
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 2 February 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 17

TDT- An Efficient Clustering Algorithm for

Large Database
Ms. Kritika Maheshwari, Mr. M.Rajsekaran

 M-Tech Scholar, Department of Computer Science and Engineering, SRM University, India

 Assistant Professor, Department of Computer Science and Engineering, SRM University, India

ABSTRACT: A lot of side-information is available

along with the text documents in online forums.

Such side information may be of different kinds, as

it may be the links in the document, access

behavior from web histories or other non-textual

attributes which are embedded into the text

document. Such attributes contain huge amount of

information for clustering purposes. However, the

importance of this side-information is difficult to

calculate, mostly when some of the information is

noisy. Therefore in these cases it is risky to

incorporate side information into the clustering

process, because it may either improve the quality

of the clustering process, or it can even add some

noisy information to it. Therefore, a principled way

to perform the clustering process is needed, so as to

maximize the advantages from using this side

information. And to result the search query

efficiently and effectively. An algorithm for text

clustering with side-information is described here

i.e. COATES Algorithm.

Keywords-Clustering process, Dimensionality

reduction, Side Information, Topic Detection

tracking.

1. INTRODUCTION

 In recent years, new ways of collecting

data have resulted in a need for applications which

work effectively and efficiently with data streams.

The most important problem in the data stream

domain is that of clustering. We will examine the

problem of massive domain stream clustering.

Massive-domains are those data domains in which

the number of possible values for one or more

attributes is very large. Examples of such domains

are, in network applications, many attributes like IP

addresses are drawn over millions of possibilities.

In a multi-dimensional application, this problem is

further magnified because of the multiplication of

possibilities over different attributes.

In text clustering, a text or document is

always represented as a bag of words. This

representation involves one major problem: the

high dimensionality of the feature space and the

inherent data sparsity. Obviously, a single

document has a sparse vector over the set of all

terms. The performance of such clustering

algorithms will decline dramatically due to the

problems of high dimensionality and data

sparseness. Therefore it is highly desirable to

reduce the feature space dimensionality. There are

two commonly used techniques to deal with this

problem: feature extraction and feature selection.

In many real data mining applications,

data comes in as a continuous stream and presents

several challenges to traditional static data mining

algorithms. Application examples include topic

detection from a news stream, intrusion detection

from continuous network traffic, object recognition

from video sequences, etc. Challenges lie in aspects

such as: high algorithm efficiency is required in

real time; huge data volume that cannot be kept in

memory all at once; multiple scans from secondary

storage is not desirable since it causes intolerable

delays; and mining algorithms need to be adaptive

since data patterns change over time.

In many application domains, a

tremendous amount of side-information is also

associated along with the documents. Since text

documents mostly occur in the context of a variety

of applications in which there may be a large

amount of other kinds of database attributes or

meta information which may be useful to the

clustering method.

2. RELATED WORK

In the paper [1] Charu C Agrawal discuss

about massive-domain data streams are those in

which the number of possible domain values for

each attribute are very large and cannot be easily

tracked for clustering purposes. Examples of such

streams include IP-address streams, streams of

credit-card transaction or streams of sales data over

large numbers of items. So in these cases, it is well

known that simple stream operations like counting

000can be extremely difficult because of the

difficulty in maintaining summary information over

the different distinct values. The clustering task is

significantly more challenging in such cases, as the

intermediate statistics for the different clusters is

difficult to be maintained efficiently.

 Here, Charu C. Aggarwal proposes a

method for clustering massive-domain data streams

with the use of sketches. Charu C. Aggarwal proves

probabilistic results which show that a sketch-based

clustering method can provide similar results to an

infinite space clustering algorithm with high

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 2 February 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 18

probability. The problem of massive-domain

clustering naturally occurs in the space of discrete

attributes, whereas most of the known data stream

clustering methods is designed on the space of

continuous attributes. He proposes a sketch-based

approach in order to keep track of the intermediate

statistics of the primary clusters. These statistics are

used to make approximate determinations of the

assignment of data points to clusters.

