
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 7 July 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 9

Estimating Energy usage of Transactions in

Mobile Applications
Vijaya Shetty S

#1
, Sarojadevi H

#2
, Navya K.M

 #3

1
, Department. of CSE, NMIT Bangalore, India

2
 Deptartment of CSE, NMAMIT Mangalore, India

3
 Department of CSE, NMIT Bangalore, India

Abstract — Performance of transactions in mobile

applications is gaining importance due to the increased

usage of these applications in mobile phones. The increased

functionality of transactions in these applications incurs

higher energy cost and results in degradation of

performance in mobile phones. To improve the energy

consumption of mobile application transactions, developers

need detailed information about the energy consumption of

transactions in their applications. This paper presents a

review of different tools and techniques available for energy

estimation of mobile applications. The paper also proposes

a new technique which provides the code level energy

estimation of transactions in mobile applications. This

technique instruments the bytecode of the application to

obtain execution paths of different transactions through the

code, analyses the execution traces of the transactions and

estimates the energy usage for each transaction and the

application as a whole. The energy consumption feedback is

given to the developer for further optimization of the code.

The proposed technique does not require any expensive

hardware for energy monitoring as it is based on bytecode

instrumentation and profiling.

Keywords — Performance, Mobile Application,

Bytecode, Energy estimation, Profiling.

I. INTRODUCTION

 The advent of smartphones allows users to carry

more computational power in their hands. The

usability of these devices is defined by energy

consumption of mobile applications they use on their

phones. Poor design of transactions in these

applications can reduce the battery lifetime of mobile

phones. The user reviews about the applications reveal

many complaints related to energy usage of different

mobile applications. Design of optimized, energy

efficient transactions in mobile applications can

increase user satisfaction. Many researchers have

focused their work on evaluation of energy

consumption and performance for mobile devices,

focusing on hardware component and application code.

Research in estimating the energy usage of mobile

devices has explored wide variety of techniques

ranging from specialized hardware, cycle accurate

simulators to calibrated software based energy profiler

that give a rough idea of energy estimate. The

approaches that estimate the hardware component

level energy usage such as disk and CPU state do not

provide enough information about the energy

consumed at the code level and their realisation is very

expensive. Similarly cycle accurate simulators and

operating system level instrumentation can slow down

the overall process beyond the point of usability.

Because of these limitations there are no tools

available to developers to estimate software power

consumption easily and accurately.

 To address these limitations, a new technique is

being proposed which will estimate the energy usage

of transactions in mobile application at code level. The

proposed technique is inexpensive as it does not

require any special hardware for monitoring the

energy usage of the application.

 Our research is focussed on energy estimation of

transactions in mobile applications. A transaction

processing system is basically an information based

system. A transaction in general is an exchange,

usually a request and response between a user (human

or software) and the system [1], [2], [3]. A transaction

may require fetching of data from the database and it’s

processing before presenting it to the user. In this

context, users are mobile users.

II. TOOLS FOR MEASURING ENERGY ESTIMATION

Android is a Linux based platform that can be used

for the development of the transactional mobile

applications. During development of the mobile

application, it is necessary to analyse few non

functional requirements like performance, energy

consumption, power usage etc. Performance analysis

of these applications can be done with traceview and,

energy and power consumption estimation can be

done with power tutor.

A. Traceview

 Android software development tool kit provides

tools for debugging, profiling and monitoring [4]. The

dalvik debug monitor server (DDMS) belongs to this

kit, contains a traceview that provides timeline and

profile panel in a graphical user interface. The

timeline panel provides start/stop time of each thread.

The profile panel gives the summary of performance

for each method and its children methods. The

summary includes inclusive and exclusive execution

time and the number of calls/recursive of the method.

The inclusive execution time is the total time spent by

a called method to execute from first instruction to last

instruction. The exclusive execution time is the trace

that is done either by changing application's source

code to call both start and stop tracing methods or by

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 7 July 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 10

manually starting and stopping the trace after the

application is already executed. This is very useful

tool for profiling. However, it has a limitation on

amount of data that it can trace, since it stores all the

traced data in a buffer with limited size and, it also

depends on the amount of free RAM that is available

on the mobile device. If the buffer overflows, then all

the data after the overflow will be lost. Thus this tool

cannot be used for analysing large applications.

B. Power Tutor

 Power Tutor was implemented for the android

platform which is used for estimating power that is

being consumed by different components like CPU,

network interface, GPS and so on[5]. This application

allows the developers to see the changes on power

efficiency. This tool is built for specific smartphone

model as they have different power dissipation

behavior. With single application running in the

system, this tool provides accurate results. However,

with several applications running at the same time the

energy estimation may diverge from real power and

energy consumption of the system as whole.

