
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 10–October2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 1

A Multi-objective Differential Evolution

Algorithm for Robot Inverse Kinematics
Enrique Rodriguez#1, Baidya Nath Saha*2, Jesús Romero-Hdz#3, David Ortega*4

#1Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
*2Centro de Investigación en Matemáticas(CIMAT), Monterrey, México

#3,*4Centro de Ingeniería y Desarrollo Industrial(CIDESI), Monterrey, México
1luis_e@outlook.com, 2baidya.saha@cimat.mx

{3jaromero, 4Ortega.a}@posgrado.cidesi.edu.mx

Abstract — This paper presents the robot inverse

kinematics solution for four Degrees of Freedom

(DOF) through Differential Evolution (DE)

algorithm. DE can handle real numbers (float,

double) which leads more powerful than Genetic

Algorithm (GA). We propose a multi-objective fitness

function that makes an attempt to minimize the

positional error and maximum angular displacement

of the robot joints. Maximum angular displacement

based fitness function adopt the constraints on

different unrealistic rotational movement of the

manipulator. We employ an equitable treatment of

both fitness functions while maximizing these two over

generations that iteratively selects the optimal weights

of these two fitness functions automatically.

Trigonometric mutation and binomial crossover

improve the performance of the conventional DE

technique. We compared the results of proposed

multi-objective DE with GA and Algebraic Method

(AM). Proposed multi-objective DE algorithm obtains

less positional error than conventional DE, GA and

AM while meeting the rotational constraints of the

manipulator’s joints.

Keywords— Inverse Kinematic, Differential

Evolution, Multi-objective optimization, Genetic

Algorithm, Robot manipulator with four degrees of

freedom.

I. INTRODUCTION

Robot inverse kinematics is a topic largely addressed

in robotic research for many years. Advancement of

robotics technology are enlarging it areas of

application and hence robots are now often used in

day-to-day activities of many fields of industry,

science, and medicine. This elevates the inverse

kinematics problem to the upfront of the robotic

research. The inverse kinematics problem is to find

the angular position of the robot joints which can

achieve some expected position and orientation of the

end effector that allows the robot to execute the

required task. The angular position of the robot joints

is required to transform a motion so that the robot can

perform some given tasks such as peg-hole insertion,

parts mating and manufacturing assembly operation

which are very common in day-to-day industry

operation [1].

 Robot kinematics problem can be categorized into

two classes: forward kinematics problem in which

position and orientation of the end effector can be

directly computed from the angular position of the

robot joints using Denavit-Hartenberg (DH) method

and the inverse kinematics problem which is defined

above. The inverse kinematics problem is quite

complex because it deals with solving a system of

underdetermined nonlinear equations. As a result, this

is not always possible to find a closed-form solution.

Due to the underdetermined nature of the problem,

sometimes multiple solutions may exist, however,

none of them may not be admissible for the existing

kinematic structure of the robot. In some cases, no

solution at all may exist, i.e., robot cannot achieve the

desired position and orientation of the end effector

because it is very difficult to find the suitable

constraints for solving the underdetermined system of

non-linear equations.

 Different solution techniques for this problem can

be categorized into two major classes: closed-form

analytical and numerical methods. Closed-form

solutions are faster than the numerical solutions and it

can identify all possible solutions, but these

techniques are dependent on robot kinematic structure

and it is not possible to obtain for different robot

kinematic structures such as Crustcrawler AX-18

Smart Robotic Arm [2]. In contrast, numerical

solutions are more general because they are not

dependent of the robot structure. However, numerical

methods are slower because they normally first guess

an initial solution and then find the final solution in an

iterative manner and they converge into local optima.

The quality of the solution depends on the set of

starting values. In addition, when the numerical

methods fail to converge, they cannot obtain the

solution even if the solution of the inverse kinematics

problem exists.

 In this research we aim at determining the solution

of inverse kinematics problem for Crustcrawler AX-

18 Smart Robotic Arm which has four degrees of

freedom and a gripper. This kind of robot

manipulator are widely used in different industrial

applications such as peg-hole insertion tasks, complex

manipulations, obstacle avoidance and assistance

tasks like serving drink to the users [3]. Though there

are few closed form solutions using algebraic method

www.internationaljournalssrg.org
mailto:1luis_e@outlook.com
K DURAISAMY
Text Box

K DURAISAMY
Text Box
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) -volume 3 Issue 11 -November 2016

K DURAISAMY
Text Box
71

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 10–October2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 2

available in literature [1], [4], [5] for inverse

kinematics of Crustcrawler AX-18 robot manipulator,

however it does not always guarantee to provide the

admissible solutions. To demonstrate this

phenomenon, we conducted a simulation experiment

using P. Corke’s matlab toolbox [6] with a four link

robot manipulator with four degrees of freedom. The

length of the links are equal to the length of the links

of the Crustcrawler AX-18 robot manipulator [2] used

in this experiment that are provided in Table 1.

