a efficient new access 

paradigm.  

A technique for browsing documents that 

employs document clustering as its primary 

operation, also present fast clustering algorithms 

which support this interactive browsing paradigm. 

In the basic iteration of the proposed 

browsing method, the user is presented with short 

summaries of a small number of document groups. 

Initially the system scatters the collection into a 

small number of document groups, or clusters, and 

presents short summaries of them to the user. 

Based on these summaries, the user selects one or 

more of the groups for further study. The selected 

groups are combined together to form a sub 

collection. 

The system then applies clustering again 

to scatter the new sub collection into a small 

number of document groups, which are again 

presented to the user. With each following iteration 

the groups become smaller, and more detailed. 

Ultimately, when the groups become smaller, this 

process bottoms out by enumerating individual 

documents. 

To support Scatter/Gather, fast clustering 

algorithms are essential. Clustering can be done 

faster by working in a same manner on small 

groups of documents rather than trying to deal with 

the entire corpus globally. For extremely large 

corpora, even the linear time clustering achieved by 

the Buckshot or Fractionation algorithms may be 

too slow. Authors  are working to develop 

variations on Scatter/Gather which will scale to 

arbitrarily large corpora, under the assumption that 

linear time pre-processing will always be feasible. 

In this paper BIRCH: An Efficient Data 

Clustering Method for Very Large Database[4] 

Tian Zhang, Raghu Krishnan and Miron Livny are 

concerned about finding useful patterns in large 

datasets has attracted considerable interest recently, 

and one of the most deeply studied problems in this 

area is the recognition of clusters, or densely 

populated areas, in a multi-dimensional Dataset. 

Prior work does not reasonably address the 

problem of large datasets and minimization of I/0 

costs. Authors adopt, the problem definition used in 

Statistics, but with an additional, database-oriented 

constraint, the amount of memory available is 

limited and we want to minimize the time required 

for I/0. 

A related point is that it is desirable to be 

able to take into account the amount of time that a 

user is willing to wait for the results of the 

clustering algorithm. Authors a clustering method 

named BIRCH and demonstrates that it is 

especially suitable for very large databases. Its I/O 

cost is linear in the size of the dataset: a single scan 

of the dataset yields a good clustering, and one or 

more additional passes can (optionally) be used to 

improve the quality further. 

By evaluating BIRCH’S time/space 

efficiency data input order sensitivity, and 

clustering quality, and comparing with other 

existing algorithms through experiments, we argue 

that BIRCH is the best available clustering method 

for very large databases. BIRCH architecture also 

gives opportunities for parallelism, and for 

interactive or effective performance tuning based 
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on knowledge about the dataset, gained over the 

course of execution. Finally, BIRCH is the first 

clustering algorithm proposed in the data areas that 

address other and propose a plausible solution.  

Proper parameter setting is important to 

BIRCH efficiency. The main things which needed 

to be considered are more reasonable ways of 

increasing the threshold dynamically, The dynamic 

adjustment of outlier criteria, More accurate quality 

measurements and Data parameters that are good 

indicators of how well BIRCH is likely to perform. 

Authors try to explore BIRCH’S 

architecture for opportunities of parallel executions 

as well as interactive learning’s. As an incremental 

algorithm, BIRCH will be able to read data directly 

from a tape drive or from network by matching its 

clustering speed with the data reading speed. They 

also study how to make use of the clustering 

information obtained to help solve problems such 

as storage or optimization, and data compression. 

             In this paper [5] author Shi Zhong 

combines an efficient online spherical k-means 

(OSKM) algorithm with an existing scalable 

clustering strategy to achieve fast and adaptive 

clustering of text streams. The OSKM algorithm 

modifies the spherical k-means (SPKM) algorithm, 

using online update (for cluster centroids) based on 

the well-known Winner-Take-All competitive 

learning. It has been proved to be as efficient as 

SPKM, but it is much superior in the quality of 

clustering.  

3.             Proposed System  

                   The scalable clustering strategy was 

previously developed to deal with very large data 

bases that cannot fit into a limited memory and that 

are too expensive to read/scan multiple times. 

Using this clustering strategy, one keeps sufficient 

statistics for history data to retain (part of) the 

contribution of history data and to accommodate 

the limited memory. 

                  To make the proposed clustering 

algorithm adaptive to data streams, the author 

introduce a forgetting factor that applies 

exponential decay to the importance of history data. 

As the older a set of text documents, the less 

weight they carry. This experimental result 

demonstrate the efficiency of the proposed 

algorithm and reveal an intuitive and an interesting 

fact for clustering text streams—one needs to 

forget to be adaptive.  

               The primary goal in this paper is to study 

the clustering problem. This approach can also be 

extended in principle to other data mining problems 

in which auxiliary information is available with 

text. Such side information may be of different 

kinds, such as the links present in document, user-

access behavior from web history, or other non-

textual attributes which are embedded into the text 

document. These attributes contain a enormous 

amount of information for clustering purposes. The 

relative importance of this auxiliary information 

may be difficult to estimate. It can be risky to 

incorporate side-information into the mining 

process. 

