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Abstract — This paper integrates template matching, 

calibration and triangulation algorithms in an efficient way to 

automate peg-hole insertion task using a pair of cameras. 

First we implement a fast template matching (fast correlation 

based block matching) algorithm for automatically finding the 

peg and hole using two cameras. We exploit the templates of 

the peg and hole at different orientation and illumination to 

improve the accuracy of the template matching algorithm. 

Then we implement the Direct Linear Transform (DLT) 

method based calibration algorithm to find the intrinsic and 

extrinsic parameters of the camera. We then refine the camera 

calibration parameters through Levenberg-Marquardt (LM) 

based non-linear optimization method. We used two cameras 

to prevent the occlusion of peg and hole occurred due to robot 

movement and to reduce calibration error. Finally we 

implement a DLT based triangulation method to find the three 

dimensional world coordinates of the peg and hole from the 

images captured by two cameras. We use square and circular 

grids to reduce triangulation error. For triangulation method 

similar feature points of two images are matched through 

Harris corner detection for square and sift features for 

circular grids. Optimum camera parameters for triangulation 

method are determined based on minimum rectification based 

calibration error.  We conducted the experiment on gantry 

robot. Experimental results demonstrate that efficient 

integration of template matching, calibration and 

triangulation method can successfully automate peg hole 

insertion task. 

 

Keywords — Direct Lineal Transformation, Template 

Matching Algorithm, Harris corner detection, SIFT, 

Levenberg-Marquardt Algorithm, Triangulation method,  peg-

hole insertion task, gantry robot. 

I. INTRODUCTION  

Peg-hole insertion task is a topic largely addressed and long 

standing problem in robotic research. Peg-hole assembly is the 

most basic and benchmark problem in which a peg is inserted 

into a hole [18]. The popularity of peg-hole insertion task is 

not only due to its importance in many industrial assembly 

tasks, but also for its complexity as a control problem that 

requires both position and force regulation. Human may 

achieve this task very easily, because we have the ability to 

perceive naturally all the factors that this process involves, 

nevertheless for a robot this task can be very complex.  On the 

other hand, it will be a great benefit if robots can learn the 

human skill and apply it autonomously.  Because automation 

of peg-hole insertion tasks increases productivity, costs 

reductions, and manual repetitive task reduction. Computer 

vision can automate this peg-hole insertion task.  

This paper presents the automation of peg hole insertion task 

using computer vision technique. Towards achieving this goal, 

we mounted two cameras: one at the ceiling looking 

downwards and the other capturing the side view to avoid the 

occlusion of the peg and hole due to robot movement as 

shown in Fig. 1. We first implement the fast correlation based 

block matching algorithm for automatically finding the 

position of the peg and hole in the images captured by two 

cameras. We exploit the templates of the peg and hole at 

different orientation and illumination to automatically find the 

peg and hole as shown in Fig. 2.  Then we implement the 

Direct Linear transform (DLT) based calibration method to 

find the intrinsic and extrinsic parameters of the camera. We 

then refine the camera calibration parameters through 

Levenberg-Marquardt (LM) based non-linear optimization 

method.  Finally we implement triangulation method using 

Direct Linear Transform (DLT) method to find the world 

coordinate of the peg and hole from their coordinates in the 

images captured by two cameras.  We find the optimum 

camera parameters for triangulation method using pairwise 

rectification error based calibration error. To compute 

rectification error we used square and circular grids. Feature 

matching for square grids are performed through Harris 

Corner and for circular grids are performed through sift 

features. We conducted the peg-hole insertion task using 

Gantry robot. Gantry robot is widely used in different industry 

operations that possess several advantages such as it can 

capture large work areas, it has the ability to reach at different 

angles and it achieves better positioning accuracy [17].  The 

target application of the presented system is to autonomously 

execute assembly operations of parts with complex geometry. 

To this end, we propose a computer vision system in  a 
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combination of image processing tasks such as template 

matching, calibration and triangulation able to fulfill the steps 

required for such a high-level task, namely, visual object 

identification, fine robot positioning, picking and insertion 

strategies. 

The outline of the remaining of the paper is as follows. 