C. Trepn Profiler

 Trepn profiler [6] is used to profile performance

and power dissipation of processors. The data is

collected in real time during execution and this data

can be used for offline analysis. It is designed to

identify applications CPU usage, excess data use and

battery use. The power dissipation information is

obtained by hardware sensors that are present in these

processors.

D. VisualVM

Visual VM is a visual tool; which is integrated with

jdk tools and profiling capabilities. This tool is used to

monitor, profile, taking thread dumps, creates report

which has all the necessary information related to the

monitored applications. Profiling tool [7] is used for

performance analysis, debugging, to know the amount

of memory used, time taken for executing particular

component and the amount of CPU usage for

executing the application. This tool is used by the

application developers, system administrators and

application users.

III. APPROACHES FOR ESTIMATING

ENERGY CONSUMPTION AT

SOFTWARE LEVEL

 To improve energy consumption of mobile

application, developers need to have a detailed

behavior of energy consumption of their applications.

Fig. 1 Estimating source line level energy estimation

 The first approach is used to calculate source line

level energy consumption information by combining

hardware based power measurements with program

analysis [8]. There are two phases in their approach;

runtime measurement phase and offline analysis as

shown in Fig. 1.The runtime measurement phase has

application under test and the usecases for which user

wants to test energy measurements. The App

Instrumenter records the path traversal information by

using efficient path profiling technique proposed by

larus and ball. The approach builds the control flow

graph (CFG) for each method in AUA, and then each

edge in the CFG is assigned with unique path ID.

Later it calculates maximal spanning over the CFG

and uses this information for incrementing path ID

counter. The power measurement platform is based on

LEAP node which is an x86 platform based on ATOM

N550 processor that runs on android 3.2. .In offline

analysis phase, the analyzed tuples and power samples

are taken as input from the runtime analysis phase to

produce energy consumption at source line. The path

adjuster examines the paths in CFG and adjusts the

energy measurement. The adjusted energy

measurement and paths are the inputs to the analyzer.

The analyzer uses robust regression technique to

calculate the energy consumption at source line level.

It also determines if there is enough data collected

during runtime analysis phase to perform liner

regression; if not analyzer will direct the tester to

repeat the test and collect more data points. Finally the

annotator creates the graphical representation of the

energy report. The adjusted energy measurement and

paths are the inputs to the analyser. The analyzer uses

robust regression technique to calculate the energy

consumption at source line level. It also determines if

there is enough data collected during runtime analysis

phase to perform liner regression; if not analyzer will

direct the tester to repeat the test and collect more data

points. Finally the annotator creates the graphical

representation of the energy report.

 Cycle accurate simulators have been developed to

estimate the software energy consumption (such as

sim-P analyser [9] and wattch [10]). This approach

will simulate the processors action and estimate

energy consumption in each cycle. Since most of the

android applications take user inputs via graphical

user interface it is difficult to provide accurate

estimation of energy consumption.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 7 July 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 11

 The next approach is focused on energy

consumption of the operating system at a system call

level [11], [12], [13]. They build power models at

system call level and this model describes the power

consumed as a function of some features of the system

call level, for example CPU utilization as input

parameters. These models [14], [15] are then used to

profile energy consumption at system level during

execution of the target program.

 As there are no well known tools that can accurately

and easily estimate software power consumption,

developers follow well-known best practices that

provide general advice and guidelines. The coding

practices which can improve overall performance of

the mobile application[16],[17] are: the developers

must not create unnecessary objects which can lead to

periodic garbage collection which creates negative

impact on mobile applications performance, use static

final for constants, use of getters and setters methods

should be avoided, use of package access instead of

private access in a private inner class, use of static

invocations instead of virtual invocations, avoid of

accessing array length variable in the body of the loop,

avoid using floating point because it is 2x times

slower than integers in android applications, by using

share intent it works similar to your own activity and

can share the data back and forth between the

applications and returns back to your activity when it

is closed.

Fig. 2a Data collection phase

Fig. 2b Online analysis phase

 Another complementary approach is Sesame [18],

which generates and adapts energy models without

external measurement. To gain lower overhead in the

performance this tool schedules the computational

task when system is idle and when it is connected to

the power supply. Sesame uses CPU timings statistics,

memory usage and advanced configuration and power

interface which is available in modern mobile devices.

However this approach doesn’t provide the correct

estimation of energy of one application instead it gives

the measure of all the applications running

concurrently.