                The algorithm for text clustering with 

side-information is COATES. We assume that an 

input to the algorithm is the number of clusters k. 

In all text-clustering algorithms, the stop-words 

have been removed, and stemming has been 

performed to improve the unbiased power of the 

attributes. The algorithm has two phases: 

1. Initialization 2. Main Phase. 

                 The TDT (Topic Detection Tracking) is 

influenced by the prior work of detection. It is 

found that the dual-threshold clustering paradigm 

of detection systems worked well for topic 

detection and tracking . Furthermore, we found that 

many of the features that were beneficial for topic 

detection continued to be helpful for tracking. Our 

basic scoring formula was a symmetrised version 

of the PCA (Principle Component Analysis) 

formula. Document clusters were represented by 

the centroid of the cluster, and the weight is both 

dependent on cluster and time. The important 

source of improvement occurs when we include the 

named based entity search and cluster based 

representation. 
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              figure.1 System Architecture 

                    In FIG.1 the system architecture is 

shown where the process is shown how the 

clustering process is been handled efficiently. The 
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XML query is been taken from the user by the 

XML parser. The dimensionality reduction is done 

using PCA (principal component analysis) which 

reduce the original content into principal 

component. The reduced features go to clustering 

process. The simultaneously the user query is 

answered. 

                    The main methodology we used is 

COATES algorithm for clustering with side 

information and along with it topic based detection 

is also applied. 

                   We use the COntent and Auxiliary 

attribute based Text cluStering (COATES) 

algorithm in text clustering. This algorithm has two 

phases. Now, this text mining in the initialization 

phase of the algorithm. We use a lightweight 

initialization phase in which a standard text 

clustering approach is used in weblog without any 

side-information. The centroids and the partitioning 

created by the clusters formed in the first phase 

provide an initial starting point for the second 

phase. As the first phase is based on text only, and 

it does not have auxiliary information. The focus of 

the first phase is simply to construct an 

initialization, which gives a good initialization for 

the clustering process based on text content. 

                  The main phase of the algorithm is 

executed after the first phase. The main phase is the 

combining auxiliary attributes in the text clustering. 

This phase starts off with these initial groups, and 

iteratively reconstructs these clusters with the use 

of both the text content and the auxiliary 

information.  It performs alternating iterations 

which use the text content and auxiliary attribute 

information in order to improve the quality of the 

clustering. And these iterations are known as 

content iterations and auxiliary iterations 

respectively. The above two iterations are 

combined and called as major iteration. The major 

iteration is the sum of two minor iterations 

corresponds to text based and auxiliary attribute 

based. 

                   Here, the overall approach uses 

alternating minor iterations of content-based and 

auxiliary attribute-based clustering. The algorithm 

maintains a set of centroids, which are 

subsequently refined in the different iterations. In 

content-based phase, we assign a document to its 

closest centroid based on a similarity function of 

text. In auxiliary phase, the attribute probabilities 

are related to the cluster-membership probabilities 

by creating the probabilistic model. It relates on the 

basis of clusters which have already been created in 

the most recent text-based phase.  

                  The goal of this modeling is to examine 

the coherence of the text clustering with the side-

information attributes. In order to construct a 

probabilistic model of membership of the data 

points to clusters, we  know that there is a prior 

probability of each auxiliary iteration for 

assignment of documents to clusters , and a 

posterior probability of assignment of documents to 

clusters with the use of auxiliary variables in that 

iteration. Furthermore, in order to ensure the 

robustness of the approach, we need to remove the 

noisy attributes. When the number of auxiliary 

attributes is little large, it becomes really important. 

                  We will compute the cluster purity for 

every class present, which is defined as the fraction 

of documents in the clusters which agree with its 

dominant class. The average cluster purity over all 

clusters (weighted by cluster size) was reported as a 

surrogate for the quality of the clustering process. 

Therefore, we have: 

                       P=Ci/Ni            (1)                            

               where P is fraction of data points in 

cluster. The cluster purity lies between 0 and 1. 

Therefore  a idle clustering will give a cluster 

purity of almost 1, and a poor clustering will give 

very low values of the  purity. 

                Our TDT tracking system was influenced 

by prior work on detection. We found that the dual-

threshold clustering paradigm of detection systems 

worked well for topic detection and tracking (after 

minimal modifications.) We found that many of the 

features that were beneficial for topic detection 

continued to be helpful for tracking. The basic 

document to document scoring formula was a 

symmetrised version of the PCA (Principle 

Component Analysis) formula. 

            For the browser update we use OSKM 

algorithm along with COATES and TDT. The 

OSKM algorithm identify and update the closest 

cluster center.  

4.        CONCLUSION  

           It’s alternating minor iterations of content-

based and auxiliary attribute-based clustering. We 

are going to test against a supervised clustering 

method which uses both text and side information. 

So improve the quality of the representation for 

clustering. Time delay will be reduced as the 

clusters are already stored in the database. So it will 

take less time to fetch the user query. Weight of 

content will be reduced. As the clusters are formed 

with the important side information and all the 

noisy data has been removed, the content weight is 

reduced. 
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