Section II discusses brief literature review. Section III 

presents the fast template matching algorithm. Section IV 

explains calibration algorithm. Section V mentions 

triangulation methods. Section VI determines optimum 

camera parameters for triangulation.  Section VII 

demonstrates experimental results and discussions. Section 

VIII concludes this research. 

 

 
Fig. 1 Computer vision tasks for peg hole insertion using two cameras. 

 
Fig. 2 Multiple templates at different angles and illumination. Output includes 

the object having the highest matching score with the available templates of 
different angles and illumination.   

 

II. BRIEF LITERATURE REVIEW  

Different computer vision based automated peg-hole insertion 

tasks are available in literature. A few of them are discussed 

below.  

Choi et al. [3] automated an assembly task by using different 

sensor data. For gross motion control, vision and proximity 

sensors were used, and for fine motion control the 

force/torque sensor was used.  

Kim and Cho [4] used vision sensors to solve for peg 

misalignments due to deformation. An algorithm was 

developed and tested, and proved to be effective in detecting 

misalignments and fixing the errors. 

Xue et al. [5] introduced and used a new type cell of Self 

Organizing Manipulator for dual-peg-in-hole insertion. A 

camera and a force/torque sensor is used to complete this 

process, using the results obtained from an analysis of 

geometric and force conditions in performing that work. 

To deal with an assembly task, Newman et al. [6] 

implemented intelligent methods which are faster and better 

than blind search. Sensor data is gathered and interpreted; 

furthermore, pattern matching can be used for some cases to 

improve greatly the time required for completion. 

In this research, we integrated fast template matching, 

accurate calibration and triangulation method to automate the 

“peg-hole” insertion task. In the subsequent sections, different 

well-known methods of template matching, calibration and 

triangulation algorithm are discussed. 

III. FAST TEMPLATE MATCHING ALGORITHM 

Template matching algorithm are used to match the peg-

hole pair which provides the image coordinates of the center 

position and rotation of the peg, hole and the position of the 

gripper. We exploited different templates at different 

orientations and angles to improve the performance of the 

template algorithm as shown in Fig. 2. In this section we 

discussed two different fast template matching algorithms, fast 

correlation based block matching [1] and zero mean 

normalized cross correlation [2]. These two methods made 

some modifications on normalized cross correlation method to 

make it faster. First we define the normalized cross correlation 

and then describe the two modified version. 

 

A. Normalized Cross Correlation [12] 
For template matching, cross correlation is a method 

related to the difference of the distance between images. 
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with cross correlation like energy variation by normalizing the 

image and template vectors to unit length. 
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Where t is the mean of the template and f is the mean of 

),( yxf  in the region under the template. 

B. Fast Correlation Based Block Matching [1] 

Mahmood et al. [1] proposed two early termination criteria for 

normalized cross correlation to accelerate its computation. 

The first criterion is on growth based, starting with a perfect 

value and then decreasing, and when this partial value is lower 

than the yet known maxima, the remaining calculations are 

skipped. The second criterion used bounds to limit the 

minimum value that a region should have, skipping the 

calculations when this limit is not met. 

 

Correlation coefficient between two blocks is commonly 

interpreted as the covariance of the two blocks normalized by 

the individual image standard deviations: 
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The monotonic decreasing growth pattern of ,  provides the 

opportunity of early termination. For a specific search 

location, the partial value of  calculated over 

),( nqnp  pixels provides an upper bound on the final 

value of 'bb to be obtained at that location: 
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As a result, if at a specific search location, the current value of 

correlation coefficient ),(' qpbb once falls below the yet 

known maxima ,max it cannot improve after processing the 

remaining pixels. Therefore, further calculations at that search 
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upon the dissimilarity between the blocks ',bb and the 

magnitude .max  

An upper bound of  is derived as a function of the contents 

of the two blocks to be matched. Then that upper bound is 
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u
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u

bb' is 

found to be lower than the max , correlation calculation at 

that specific search location becomes redundant and can be 

skipped. 

C. Zero mean Normalized Cross Correlation (ZNCC) [2] 

Stefano et al.  [2] proposed an algorithm to skip calculations 

in the process of Normalized Cross Correlation. Here, two 

boundary conditions are checked at each image position. 