Fig. 1 Two different configurations of the robot achieving

the same target position, px = 10, py =10, pz =10.

Fig. 1 shows the results of two robot configurations

which can achieve the final target location px = 10, py

=10, pz =10. Fig. 1 is developed using P. Corke’s

matlab toolbox. We used different evolution

algorithm to find the robot inverse kinematics

solutions under two different conditions: without

restrictions and with restrictions. The restriction

includes the real constraint on angular displacement

of the servomotor of the Crustcrawler AX-18 robot

manipulator based on the capacity of the servomotor

[2]. The restrictions are:

  150,1501  ,   240,602  ,

  150,1503  ,   150,1504  .

The solutions found without restrictions are θ1= -135o,

θ2= -123.27o, θ3= 188.83o, and θ4= 134.84o and with

restrictions are θ1= 45o, θ2= 72.42o, θ3= -2.29o, and

θ4= -133.6o. The results show that the robot

configuration without restrictions violate the

constraints on θ2 and θ3. However, we found a viable

solution with restrictions. This experiment shows that

multiple solutions exist in robot inverse kinematics

problem due to underdetermined nature of the linear

systems (we have three linear equations for solving

four degrees of freedom of the robot joints). Finding

such viable solutions require an exhaustive search

which is not always practically feasible for higher

dimensions. Existing numerical methods on

evolutionary algorithms, to name a few genetic

algorithm [7], [8] and differential evolution [9], [10]

provide solutions for the problems of exhaustive

search with acceptable accuracy. In practice, usually

manually designed look-up tables based approximate

inverse kinematics based solutions are used for

controlling a robotic manipulator [11].
Existing research efforts based on evolutionally

algorithms towards robot inverse kinematics mainly

deal with minimizing the positional error. However, it

is found that even the robot can achieve the target

position with minimal position error, the solutions are

not admissible solutions (the required robot

configuration to achieve the target position is many

times practically not feasible) due to the limitations of

the servomotor to achieve very high angular

displacement as shown in Fig. 1.

 However, success of differential evolutions for its

faster convergence and more accurate solutions over

genetic algorithm (DE can tackle real and floating

point numbers which is required for robot joint angles)

has attracted to develop a multi-objective differential

evolution algorithm for robot inverse kinematics

problem. Unlike the existing researches, along with

minimizing positional error, we try to minimize the

maximum of the angular displacement of robot joints

which naturally restrains on robot angular

displacement and avoids to find the robot

configuration with high angular displacement of the

joints and hence assists in finding admissible

solutions. Thus the proposed multi-objective

differential evolution algorithm offers a practically

viable solution for robot inverse kinematics problem

through achieving the target position with minimal

positional error and satisfying the angular constraints

of the robot joints.

This research offers the following technical

contributions. Firstly, we propose a multi-objective

differential evolution algorithm for robot inverse

kinematics problem. Secondly, we proposed two

fitness functions: a) the first one minimizes the final

positional error of the robot and (b) the second one

minimizes the maximum angular displacement of the

robot angular joints. The second fitness function

restricts the rotational displacement of the angular

joints of the robot while the first one attempts to

arrive the end effector of the robot to the target

position with minimal positional error. Thirdly, we

employ an unbiased treatment of both fitness

functions that selects the optimal weights between

these two functions iteratively over the generations.

Fourthly, we exploited binomial crossover and

trigonometric mutation for differential evolution

approach that accelerates the convergence of the

differential evolution algorithm. We implemented the

multi-objective differential algorithm on Crustcrawler

AX-18 robot manipulator [2] with four degrees of

freedom. We also conducted the sensitivity analysis of

the proposed algorithm. Experimental results

demonstrate that proposed multi-objective differential

evolution algorithm achieves less positional error and

satisfy the angular constraints of the robot

manipulator than genetic algorithm and algebraic

method. We also developed the forward kinematics

for the Crustcrawler AX-18 robot manipulator using

www.internationaljournalssrg.org
K DURAISAMY
Text Box
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) -volume 3 Issue 11 -November 2016

K DURAISAMY
Text Box
72

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 10–October2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 3

the Denavit-Hartenberg(DH) method. We modified

the inverse kinematics solutions of the algebraic

method for Crustcrawler AX-18 robot manipulator.