 Choice of software’s algorithms and architecture has

the significant effect on energy consumption of the

system. Software developers lack with the tools to

track the energy hungry section of the code and hence

they have to rely on assumptions when they are trying

to optimize the code. Eprof[19],[20] is a profiler tool

that relates the energy consumption at code level. This

gives energy consumed at the CPU and memory

subsystem. It does not require any specialized

hardware to energy profile software, it just requires

minimum changes in the coding. Energy profile

requires two types of information: code location which

cased energy consumption and amount of energy spent

by the code. Eprof implements two components for

each device: observation of energy relevant activity

and estimation of amount of energy consumed by that

activity as shown in fig. 3. When any activity is

started in the CPU Eprof records the path and code

location from where it originated. The energy

consumption in memory and CPU takes place while

code is executing. The energy profiling for CPU and

memory is done by hardware performance event

counter (HPCs). Eprof allows an activity to program

on HPCs, when a counter threshold is reached an

interrupt is generated. The path of currently running

thread is captured. Eprof is also used to profile the

energy consumption of peripheral devices like hard

disk, network cards etc.

 Another tool for profiling energy usage of

application is powerscope [21]. It relates energy

consumption to program structure. Powerscope is used

to determine the total amount of energy that is

consumed by a particular process during certain time

period and also specifies the next target in the code to

be optimized so that the system can be improved and

meets the design goals. This tool is a two stage

process: data collection phase (Fig. 2a) and offline

analysis phase (fig. 2b). During data collection phase

system activity of the profiling computer and power

consumption is observed. Later tool generates the

energy profile during analysis phase. To sample the

current drawn multimeter is used. System monitor and

energy monitor are the two software components of

the powerscope. The system monitor is responsible for

data collection. When a system activity is triggered by

the multimeter the current samples are recorded and

also values of program counter and the processor

identifier of currently running process are recorded.

The energy monitor is responsible for collecting and

storing current samples. The energy analyzer

generates the energy profile of system activity. It takes

raw data collected in data collection phase and

associates current samples collected by energy

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 7 July 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 12

monitor with the samples collected by system monitor.

The analyzer generates a summary of energy usage by

process. Each entry contains total time spent executing

the process, total energy usage of the process and

average power usage. By using these data

optimization can be done in the code just by changing

few tens of lines to improve performance of the

application.

Fig. 3 Overview of Eprof

 Previous studies on power modeling used external

power measurement component. AppScope [22] is an

android application which is an automatic online tool

to estimate energy consumption for each smartphone.

This tool obtains data about components types and

their configuration and also detects the update rate

automatically by considering update activity of battery

monitoring unit. For each hardware component this

tool creates a scenario to perform power analysis. The

workload is assigned for component, when it triggers

power state of each component is recorded.

 All the above discussed approaches have drawbacks

of using hardware components to estimate the energy

that is consumed by the applications. These

components are very expensive and they run several

thousand times slower than the actual software.

 To overcome this drawback, there are few major

challenges that need to be solved[23]: On the energy

side, software developers have to necessarily

understand the energy usage of mobile application, On

the performance side, the approach used to optimize

performance is necessarily applicable to mobile device

due to the difference in workloads and performance

bottlenecks, On the Memory side : Memory must be

carefully managed while creating the applications, On

the Processing power: CPU’s usage differs from

phone to phone and this must be taken into

consideration by developers. A technique based on

execution traces and bytecode analysis is the solution

to above mentioned problems[24]. Bytecode Profiling

is used by the application developers, system

administrator, application user's for performance

analysis and debugging. Bytecode profiling is a

technique used for solving performance related

problems in various domains. It enhances the program

to trace its execution, gather data, monitor memory

usage etc.

 To improve the performance of the system,

application's source code has to be converted to its

bytecode. There are three main advantages of using

bytecode instead of native code. First is portability;

systems with different processor architecture have

different instruction sets. If the application is compiled

to bytecode it can be executed in any environment that

has virtual machine installed in it. Second is security;

bytecode is designed to validate that it doesn’t have

the instructions that a malicious programmer would

use to hide their assaults. Third is size: memory

consumed by the bytecode is less compared to its

actual source code.

IV. PROPOSED SYSTEM

 The architecture of proposed system for energy

estimation of transactions in mobile applications is

shown in fig. 4. Running the application’s actual

source code for energy estimation takes large amount

of OS resources and hence this may lead to

performance degradation of the overall approach. To

overcome this limitation the technique of bytecode

profiling is used. CPU's clock cycles and memory

consumption can be reduced by profiling the bytecode

rather than the source code.

 The approach uses the following steps to estimate

energy consumption for transactions in mobile

applications.