These two conditions check whether the current correlation 

can improve the best correlation found so far, if it cannot, the 

calculations are skipped.  
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NCC) between T and I at pixel position ),( yx  can be written 

as 





  

 






N

j

M

i

N

j

M

i

N

j

M

i

TjiTyxIcjyixI

TjiTyxIcjyixI

yxZNCC

1 1

2

1 1

2

1 1

)](),([))],((),([

)](),([))],((),([

),(



  

file:///C:/Users/Andres2/Downloads/www.internationaljournalssrg.org
K DURAISAMY
Text Box
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) -volume 3 Issue 11 -November 2016


K DURAISAMY
Text Box
63 



SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume X Issue Y–Month 2015 

ISSN: 2348 – 8387                     www.internationaljournalssrg.org                         Page 4 

Denoting with ),( yx the dot product between ),( yxIc  

and T and with ||||  the 
2 norm, simple algebraic 

manipulations allows the equation to be written as  
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Starting from (3), two different bounding conditions of the 

term ),( yxZ can be devised. These yield two sufficient 

conditions to be used during the matching process in order to 

skip rapidly those pixel positions that cannot improve the 

current maximum ZNCC score. 

To get the first condition, Cauchy-Schwarz inequality is 

applied to the latter term of the equation, and we obtain an 

upper-bound of the term 
N

nZ yx 1|),(   

N

n

N

n

N

n

N

nN

nZ

yxIcyxIcyxIcMnNyxIc

TTTMnNT
yx

1

22

1

1

22

1

1

'

|)),(()),((2)),(()()|||),((||

|)()(2)()()|||(||
)|,(

















 

Calling maxZ , the maximum ZNCC score found so far, and 

by replacing 
N

nZ yx 1|),(  with
N
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the following condition: 
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A second upper bounding function and associated sufficient 

condition can be obtained by algebraically manipulating the 
N
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the Cauchy-Schwarz inequality. So, we first rewrite 
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Applying the Cauchy-Swarz inequality to the dot product term 
N
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That yields the sufficient condition 
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The algorithm to follow is [2]: 

(1)Consider the next position 1),( yx . 

(2)Compute
N

nyx 1|),(  , 
N

nZ yx 1

' |),(   and
N

nZ yx 1

'' |),(  . 

(3)If both boundary conditions are true go to step 1, else 

compute
N

nyx 1|),(  . 

(4)If max),( ZyxZNCC  update maxZ together with the 

current best matching position ),( maxmax yx . 

(5) Go to step 1 

IV. CALIBRATION ALGORITHM 

Calibration algorithm converts the image coordinates to the 

world coordinates which are used as an input to the robot 

kinematics algorithm. For calibration, we first implement 

Direct Linear Transform (DLT) method for three dimensional 

(3D) world coordinate (x, y, z). When we get the initial values 

of the camera parameters (both intrinsic and extrinsic), we 

refine these values using Levenberg – Marquardt (LM) based 

nonlinear optimization. These two techniques are given below. 

A. Direct linear Transform (DLT) method for 3D [15] 

It is based on the collinearity between a point expressed in 

world frame ),,( zyx , its equivalent in image frame 

coordinates ),( vu and the central projection point of the 

camera. 

Eleven coefficients 111,..., LL are needed to establish the 

relationship between the points in the world reference system 

and their equivalents in the image reference system, according 

to DLT method. 
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DLT calibration consists of calculating the eleven parameters, 

and since each point provides two equations, a minimum of 

six points to calibrate is necessary. 
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To improve the results obtained by this method is necessary to 

include in the above equations the correction of errors caused 

by optical lenses distortion and deviation of the optical center. 
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Where
12L , 13L , and

14L correspond to the distortion 

correction, and 15L and 16L  to the deviation of the optical 

center. By increasing the number of parameters in order to 

solve the equations system, it is necessary to increase the 

minimum calibration points up to eight. Once obtained the 

coefficients of DLT method, it is possible to calculate intrinsic 

and extrinsic parameters of the calibrated camera. With the 

above coefficients, whether the optical defects have been 

corrected or not, the following projection matrix can be 

created: 
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Terms ),,( 11109 LLL of P matrix have correspondence with 

the terms of the rotation matrix R , ),,( 333231 rrr , except an 

scale factor. It must meet that: 
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Therefore, one can calculate the scale factor as: 
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Once P  matrix is normalized, the parameters of the camera 

can be calculated. 