The organization of the remaining of the paper is as

follows. Section II presents the literature review

regarding the existing robot inverse kinematics

solutions to algebraic method, genetic algorithm and

differential evolution. Section III discusses the inverse

kinematics problem formulation using algebraic,

genetic and DE method. Section IV presents the

proposed multi-objective differential evolution for

robot inverse kinematics problems. Section V

illustrates the experimental results and discussions.

Section VI concludes the work.

II. BRIEF LITERATURE REVIEW

In this section, we present the existing solutions of

robot inverse kinematics using three algorithms,

Algebraic Method (AM), Genetic Algorithm (GA),

and Differential Evolution (DE).

A. Algebraic Method (AM)

Sultan and Schwartz [4] presented a solution for

the inverse kinematic of a 5 DOF robot arm which is

practically a 4 DOF manipulator with a degree of

freedom in the gripper. The inverse kinematic was

obtained from the transformation matrix and the

forward kinematic equations which resulted in two

sets of possible solutions depending of the calculation

of θ2 and θ3. The solution proposed can closely

approximate desired points within 1 cm of the

workspace boundaries.

Ramirez and Toscano [1] proposed a closed-form

solution to the inverse kinematic of a 5 DOF

manipulator robot defining the existence conditions

for all the possible solutions and the singular

configurations were identified. The proposed method

uses the desired position of the center of the gripper as

well the direction of the gripper’s main axis.

Mohammed and Sunar [12] studied the forward and

inverse kinematic of a 4 DOF robotic arm. For the

forward kinematic model, the problem was compared

using the Denavit-Hartenberg convention and the

product of exponentials, those two approaches

showed an identical solution. In the solution for the

inverse kinematic problem an algebraic method was

implemented which made use of a fourth parameter

besides the x, y, z desired point, called the end effector

orientation.

B. Genetic Algorithm y(GA)

Joey and David [7] introduced the genetic algorithms

for solving the inverse kinematics problem for

redundant robots using a single fitness function which

integrates the error of the final end effector position

and the desired position and an additional term based

on the angular joint displacements from the initial

position of the robot. The results showed a

significantly large final positioning error. They

proposed for a future work to employ the Newton-

Raphson method to minimize the final error to zero of

the genetic algorithm.

F.Y.C. and S.P. [8] used a genetic algorithm to

optimize the inverse kinematic for real-time trajectory

planning manipulator. Using a new proposed

crossover method called Dynamic Multilayered

Chromosome Crossover (DMCC) they implemented

the method for a planar manipulator of three degrees

of freedom. The results indicated an improved of the

number of iterations for the genetic algorithm.

Zhen and Yan-Tao [13] proposed a multi population

genetic algorithm (MPGA) in order to improve the

global converge. Where the MPGA divides the whole

population into several populations, then through

artificial selection and an immigration operation

forms a new population by selecting the best

individuals from each category. The MPGA compared

with the simple genetic algorithm (SGA) made the

global solution more efficient and accelerated the

converge speed.

C. Differential Evolution (DE)

Gonzalez and Blanco [9] demonstrated that a

memetic approach increases the converge of the

differential evolution algorithm for the inverse

kinematic problem. They introduced a local search

mechanism called discarding. The results using a 3

DOF planar robot showed that the proposed method is

able to solve the inverse kinematic accurately and in

fewer generations than the conventional DE.

Wang and Hao [10] studied the forward kinematic

of a pneumatic parallel manipulator using genetic

algorithm, particle swarm optimization and the

differential evolution algorithms. The performance of

the DE was quite better than the GA and PSO where

the speed of the convergence of the DE was less than

the other ones with a greater reliability to obtain the

global optima for the forward kinematic.

Nguyen and Ho Pham [14] proposed a hybrid

differential evolution to train an adaptive MIMO

neural network for the solution of inverse kinematic.

The hybrid differential evolution algorithm applied to

solve the inverse kinematic of a 3 DOF manipulator

which is composed by the back-propagation algorithm

and the DE algorithm proved a faster performance and

better precision than the conventional back-

propagation algorithm or the solely differential

evolution algorithm.