He also provides probabilistic results[2]

which indicate that these approximations are

sufficiently accurate to provide similar results to an

infinite-space clustering algorithm with high

probability. He also presents experimental results

which illustrate the high accuracy of the

approximate assignments. In the next section, we

will propose a technique for massive-domain

clustering of data streams. He provides a

probabilistic analysis which shows that our sketch-

based stream clustering method provides similar

results to an infinite space clustering algorithm

with high probability. And this literature from the

title of A Framework for Clustering Massive-

Domain Data Streams.

 In many real data mining applications,

data comes in as a continuous stream and presents

several challenges to traditional static data mining

algorithms. Application examples include topic

detection from a news stream, intrusion detection

from continuous network traffic, object recognition

from video sequences, etc. And challenges lie in

several aspects like high algorithm efficiency is

required in real time; huge data volume that cannot

be kept in memory all at once; multiple scans from

secondary storage is not desirable since it causes

intolerable delays; and mining algorithms need to

be adaptive since data patterns change over time.

 In this paper[3] Douglass R Cutting and

David R. Kargel discuss that document clustering

has not been well received as an information

retrieval tool. Problem in its use occur into two

main categories , the one where that clustering is

too slow for large corpora; and the other, that

clustering doesn’t appreciably improve retrieval.

These problems arise only when clustering is used

in an attempt to improve conventional search

techniques. Well, considering clustering as an

information access tool in its own right prevent

these problems, and provides a efficient new access

paradigm.

A technique for browsing documents that

employs document clustering as its primary

operation, also present fast clustering algorithms

which support this interactive browsing paradigm.

In the basic iteration of the proposed

browsing method, the user is presented with short

summaries of a small number of document groups.

Initially the system scatters the collection into a

small number of document groups, or clusters, and

presents short summaries of them to the user.

Based on these summaries, the user selects one or

more of the groups for further study. The selected

groups are combined together to form a sub

collection.

The system then applies clustering again

to scatter the new sub collection into a small

number of document groups, which are again

presented to the user. With each following iteration

the groups become smaller, and more detailed.

Ultimately, when the groups become smaller, this

process bottoms out by enumerating individual

documents.

To support Scatter/Gather, fast clustering

algorithms are essential. Clustering can be done

faster by working in a same manner on small

groups of documents rather than trying to deal with

the entire corpus globally. For extremely large

corpora, even the linear time clustering achieved by

the Buckshot or Fractionation algorithms may be

too slow. Authors are working to develop

variations on Scatter/Gather which will scale to

arbitrarily large corpora, under the assumption that

linear time pre-processing will always be feasible.

In this paper BIRCH: An Efficient Data

Clustering Method for Very Large Database[4]

Tian Zhang, Raghu Krishnan and Miron Livny are

concerned about finding useful patterns in large

datasets has attracted considerable interest recently,

and one of the most deeply studied problems in this

area is the recognition of clusters, or densely

populated areas, in a multi-dimensional Dataset.

Prior work does not reasonably address the

problem of large datasets and minimization of I/0

costs. Authors adopt, the problem definition used in

Statistics, but with an additional, database-oriented

constraint, the amount of memory available is

limited and we want to minimize the time required

for I/0.

A related point is that it is desirable to be

able to take into account the amount of time that a

user is willing to wait for the results of the

clustering algorithm. Authors a clustering method

named BIRCH and demonstrates that it is

especially suitable for very large databases. Its I/O

cost is linear in the size of the dataset: a single scan

of the dataset yields a good clustering, and one or

more additional passes can (optionally) be used to

improve the quality further.

By evaluating BIRCH’S time/space

efficiency data input order sensitivity, and

clustering quality, and comparing with other

existing algorithms through experiments, we argue

that BIRCH is the best available clustering method

for very large databases. BIRCH architecture also

gives opportunities for parallelism, and for

interactive or effective performance tuning based

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 2 February 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 19

on knowledge about the dataset, gained over the

course of execution. Finally, BIRCH is the first

clustering algorithm proposed in the data areas that

address other and propose a plausible solution.