34'sgn pt z   

Where sgn is a sign to determine according to the position of 

the camera regarding the world reference frame in Z axis. 

3313321231110 '''''' ppppppu   

3323322231210 '''''' ppppppv   
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Where xd and yd are the distances between the centers of the 

camera sensor elements. 
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The decomposition of projection matrix P , does not 

guarantee that rotation matrix R is orthogonal, therefore its 
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orthogonality must be ensured. An easy way to do this is 

through SVD decomposition. 

TVDU

rrr

rrr

rrr

R 
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232221

131211

 

It is only necessary to replace D matrix by the identity 33xl  

matrix to ensure that R is orthogonal. 

B. Levenberg-Marquardt (LM) Algorithm for Refining 

Camera Calibration Parameters [8]ERROR! REFERENCE 

SOURCE NOT FOUND. 

When initial camera intrinsic and extrinsic parameters of the 

linear model value are obtained by direct linear transformation 

method, nonlinear optimization is required to optimize 

parameter. For n calibration points, optimization to the 

intrinsic and extrinsic parameters can be performed by 

minimizing the objective function as shown below. 
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),( didi vu  is the model coordinates of i points, ),( ii vu is 

the actual coordinates of i points. Levenberg-Marquardt 

algorithm is a typical algorithm for solving nonlinear 

optimization problems, combining the advantages of the 

steepest descent method and Gauss-Newton method. 

Assuming that kx  is the current solution, for equation, the 

trial step of Gauss-Newton method for solving the problem is: 

)()())()(( 1

kkk

T

kk xFxJxJxJd   

Levenberg-Marquardt algorithm improves the Gauss-Newton 

method by adding a positive definite matrix Iuk to 
T

kxJ )(

to make kd a positive matrix. Step length of Levenberg- 

Marquardt algorithm is: 

)()())()(( 1

kkk

T

kk xFxJuIxJxJd   

Among them, I  is the unit matrix. u  is called Levenberg-

Marquardt parameter. When 0u , Levenberg-Marquardt 

algorithm tends to Gauss –Newton method; when u , 

Levenberg-Marquardt algorithm tends to be the steepest 

descent method. Let the intrinsic and extrinsic parameters 

obtained by direct linear transformation method as the initial 

value. Initial values of 2121 ,,, ppkk are set as zero. Iteration 

algorithm steps are shown below: 

1) Enter the in initial value. The initial parameters u  is 

0.01. Set the accuracy  as 1e-7; 

2) Calculate )(xF and )(xJ ; 

3) Calculate Levenberg Marquardt step kd , then

k

kk dxx 1
; 

4) If )()( 1 kk xFxF 
, and |||| kd , stop the iteration, 

and output result; otherwise, set 10/uu  , go to 

Step (2); 

5) If )()( 1 kk xFxF 
, set uu 10 , recalculate kd , 

return to step (4). 

V. TRIANGULATION THROUGH DLT [7] 

Since two cameras were mounted, one at the top (at ceiling 

looking downward) and the other gives the side view to avoid 

the occlusion of the peg and hole due to robot movement.  We 

get the camera matrix P and P’  for these two cameras using 

the calibration method discussed in section IV and then 

implement the triangulation method using Direct Linear 

Transform (DLT) method to get the three-dimensional world 

co-ordinate from the pixel position of the center of the peg 

and hole peg  using P and P’  that is discussed below.  

 

For each input image we have a measurement 

XPxPXx '',  where x is the 2D camera-space 

coordinates of a world point, x’ is the same point projected 

into the camera-space coordinates of a second camera. X 

represents the 3D world coordinate that we would like to 

recover. These two equations can be combined into the form 

AX = 0, which is an equation linear in X. The homogeneous 

scale factor is eliminated by a cross-product to give three 

equations for each image point visible in more than one of the 

cameras in the system. As an example the equation derived for 

a point in the first image would be given as x × (PX) = 0. 