III.INVERSE KINEMATIC PROBLEM FORMULATION

Given the current (initial) and the desired position

of the end effector of the robot that is defined by the

user, we formulate the robot inverse kinematic

problem is to find the angular position of the end

effector to reach the desired position with minimal

positional error and the minimum rotational

displacement between the current joint angles and the

joint angles of the end effector.

www.internationaljournalssrg.org
K DURAISAMY
Text Box
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) -volume 3 Issue 11 -November 2016

K DURAISAMY
Text Box
73

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 10–October2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 4

A. FORWARD KINEMATICS

Fig. 2 Four DOF Crustcrawler AX-18 robot manipulator robot

configuration

For a kinematic model, a robot manipulator can be

considered as a chain of links attached by joints. We

can determine the position and orientation of the end

effector or TCP (Tool Center Point) given a set of

geometrical characteristic of the robot and a base

frame, and this analysis is called forward kinematics.

We use the Denavit-Hartenberg(DH) convention for

the representation of the robot forward kinematic

model. The DH convention are described by four

parameters (link length, link twist, joint distance and

joint angle) as given below [15].

1. Link length (ai) is the distance between zi-1 and zi

axes along the xi axis, ai is the kinematic length of

link (i).

2. Link twist (αi) is the required rotation of the zi-1 axis

about the xi axis to become parallel to the zi axis.

3. Joint distance (di) is the distance between xi-1 and xi

axes along the zi-1 axis. Joint distance is also called the

link offset.

4. Joint angle (θi) is the required rotation of xi-1 axis

about the zi-1 axis to become parallel to the xi axis.

The robot studied in this paper has four revolute

joints, the di has a fixed value and θi is the variable.

After applying the DH convention on this robot

manipulator as shown in Figure 1, the values of the

four parameters (ai, αi, di and θi) are listed in the Table

1.

Table 1. Denavit-Hartenberg Parameters

Frame ai αi di θi

O1 0 π/2 d1 θ1

O2 a1 0 0 θ2

O3 a2 0 0 θ3

O4 a3 π/2 0 θ4

O5 a4 0 d2 0

For our robot manipulator, the value of d1= 4.36

cm, a1 = 6.75 cm, a2 = 17.23 cm, a3 = 6.3 cm, d2 = 2.0

cm and a4 = 11.7 cm. The DH parameters facilitates to

obtain each homogeneous transformation i-1Ai for the

four coordinate systems of the robot manipulator

which is given by as follows.



























1000

cossin0

sincossincoscossin

cossinsinsincoscos

1

iii

iiiiiii

iiiiiii

i

i

d

a

a

A






The transformation matrix that links the position

and orientation of the end effector or TCP is given by



















10

5

0

5

04

0

15

0 PR
AT

i

i

i

The 0R5 matrix is called the rotation matrix that

describes the orientation of the frame O4 relative to

the base frame and the vector 0P5 is the position of the

center of the TCP frame. The matrix for the robot

forward kinematics is presented where the notation

used are ci=cosθi, si=sinθi, cij=cos(θi+θj),

sij=sin(θi+θj), cijk=cos(θi+θj+θk) and sijk=sin(θi+θj

+θk).

After simplifying the 0P5 vector using the product and

sum difference identities, we obtain the position of the

end effector which is given by,

2312234132112341223414 ccaccaccascdccapx 

2312234132341212123414 csacsassdscacsapy 

234323223422344211 sasacdsasadpz 

And the end effector orientation as,

432  

B. APPROACHES TO INVERSE KINEMATIC

We compare three different methods for the inverse

kinematics solution, they are described below.

ALGEBRAIC METHOD

To solve the inverse kinematic problem by algebraic

method, we use the equations of the forward

kinematic and after some algebraic operation using

trigonometric identities we have:

)/(tan 1

1 xy pp ,

)/(tan)2/(sin 1

1

2

2

2

1

221

2 CBaaaCB  

)2/(cos 21

2

2

2

1

221

3 aaaaCB   ,

324   , where

 cossinsin 2431 daadpC z  and

 sincoscossin/ 2431 daapB y 

www.internationaljournalssrg.org
K DURAISAMY
Text Box
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) -volume 3 Issue 11 -November 2016

K DURAISAMY
Text Box
74

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 10–October2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 5

GENETIC ALGORITHM

Genetics algorithms emulate natural selection of a set

of individuals in order to search the best solution for a

determined problem. The genetic configuration of

each individual is a possible solution. GA starts with

an initial population and those are submitted to an

evolutionary process in such way that the best adapted

individuals will continue to reproduce among them

and over several generations the best adapted will

stands out. We tailor the genetic algorithm for a multi-

objective inverse kinematic solution based on:

selection, cross-over and elitism that are discussed

below.