Proper parameter setting is important to

BIRCH efficiency. The main things which needed

to be considered are more reasonable ways of

increasing the threshold dynamically, The dynamic

adjustment of outlier criteria, More accurate quality

measurements and Data parameters that are good

indicators of how well BIRCH is likely to perform.

Authors try to explore BIRCH’S

architecture for opportunities of parallel executions

as well as interactive learning’s. As an incremental

algorithm, BIRCH will be able to read data directly

from a tape drive or from network by matching its

clustering speed with the data reading speed. They

also study how to make use of the clustering

information obtained to help solve problems such

as storage or optimization, and data compression.

 In this paper [5] author Shi Zhong

combines an efficient online spherical k-means

(OSKM) algorithm with an existing scalable

clustering strategy to achieve fast and adaptive

clustering of text streams. The OSKM algorithm

modifies the spherical k-means (SPKM) algorithm,

using online update (for cluster centroids) based on

the well-known Winner-Take-All competitive

learning. It has been proved to be as efficient as

SPKM, but it is much superior in the quality of

clustering.

3. Proposed System

 The scalable clustering strategy was

previously developed to deal with very large data

bases that cannot fit into a limited memory and that

are too expensive to read/scan multiple times.

Using this clustering strategy, one keeps sufficient

statistics for history data to retain (part of) the

contribution of history data and to accommodate

the limited memory.

 To make the proposed clustering

algorithm adaptive to data streams, the author

introduce a forgetting factor that applies

exponential decay to the importance of history data.

As the older a set of text documents, the less

weight they carry. This experimental result

demonstrate the efficiency of the proposed

algorithm and reveal an intuitive and an interesting

fact for clustering text streams—one needs to

forget to be adaptive.

 The primary goal in this paper is to study

the clustering problem. This approach can also be

extended in principle to other data mining problems

in which auxiliary information is available with

text. Such side information may be of different

kinds, such as the links present in document, user-

access behavior from web history, or other non-

textual attributes which are embedded into the text

document. These attributes contain a enormous

amount of information for clustering purposes. The

relative importance of this auxiliary information

may be difficult to estimate. It can be risky to

incorporate side-information into the mining

process.

 The algorithm for text clustering with

side-information is COATES. We assume that an

input to the algorithm is the number of clusters k.

In all text-clustering algorithms, the stop-words

have been removed, and stemming has been

performed to improve the unbiased power of the

attributes. The algorithm has two phases:

1. Initialization 2. Main Phase.

 The TDT (Topic Detection Tracking) is

influenced by the prior work of detection. It is

found that the dual-threshold clustering paradigm

of detection systems worked well for topic

detection and tracking . Furthermore, we found that

many of the features that were beneficial for topic

detection continued to be helpful for tracking. Our

basic scoring formula was a symmetrised version

of the PCA (Principle Component Analysis)

formula. Document clusters were represented by

the centroid of the cluster, and the weight is both

dependent on cluster and time. The important

source of improvement occurs when we include the

named based entity search and cluster based

representation.

User Query

User

Clustering TDT
Dimensionality

Reduction (PCA)

DB

Updated paper

clusters content

Feature

Selection

Reduced

Features

XML Parser

Text

XML

 figure.1 System Architecture

 In FIG.1 the system architecture is

shown where the process is shown how the

clustering process is been handled efficiently. The

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 2 February 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 20

XML query is been taken from the user by the

XML parser. The dimensionality reduction is done

using PCA (principal component analysis) which

reduce the original content into principal

component. The reduced features go to clustering

process. The simultaneously the user query is

answered.

 The main methodology we used is

COATES algorithm for clustering with side

information and along with it topic based detection

is also applied.

 We use the COntent and Auxiliary

attribute based Text cluStering (COATES)

algorithm in text clustering. This algorithm has two

phases. Now, this text mining in the initialization

phase of the algorithm. We use a lightweight

initialization phase in which a standard text

clustering approach is used in weblog without any

side-information. The centroids and the partitioning

created by the clusters formed in the first phase

provide an initial starting point for the second

phase. As the first phase is based on text only, and

it does not have auxiliary information. The focus of

the first phase is simply to construct an

initialization, which gives a good initialization for

the clustering process based on text content.