Expanded, this gives the following set of three equations: 
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Combining equations from both cameras to produce an 

equation in the form AX = 0 gives us: 
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Solving for A using SVD allows us to estimate the value of X 

and thus the 3D coordinate of any point for which we know 

the camera-space coordinates from two cameras for which the 

projection matrix has already been determined. 

 

In this triangulation method x and x’ are two different image 

coordinates generated from the same world coordinate. In this 

experiment we find the Harris corner detection method for the 

square grid and sift feature for the circular grid that is 

demonstrated below.  
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A. Detecting Corner Points using Harris corner [10]  

The principal of Harris corner detection depends on the 

formula  

  2

),( )],(),()[,(|),( yxIvyuxIyxwvuE yx
 

Where E represents the gray change of the image, w (x, y) is a 

smooth window of Gaussian and ),( vu is expressed as 

minimal distance. The gray of the image changes when the 

images moves minimal distance. Applying the Taylor series 

expansion to the Formula of ),( vuE we can get 
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2
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 represents the convolution symbol, Ix represents the value 

of x direction, and Iy represents the value of y direction. 

M is a 2x2 matrix, and analyzing the two eigenvalues of the 

matrix we can determine if it is a point of interest (both 

eigenvalues are large), an edge (one is large, the other is 

small), or a plain area (both are small). 

 

 

Fig. 3 Feature matching of the square grid with Harris Corner. 

 

B. Sift Features[13] 

The Harris Corner detection is rotation invariant, this 

means that the rotation of the image does not affect the ability 

to obtain results. But with scale, this is not the case, a corner 

could stop being a corner if the image is scaled, to solve this, a 

Scale Invariant Feature Transform (SIFT) is used. This 

process is composed of five steps: 

1) Scale-space Extrema Detection: Here a scale-space 

filtering is used. The Laplacian of Gaussian (LoG) is 

found for the image with various  values. The LoG 

acts as a blob detector of various sizes due to changes 

of  , in other words,  acts a scaling parameter. 

Because LoG is costly, a Difference of Gaussians 

(DoG) is used for SIFT. The DoG is obtained by 

subtracting 2 images with different . This process is 

done for various octaves of the image in Gaussian 

Pyramid. Once DoG is found, images are searched for 

local extrema over scale and space. If it is a local 

extrema, it is a potential keypoint. 

2) Keypoint Localization: Once potential keypoints 

locations are found, they are processed through a filter 

with a concept similar to Harris corner detector for 

results with more accuracy. The objective is to remove 

keypoints with low contrast and edge keypoints. 

3) Orientation Assignment: An orientation is assigned to 

each keypoint so that the image becomes rotation 

invariant. The keypoint with the highest peak and 

keypoints with higher than 80% of the peak value are 

used for this step. This creates keypoints with same 

scale and location, but different directions. It 

contributes to stability of matching. 

4) Keypoint Descriptor: Around each keypoint, a 16x16 

neighbourhood is created. This is divided in 16 sub-

blocks of 4x4. For each sub-block, an 8 bin orientation 

histogram is created. So total of 128 bin values are 

available. It is a vector to form keypoint descriptor. 

Even more, it also includes measures against 

illumination changes, rotation, etc. 

5) Keypoint Matching: For the matching, their nearest 

neighbourhoods are identified. In the case that a 

second match is really close to the first, ratio of 

closest-distance to second-closest distance is taken. If 

it is greater than 0.8, they are rejected. This takes care 

of 90% of the false matches. 

 

VI. OPTIMUM CAMERA PARAMETERS FOR TRIANGULATION  

We need to choose the optimum values of the camera 

parameters for obtaining better triangulation. For finding the 

optimum values of the camera parameters we used two 

different types of grid: square and circle as shown in Fig. 2 

and Fig. 3 respectively. There are two different types of 

calibration error: (i) reprojection error and (ii) rectification 

error.      For binocular calibration, reprojection error performs 

better than reprojection error [9]. Different calibration errors 

are defined as follows, 

    
A. Reprojection Error [9]: Let ]|[ iii tRKP   be the 

projection matrix of camera c for calibration grid view i . 