String representation of joint angles
The solution for the inverse kinematic implemented

with a genetic algorithm starts with encoding the joint

angles represented in a binary string of 36 bits long

where it is divided in 4 chains of 9 bits for each joint

respectively.

Initialization of the population

The initialization of the population is based on binary

vectors with a uniform distribution U (0,1). Where

each vector is called individuals i=1,2,3...,Np where

Np means the size of the population. Their genes are

generated randomly.

Selection

When the GA enters to the main loop, the next step is

the selection. Using a stochastic method known as

roulette wheel selection, it selects the parents form the

current population for further imitation of natural

selection, where with a better fitness value it is most

likely to be selected for breeding. Thus the probability

of being selected as one candidate in all the current

population is given by [16]:





Np

i

i

i
i

f

f
p

1

Where i is the individual in the current population and

fi is its corresponding fitness value.

Decoding the individuals

Each individual has to be decoded in order to using it

for the fitness function evaluation. We implement the

next equation [8],

















 

 255

180
2

7

0n

nb

Where θ correspond for each joint angle for a set of 9

bits. The first bit from the set represented by the

mathematical sign (±) in the equation determines the

rotating direction of the joint angle, 1 for positive and

0 for a negative rotation. b is the bit that can be either

0 or 1 dynamically.

Fitness Function

For this paper we have implemented a multi-objective

fitness function that takes into account the error of the

difference of the target position and the proposed

manipulator end effector point and the maximum

angular displacement between the final joint angles

and the initial joint angle given by the user.

f1 is a sub-function that determines the difference

between the target position and the end effector

position and it is computed by the forward kinematic

equation. The equation of the fitness function is

defined by,

 222

1)()()(exp1),(
eee zzyyxxe ppppppPPf 

Where  zyx pppP ,, and  
ee zeyxe pppP ,,

are the final target and the end effector position

respectively. f2 is the second sub-function that takes

into account the maximum rotational displacement

and it is computed by the following equation,

},,,,,,,max{),(,,44,,33,,22,,11,,2 igeIigeIigeIigeIigeIf 

Where igkekIigkekI ,,,,,   for  4,3,2,1k

and  IIIII 4321 ,,,  ,

  
igeigeigeigeige ,,4,,3,,2,,1,, ,,, 

are the initial angular position vector and final angular

position vector for individual i after generation g for

the robot respectively where each element of the

vector represents the angle of each joint.

Converge analysis of genetic algorithm

Aytug and Koehler [17], [18] showed that for a

general Markov Chain model of genetic algorithm

with elitism, an upper bound for the number of

iterations t required to generate a population S+ which

consists entirely of minimal solutions has been

generated with probability  1,0 ; is given by,

   llnt)1(,min1ln/)1ln( 

Where, l is the length of the chains that represent the

individual, n is the population size and  1,0 is the

mutation rate.  x is the smallest integer greater than

or equal to x. Studniarski [19] showed that for multi-

objective optimization, the (possibly unknown)

number m of these solutions is bounded from below

by some known positive integer m . Suppose also that

there exists a number  m/1,0 ,an upper bound for

the number of iterations t is given by,

      l
mt   1ln/1ln

If no non-trivial lower bound m is known, we may

always use 1m .

www.internationaljournalssrg.org
K DURAISAMY
Text Box
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) -volume 3 Issue 11 -November 2016

K DURAISAMY
Text Box
75

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 10–October2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 6

DIFFERENTIAL EVOLUTION (DE)

The main difference between DE and other

Evolutionary Algorithms (EAs) is the implementation

of the mutation operation. The mutation operation of

DE applies the vector differentials between the

existing population members for determining both

degree and direction of the operation of the

perturbation applied to the individual subject of the

mutation operation.

Initialization

The algorithm starts with a dynamic initial

population }{ jiP  , where the elements of the

population are called “individuals” i = ,2,3,…,j. Their

genes are generated randomly.