 The main phase of the algorithm is

executed after the first phase. The main phase is the

combining auxiliary attributes in the text clustering.

This phase starts off with these initial groups, and

iteratively reconstructs these clusters with the use

of both the text content and the auxiliary

information. It performs alternating iterations

which use the text content and auxiliary attribute

information in order to improve the quality of the

clustering. And these iterations are known as

content iterations and auxiliary iterations

respectively. The above two iterations are

combined and called as major iteration. The major

iteration is the sum of two minor iterations

corresponds to text based and auxiliary attribute

based.

 Here, the overall approach uses

alternating minor iterations of content-based and

auxiliary attribute-based clustering. The algorithm

maintains a set of centroids, which are

subsequently refined in the different iterations. In

content-based phase, we assign a document to its

closest centroid based on a similarity function of

text. In auxiliary phase, the attribute probabilities

are related to the cluster-membership probabilities

by creating the probabilistic model. It relates on the

basis of clusters which have already been created in

the most recent text-based phase.

 The goal of this modeling is to examine

the coherence of the text clustering with the side-

information attributes. In order to construct a

probabilistic model of membership of the data

points to clusters, we know that there is a prior

probability of each auxiliary iteration for

assignment of documents to clusters , and a

posterior probability of assignment of documents to

clusters with the use of auxiliary variables in that

iteration. Furthermore, in order to ensure the

robustness of the approach, we need to remove the

noisy attributes. When the number of auxiliary

attributes is little large, it becomes really important.

 We will compute the cluster purity for

every class present, which is defined as the fraction

of documents in the clusters which agree with its

dominant class. The average cluster purity over all

clusters (weighted by cluster size) was reported as a

surrogate for the quality of the clustering process.

Therefore, we have:

 P=Ci/Ni (1)

 where P is fraction of data points in

cluster. The cluster purity lies between 0 and 1.

Therefore a idle clustering will give a cluster

purity of almost 1, and a poor clustering will give

very low values of the purity.

 Our TDT tracking system was influenced

by prior work on detection. We found that the dual-

threshold clustering paradigm of detection systems

worked well for topic detection and tracking (after

minimal modifications.) We found that many of the

features that were beneficial for topic detection

continued to be helpful for tracking. The basic

document to document scoring formula was a

symmetrised version of the PCA (Principle

Component Analysis) formula.

 For the browser update we use OSKM

algorithm along with COATES and TDT. The

OSKM algorithm identify and update the closest

cluster center.

4. CONCLUSION

 It’s alternating minor iterations of content-

based and auxiliary attribute-based clustering. We

are going to test against a supervised clustering

method which uses both text and side information.

So improve the quality of the representation for

clustering. Time delay will be reduced as the

clusters are already stored in the database. So it will

take less time to fetch the user query. Weight of

content will be reduced. As the clusters are formed

with the important side information and all the

noisy data has been removed, the content weight is

reduced.

 REFERENCES

[1] C. C. Aggarwal and C.-X. Zhai, Mining Text Data.

New York, NY, USA: Springer, 2012.

[2] C. C. Aggarwal and P. S. Yu, ―A framework for
clustering massive text and categorical data streams,‖ in Proc.

SIAM Conf. Data Mining, 2006, pp. 477–481.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 2 February 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 21

[3] D. Cutting, D. Karger, J. Pedersen, and J. Tukey,

―Scatter/Gather: A cluster-based approach to browsing large
document collec- tions,‖ in Proc. ACM SIGIR Conf., New York,

NY, USA, 1992, pp. 318–329.

[4] T. Zhang, R. Ramakrishnan, and M. Livny, ―BIRCH:
An efficient data clustering method for very large databases,‖ in

Proc. ACM SIGMOD Conf., New York, NY, USA, 1996, pp. 103–

114.

[5] Shi Zhong, ―Efficient Online Sphercal K-means

Clustering‖ in Proc. International Joint Conference on Neural

Networks, Montreal, Canada, jii1 -August4, 2005