Defining k  as the number of grid points detected in the 

image at the coordinates
jx , corresponding to 3D planar 

points
jX . Then, the reprojection error for image i is 

defined as,  





k

j

jji

c

rep xXP
k

ie
1

||)(||
1

][  

A low reprojection error indicates an accurate projection 

matrix, at least for the points on the plane that were used to 

compute the projection matrix. This can be further improved if 

there were additional 3D points available for which we had 

file:///C:/Users/Andres2/Downloads/www.internationaljournalssrg.org
K DURAISAMY
Text Box
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) -volume 3 Issue 11 -November 2016


K DURAISAMY
Text Box
67 



SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume X Issue Y–Month 2015 

ISSN: 2348 – 8387                     www.internationaljournalssrg.org                         Page 8 

corresponding detected 2D pixels. One camera is not enough 

to get a 3D location of point Q , however, if two cameras 

observe the same calibration grid sequence a pair-wise 

calibration algorithm can be done using the rectification error. 

 

B. Rectification Error [9]: When two cameras observe the 

same sequence of calibration grid locations, all grids can 

be used to evaluate the calibration accuracy for each 

individual set of extrinsic parameters. If a point, Q , on 

some grid is visible in both cameras then the projection of 

Q  onto the rectified versions of the left and right images 

should lie in the same scanline, if the calibration of the 

cameras is accurate. As this is independent of the 3D 

location of Q , we are able to use all detected points from 

all grid locations that are common in both views.  

From this, we can measure the rectification error for two 

cameras,
1c and 

2c , and calibration grid view as follows. For 

each calibration grid, let the thk  detected grid point on the 

image plane of 
1c corresponding to unknown 3D point kQ be

),( 111

kkk vuq  , and on the image plane of 
2c be

),( 222

kkk vuq  . For }2,1{c , we denote ]0[k

cq to refer to 

k

cu and ]1[k

cq to refer to k

cv . 

 
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Where 1c

iT is the rectifying transformation for camera 
1c  

using calibration i , and 2c

iT is the same for 
2c . N is the total 

number of grid position in the sequence, and 
jM is the 

number of grid points that are commonly detected in both 

camera views for grid position j . We compute the rectifying 

transformations using the method of Fusiello et al. [11]. The 

rectification error in a particular point Q is defined as: 

,'

,'

22

11

2

1

qTq

qTq

c

i

c

i




 

The rectification error measure can now be used to 

determine more accurate binocular camera calibrations than 

the standard method using the reprojection error. 

 

 

Fig. 4 Feature matching of the circle with sift feature. 

 

C. Correction Approaches: Three different approaches are 

used to correct the reprojection or the rectification error.  

1) Global Reprojection Error [9]: Here, let S be the set 

of all calibration grids visible in every camera view. Then we 

choose the single grid location that yields the lowest average 

reprojection error among all cN
cameras. 






cN

c

c

rep
Si

ie
1

])[(min  

All the cameras will be calibrated to the same coordinate 

system, but the problem is that the cameras will not be 

calibrated with the same quality. 

2) Pair-wise Reprojection Error [9]: For this we use all 

the calibration grids (S) visible by the pair of cameras that 

yields the lowest average reprojection error for those two 

cameras. 






cN

ccc

c

rep
Si

ie
},{ 21

])[(min  

This approach allows for more grids to choose from, 

resulting in lower reprojection errors, but some calibrations 

results will be misleading, as some will not result accurate. 

3) Pair-wise Rectification Error [9]: This is the same as 

the Pair-wise Reprojection Error, with the difference that it 

uses the lowest average rectification error for the cameras. 

This method gives the most accurate calibrations on average. 






cN

ccc

c

rect
Si

ie
},{ 21

])[(min  

We choose pair-wise rectification error for finding the 

optimum parameter values of the two cameras P and P’ which 

were used for the calibration method described in section VI.  

VII. EXPERIMENTAL RESULTS AND DISCUSSIONS 

We developed and executed the matlab code for this 

experiment in a personal desktop of 4 GB RAM, Windows 10, 

AMD A6-4400M with randeon (TM) HD Graphics 2.70 GHz. 