For the inverse kinematic problem with a four

dimensional vector and Np, the size of the population,

the DE algorithm has a population of size Np joint

configuration,

 
gNpggg qqqP ,,2,1 ...,,,




Where g is the number of generation, g=0,1,…,gmax

and q


is a vector array also called as individual

codded as a floating point of D=4 length, for the

solution of the inverse kinematic of 4 DOF each

individual is a four dimensional vector defined as:

],,,[],,,[,,4,,3,,2,,1,,4,3,,2,,1, gigigigigigigigigi qqqqq 


For all i=1, 2,…,Np. At the generation g=0 the DE

starts with an initial population generated by a

randomly uniform distribution with a search space

defined by the joint upper and lower bounds as

 LoHiLo

i qqrandqq


)1,0(0,

For the robot configuration presented in this paper we

consider the joints limits








 


6

5
,

6

5
,

3
,

6

5 Loq












6

5
,

6

5
,

3

4
,

6

5 Hiq


Mutation
In each generation the mutation process begins with

the selection of three randomly individuals of the

population. The
giq ,


 individual to be perturbed is

called the target vector which could be replaced by a

mutant vector also known as donor vector. The

giv ,


donor vector is obtained through the differential

mutation operation based on three chosen individuals.

The difference of any two of these three vectors is

scaled by a scalar factor F and the scaled difference is

added to the remaining vector to obtain the donor

vector which is given by,

)(
,,,,

321 grgrgrgi iii qqFqv




Where from i=1,2,…,Np on the generation g for each

target vector, the ith difference vectors
gr iq

2


and

gr iq
3


,

and the base vector
gr iq

,1


 belong to the current

population gP . The indices i

gr1
, i

gr2
and i

gr3
 are

randomly chosen from],..,1[Npi  in such a way that

they are mutually exclusive.

Beside the mutation presented before we implemented

the trigonometric mutation [20], when the

trigonometric mutation operation is performed,

instead of an individual randomly taken from the three

chosen ones as the original mutation of DE, the donor

to be perturbed is taken to be the center point of the

hypergeometric triangle. The mutation operation is

performed according to the following equations:

))(())((

))((3/)(

,,31,,23

,,12,,,,

1332

21321

grgrgrgr

grgrgrgrgrgi

iiii

iiiii

qqppqqpp

qqppqqqv









Where

pqfp
gri  /|)(|

,1
1

 , pqfp
gr i  /|)(|

,2
2

 , pqfp
gri  /|)(|

,3
3

 ,

|)(||)(||)(|
,,, 321 grgrgr iii qfqfqfp




Crossover

For the purpose to increment the diversity and as well

the enrichment of the mutation strategy used in the

step before, we used the binomial crossover. The

crossover step takes the donor vector giv ,


 to

exchanges its components with the target vector
giq ,



that is regulated by a constant crossover rate  1,0Cr .

As result we form the trial vector

 
giDgigigi uuuu ,,,,2,,1, ,...,,

 as follows:



 


otherwiseq

Crrandifv
u

gij

ijgij

gij

,,

,,,

,,

))1,0((

Where i=1,2,…,Np and j=1,2,…,D and)1,0(,ijrand

is a uniformly distributed random number.

Selection
After obtaining the fitness function of the trial vector

and the target vector we compare them through the

Greedy selection which one is better. If the trial vector

is better than the target vector, the trial vector will

replace it for the next generation otherwise the target

vector will stay as it is presented in the equation

   



 

 otherwiseq

qfufifu
q

gi

gigigi

gi

,

,,,

1, 




Where f is the maximized fitness function used for

the differential evolution algorithm.

www.internationaljournalssrg.org
K DURAISAMY
Text Box
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) -volume 3 Issue 11 -November 2016

K DURAISAMY
Text Box
76

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 10–October2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 7

IV. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION

FOR INVERSE KINEMATICS SOLUTIONS

In this paper we have implemented a multi-objective

fitness function that takes into account the positional

error and maximum angular displacement of the robot

joints and returns a real number (weighted linear

combination of positional error and maximum angular

displacement of the robot joints), )(,giqf


that

measures the adaptability of each sequence.





H

h

hhgi fwqf
1

,)(


Where wh is the weight that defines the importance of

each sub-function. These weights are computed

dynamically in each iteration g with the equation [21],

 

   



 








H

h gbh

H

hihh

gbh

h
qfH

qf

gw

1 1,

~
,1

1,

~

1
)(



Where H is the number of sub-functions, h = 1…H,

1, gbq


is the best individual among solutions of the

population in the previous generation Pg-1.)(~ gw
h

 is

the dynamic weight satisfying the following

conditions,

1)(0 ~  gw
h

 and 



H

h
h

gw
1

~ 1)(

Where g represents the iteration step of the GA

algorithm. f1 is a sub-function that takes into account

the difference between the target position and the final

position of the end effector and it is computed by

forward kinematics algorithm presented in section

IIIA. The equation of the fitness function is denied by

))()()(exp(1),(222

1 eee zzyyxxe ppppppPPf 

Where },,{ zyx pppP  and },,{
ee zeyxe pppP  are

the final target and the end effector position

respectively. f2 is the second sub-function that takes

into account the maximum rotational displacement

and it is computed by the following equation [7]

},,,,,,,max{),(443322112 eIeIeIeIeIf 

Where KikIKikI  , for  4,3,2,1k and

 IIIII 4321 ,,,  ,  iiiii 4321 ,,,  are

the initial and final rotational displacement vector

after iteration g for the robot respectively where each

element of the vector represents the angle of each

joint.