Step 1: Initially consider the applications source

code (bytecode) as input to the process.

Step 2: Instrument the application’s source

code(byte code) to track execution paths of

different transactions in the application.

Tracking information may be locations in

bytecode.

Step 3: For each transaction obtain the execution

traces by grouping the instructions in path

of that transaction.

Step 4: Analyse the traces which is obtained for

transactions and apply the energy cost

values defined in the energy profile to

estimate energy consumption of

transactions. Algorithm to calculate the

energy estimate of transactions is given in

Algorithm 1.

Step 5: To find the energy estimate for the overall

application, find sum of energy estimates of

all transactions in the application.

Algorithm to calculate energy estimate of

the application is given in Algorithm 2.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 7 July 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 13

Fig. 4 Overview of proposed technique

Algorithm 1: Estimating energy consumption for

Transactions

Input: IS: Instrumented Source code(bytecode), T:

Transaction, Ttrace: Trace of T,

 C(i): Energy Cost for instruction i in energy

Profile.

Output: Energy estimate in joules.

 For all Transaction T in IS do

 Energy consumed0

 Ttrace  Generate trace(T)

 For all instruction i in Ttrace do

E
T  Σ i C(i)

 Return ET

 The energy profile C(i) defines energy cost values

for each instruction i. The analyzer computes energy

estimate using the trace information and energy profile

data. Estimation is done at transaction level and for

the whole application. To estimate energy

consumption for transaction T, the energy cost in the

energy profile for each instruction in the path of

transaction T is summed up. Instructions in the

transactions may involve connectivity to database,

retrieval query and post processing of retrieved data.

Finally, the analyzer computes energy estimate of

whole application by summing the energy estimate

values of all transactions.

Algorithm 2: Estimating energy consumption for the

Application

Input: IS: Instrumented Source code, ET []: Energy

Estimates of Transactions

Output: Energy estimate in joules.

 For all Transactions i in ES do

 E A Σ i ET [i]

 Return E A

V. CONCLUSIONS

 This research paper presents a review of various

tools and techniques available for measuring and

estimating the energy consumption of mobile

applications. The paper also proposes a new

technique for estimating energy consumption of

transactions in mobile applications via bytecode

profiling. The profiling technique proposed makes

profiling inline with the source code. Bytecode of the

application is instrumented for profiling. No special

hardware is required for monitoring the energy

consumption of transactions. The system is expected

to be faster in execution as the actual profiling is at

bytecode level. Bytecode uses less memory and

execution time. Previous approaches using bytecode

profiling technique are designed for the mobile

applications as a whole. Our proposed system is

mainly for monitoring the energy consumption of

transactions as they are the prime causes of

performance degradation in mobile applications. The

feedback obtained from this system can be used by the

application developers to optimize transactions in the

application. Our future work will be evaluation of this

system on transaction based android mobile

application.

ACKNOWLEDGMENT

 Our thanks to Management, Principal and, Head of

the department for their continuous research

encouragement and motivating guidelines.

REFERENCES

[1] Vijaya Shetty S, H. Sarojadevi, ―e-Business Performance
Issues, Quality Metrics and Development Frameworks‖,

International Journal of Computer Applications, ISSN- 0975

– 8887, pp. 42-47, Volume 55– No.7, October 2012.
[2] Vijaya Shetty S, Dr.H.Sarojadevi,‖Performance Analysis of

Transactional Applications in AMD Quad-Core and Intel i5

Processor Systems‖, Advanced Research in Engineering and
Technology, ISBN-978-81-910691-7-8, pp 381-388, Volume

8, Feb 2014.

[3] S. V. Shetty, H. Sarojadevi, B. Sriram, "A Highly Robust
Proxy Enabled Overload Monitoring System (P-OMS) for E-

Business Web Servers‖, Smart Innovation, Systems and

Technologies , ISBN: 978-81-322-2201-9 (Print) 978-81-

322-2202-6 (Online), Volume 33,pp. 385-394, Dec 2014.

[4] http://developer.android.com/tools/help/traceview.html,
―Traceview‖.

[5] https://play.google.com/store/apps/details?id=edu.umich.Pow

erTutor&hl=enttp://developer.android.com/guide/component
s/aidl.html

[6] https://developer.qualcomm.com/software/trepn-power-

profiler, ―Trepn Power Profiler‖.
[7] https://visualvm.java.net/, ―VisualVm 1.3.8‖.