This experiment was conducted with two cameras observed 

the same sequence of calibration grid locations, all grids can 

be used to evaluate the calibration accuracy for each 

individual set of camera parameters as shown in Fig. 3. Two 

cameras were used to avoid the occlusion of the peg and hole 

due to robot movement. Feature matching of the grid corners 

are matched through Harris corner as shown in Fig. 3. Feature 

detection of the circular grid are matched through sift features 

are demonstrated in Figure 4. We used two different grids, 

square and circular to find the optimum camera parameters 

required for triangulation method using pairwise rectification 

error based calibration error as discussed in section VI.  

Results of the template matching algorithm using fast 

correlation based block matching are demonstrated in Fig. 5.  

Time taken for three different template matching algorithms, 

such as Fast correlation based block matching, zero mean 

normalized cross correlation and normalized cross correlation 

are demonstrated in Table 1. Table 2 shows the experimental 

error for different cross correlation techniques and calibration 
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algorithms. Fig. 6 shows automated peg-hole insertion tasks 

by gantry robot using proposed computer vision algorithms.    

       We captured 18 corner points using Harris corner 

detection from square grid and 20 center points of the circle 

using sift features along with relative position of the circles 

automatically and recorded the corresponding world co-

ordinates. For obtaining camera parameter values from DLT 

method for 3D, we need 8 points. We implemented a cross 

validation technique [16] and identified those points along 

with the grid having minimum pairwise rectification error 

gives the optimal values of the camera parameters which were 

used for the triangulation method discussed in section V. 

 

 
Fig.5 Results of automatic peg and hole detection using fast correlation based 

block matching algorithm. Top row shows two different positions of the peg 
in two different images.  Bottom row shows two different positions of the 

hole in the same images.  Automatic detection of the peg and hole is marked 

by red color in the figure. 

Table 1. Time taken by template matching algorithms  
Image 

Name 

Image 

size 

Templ

ate size 

Template Matching Algorithm 

Fast 

Template 

ZNCC NCC 

Image1 494 659 86 93 92 seconds 128 

seconds 

2286 

seconds 

Image 2 494 659 86 93 95 seconds  120 

seconds 

2231 

seconds 

 

Table 2. Experimental error  

Name of the algorithm Error 

Template matching 

Fast correlation based block 

matching 

3% 

Zero mean normalized cross 

correlation 

4% 

Normalized cross correlation 5% 

Calibration algorithm 

Circular grid ± 2.5 m. m. 

Square grid ± 1.5 m. m. 

 

 

 
Fig. 6 Automated Peg-Hole insertion by gantry robot using proposed 

computer vision based algorithms (efficient integration of template matching, 
calibration and triangulation). 

VIII. CONCLUSIONS 

We have efficiently assimilated template matching, calibration 

and triangulation algorithms to automate the peg-hole 

insertion task conducted by a gantry robot using a pair of 

cameras. We used two cameras to avoid the occlusion of the 

peg and hole due to movement of the robot as well reduce the 

calibration error. We first implemented a fast correlation 

based block matching algorithm to automatically find the peg 

and hole using two cameras. Templates of the peg and hole at 

different orientation and illumination were utilized to improve 

the performance of the template matching algorithm. Then a 

Direct Linear Transform (DLT) method based calibration 

algorithm was implemented to find the intrinsic and extrinsic 

parameters of the camera. Levenberg-Marquardt (LM) based 

non-linear optimization method was further used to refine the 

camera calibration parameters. Finally we used a DLT based 

triangulation method to find the three dimensional world 

coordinates of the peg and hole captured by two cameras. 

Optimum camera parameters were found by pairwise 

rectification error based calibration error to reduce the 

triangulation error. We used two different grids: square and 

circular to compute the pair-wise rectification error. Feature 

matching algorithms required for triangulation method, we 

used Harris corner detection for square grid and sift features 

for circular grid. Experimental results demonstrate that 

proposed computer vision method by efficient integration of 

template matching, calibration and triangulation method can 

successfully automate peg hole insertion task. 
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