θ1i← rand (-5π/6, 5π/6), θ2i← rand (-π/3, 4π/3), θ3i←

rand (-5π/6, 5π/6), θ4i← rand (-5π/6, 5π/6).

We computed the crossover probability as follows

[22],

Pseudocode 1. Multi-objective Differential Evolution

 Function θfinal = DE_Robot_kinematics (P,
I)

 % input P represents coordinates of target point

 %  IIIII 4321 ,,,  ,
I is the initial angular

 % position vector.

 % And output θfinal represents the corresponding

 angle of the robot joints

1. % Parameters initialization

g←0, gmax←200, M←0.2, Cr←0.8, F←0.2, Np←150

2. % Initial population with respect to limits

Pop ← ige ,, ; ige ,, = [θ1e,g,i, θ2e,g,i, θ3e,g,i, θ4e,g,i],

 i = 1,2, .., Np

f1 (ige ,,) = exp(-err); err = ||P -fwdkine(ige ,,)||

f2 (ige ,,) = exp(-angdist); angdist = max(I ,
ige ,,)

},,,,,,,max{),(,,44,,33,,22,,11,,2 igeIigeIigeIigeIigeIf 

f = w1f1+w2f2 , w1=0.5, w2 = 0.5

3. while (g <= gmax)

4. for (i = 0; i <= Np; i++)

5. r1←rand(Np), r2←rand(Np), r3←rand(Np)

6. % Mutation

 m← rand(0,1)

 if m< Pm {

 if m<=Mt

 Compute ui using trigonometric mutation

 else

7. ui← xr3 + F(xr1 - xr2)

 end if
8. else

 ui← ige ,,

 end if
9. % Crossover

 if (rand(0,1) < Pc)

10. yi←ui}

11. else

 yi← ige ,,

 end if

12. %Selection

 if f(yi) > f(ige ,,)

 ige ,, ← yi

13. end if

 end for
14.

 g←g+1

end while

final ←
ige ,max,

maxarg  f ( = ige ,, max
)

www.internationaljournalssrg.org
K DURAISAMY
Text Box
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) -volume 3 Issue 11 -November 2016

K DURAISAMY
Text Box
77

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 10–October2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 8


















avg

avg

avgc

ffCr

ff
ff

ffCr

P)(

)(

max

max

As well the mutation probability Pm is defined as

shown below [22],


















avg

avg

avgm

ffM

ff
ff

ffM

P)(

)(

max

max

 Determination of population size

The minimum population size Np required for

maintaining c species of equal fitness for g

generations with probability g is determined by the

equation:

)/)1ln((/)/)1ln((

1

cccn G  

For c = 10 optima, generations G=100 with

probability g = 0.999, the required population size, n

= 131 individuals, so a population of 200 is enough to

maintain subpopulations.

The pseudocode of the multi-objective Differential

Evolution (DE) is given in pseudocode 1.

V. . EXPERIMENTAL RESULTS AND DISCUSSIONS

We conducted the experiment on Crustcrawler AX-18

robot manipulator with four degrees of freedom as

illustrated in Fig. 2. The length of the links is

provided in Table 1. We run the algorithm for 200

number of generations and we take 200 samples for

each generation. Table 2 demonstrates the positional

errors of GA, AM and proposed multi-objective DE

algorithm. Table 2 illustrates that multi-objective DE

offers less positional errors for all the five randomly

selected target positions than GA and AM method.

For unbiased comparison, we select the value of φ

automatically for AM method which provides the

minimum positional error. We run GA algorithm for

400 generations and each generation we allow the best

100 genes.

Table 2. Target positions and the corresponding

final positions of the end effector of the robots

Fig. 3 shows the mean diversity of the population

at each generation for multi-objective differential

evolution with three different mutation and crossover

configurations: (a) fixed crossover and normal

mutation method; (b) binomial crossover but without

trigonometric mutation; and (c) binomial crossover

and trigonometric mutation.

Fig. 3 Mean diversity of the population at each generation for

multi-objective DE with three mutation and crossover

configurations.