[8] D. Li, S. Hao, W. G. Halfond, and R. Govindan, ―Calculating

source line level energy information for android
applications,‖ in Proceedings of the 2013 International

Symposium on Software Testing and Analysis (ISSTA), July

2013.
[9] T. Mudge, T. Austin, and D. Grunwald, ―The Reference

Manual for the Sim-Panalyzer Version 2.0.‖

[10] D. Brooks, V. Tiwari, and M. Martonosi, ―Wattch: A

framework for architectural-level power analysis and

optimizations,‖ in Proceedings of the 27th International

Symposium on Computer Architecture (ISCA),2000.

http://link.springer.com/search?facet-author=%22S.+V.+Shetty%22
http://link.springer.com/search?facet-author=%22H.+Sarojadevi%22
http://link.springer.com/search?facet-author=%22B.+Sriram%22
http://link.springer.com/chapter/10.1007/978-81-322-2202-6_35
http://link.springer.com/chapter/10.1007/978-81-322-2202-6_35
http://link.springer.com/chapter/10.1007/978-81-322-2202-6_35
http://link.springer.com/chapter/10.1007/978-81-322-2202-6_35
http://link.springer.com/bookseries/8767
http://link.springer.com/bookseries/8767
http://link.springer.com/bookseries/8767
http://developer.android.com/tools/help/traceview.html
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler
https://visualvm.java.net/

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 7 July 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 14

[11] Shuai Hao, Ding Li, William G. J. Halfond, Ramesh

Govindan,‖ Estimating Mobile Application Energy
Consumption using Program Analysis‖,IEEE,2013.

[12] T. Li and L. K. John, ―Run-time modeling and estimation of

operating system power consumption,‖ ACM SIGMETRICS
Performance Evaluation Review, 2003.

[13] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao,

and L. Yang, "Accurate Online Power Estimation and
Automatic Battery Behavior Based Power Model Generation

for Smartphone",in Proc. of IEEE/ACM/IFIP International

Conference on Hardware/Software Codesign and System
Synthesis, pages 105–114. ACM, 2010.

[14] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao,

and L. Yang. "Accurate Online Power Estimation and
Automatic Battery Behavior Based Power Model Generation

for Smart phones", ACM, 2010.

[15] A.Caroll and G.Heiser,"an analysis of power consumption in
a smartphone",in USENIX ATC,2010.

[16] D. Li and W. G. Halfond, ―An investigation into energy-

saving programming practices for android smartphone app
development.‖ in Proceedings of the 3rd International

Workshop on Green and Sustainable Software (GREENS),

2014.
[17] Sona Mundody, Sudarshan. K, ―Evaluating the Impact of

Android Best Practices on Energy Consumption‖ ,

International Conference on Information and Communication
Technologies,2013.

[18] M. Dong and L. Zhong. Sesame:"Self-Constructive System
Energy Modeling for Battery-Powered Mobile Systems",

MobiSys, 2011.

[19] Simon Schubert, Dejan Kostic, Willy Zwaenrpoel, Kang G.
Shin, " Profiling software for energy consumption", In IEEE

international conference on green computing and

communication,2012.
[20] Luca Ardito, Giuseppe Procaccianti, Marco Torchiano,

Giuseppe Migliore," Profiling Power Consumption on

Mobile Devices", Third International Conference on Smart
Grids, Green Communications and IT Energy-aware

Technologies, Energy 2013.

[21] J. Flinn and M. Satyanarayanan. Powerscope: A Tool for
Profiling the Energy Usage of Mobile Applications. In

Second IEEE Workshop on Mobile Computing Systems and

Applications, pages 2–10. IEEE, 1999.
[22] Yoon Chanmin, Kim Dongwon, Jung Wonwoo, Kang

Chulkoo, Cha Hojung, "Appscope : Application energy

metering framework for android smartphone using kernel
activity",ACM,2012.

[23] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang,

"Where is the energy spent inside my app? Fine Grained
Energy Accounting on Smart phones with Eprof", In Proc. of

EuroSys, 2012.

[24] Shuai Hao, Ding Li, William G. J. Halfond, Ramesh
Govindan,‖ Estimating Android Applications CPU Energy

Usage via Bytecode Profiling‖,IEEE,2012.

http://www.citeulike.org/user/raulccabreu/author/Chanmin:Y
http://www.citeulike.org/user/raulccabreu/author/Dongwon:K
http://www.citeulike.org/user/raulccabreu/author/Wonwoo:J
http://www.citeulike.org/user/raulccabreu/author/Chulkoo:K
http://www.citeulike.org/user/raulccabreu/author/Chulkoo:K
http://www.citeulike.org/user/raulccabreu/author/Chulkoo:K
http://www.citeulike.org/user/raulccabreu/author/Hojung:C