Fig. 3 shows that the mean diversity of the

population for binomial crossover and trigonometric

mutation decreases faster than normal crossover and

mutation method which illustrates faster convergence

of the binomial crossover with trigonometric mutation

Fig. 4 weights (w1 and w2) of two fitness functions for multi-

objective DE over generations at three mutation and crossover

configurations: (a) fixed crossover, (b) without trigonometric
mutation and (c) with trigonometric mutation.

Fig. 4 illustrates weights (w1 and w2) of two fitness

functions over generations for multi-objective DE for

the above three conditions. Fig. 4 demonstrates that

binomial crossover with trigonometric mutation (c)

selects the optimal weight values of w1 and w2 much

faster (less than 50 generations) than fixed crossover

and without trigonometric mutation (option (a) and

(b)). This also illustrates the faster convergence of

binomial crossover and trigonometric mutation than

fixed crossover and mutation technique. The similar

results were found in [20].

Fig. 5 Fitness value of the best individual at each generation for

multi-objective DE with three mutation and crossover
configurations.

Fig. 5 illustrates the fitness values of the best

individuals over generations Fig. 5 illustrates the

fitness values over generations for the three different

crossover and mutation methods. Fig. 6 (b) illustrates

Target

Position

End Effector Position

GA AM Proposed DE

(10,10, 10) (10.8,8.8,11.9) (10.1,10.1,10) (10,10,10)

(0, 7.5, 12) (2.7,7.4,11.3) (0, 6.8, 11.3) (0,7.5,12)

(2, 13, -5) (2.9,15.4,-6.1) (2.1, 13.5, -

5.8)

(2, 13 -5)

(-6, 9.5, 4.3) (-9.5,9.0,3.9) (-5.9, 9.3,

4.3)

(-6, 9.5, 4.3)

(3, -7, 13) (2.0,-9.5,16.1) (3, -7, 13) (3, -7, 13)

www.internationaljournalssrg.org
K DURAISAMY
Text Box
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) -volume 3 Issue 11 -November 2016

K DURAISAMY
Text Box
78

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 10–October2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 9

that binomial crossover with trigonometric mutation

generates lower positional error than fixed crossover

and without trigonometric mutation.

Fig. 6 (a) illustrates the pareto front. Results of the

pareto front shown in Fig. 6 (a) demonstrate that both

positional error and maximum angular displacement

cannot be simultaneously reduced, decreasing the

value of one increases the value of the other and vice

versa. In this study, utilizing iterative dynamic weight

selection based multi-objective DE algorithm, we find

the optimal weight between positional error and

maximum angular displacement of robot joints

through fair treatment of both of the fitness functions.

Fig. 6 (a) Pareto front for multi-objective DE; (b) Positional

error multi-objective DE with three mutation and crossover

configurations.

VI. CONCLUSIONS

This paper presents a multi-objective fitness

function for Differential Evolution (DE) algorithm for

robot inverse kinematics problem. The values of the

two fitness functions are minimized in an iterative

fashion over generations. We adopt an equitable

treatment that offers optimal weights between these

two fitness functions where maximizing the values of

both fitness functions over generations. The first

fitness function attempts to minimize the positional

error while the other fitness function takes into

account of maximum angular displacement of the

robot joints that attempts to satisfy the constraints on

angular displacement of robot joints. We also

exploited the trigonometric mutation and binomial

crossover that enhances the performance of

conventional mutation and crossover method.

Binomial crossover expedites the convergence of DE

algorithm. We implemented the proposed multi-

objective differential evolution algorithm on

Crustcrawler AX-18 robot manipulator. We

performed the same robot inverse kinematics

experiment using Genetic Algorithm (GA) and

Algebraic Method (AM). Experimental results

demonstrate that Multi-objective DE obtains less

positional error and maximum angular displacement

than GA and AM method.

 ACKNOWLEDGMENT

We would like to acknowledge CIDESI and

CIMAT to conduct the experiment reported in this

paper and Conacyt to provide associated research

support.

REFERENCES

[1] J. G. Ramírez-Torres, G. Toscano-Pulido, A. Ramírez-
Saldívar, and A. Hernández-Ramírez, “A complete closed-

form solution to the inverse kinematics problem for the

P2Arm manipulator robot,” Proc. - 2010 IEEE Electron.
Robot. Automot. Mech. Conf. CERMA 2010, pp. 372–377,

2010.

[2] M. A. Mikulski and T. Szkodny, “Remote control and
monitoring of AX-12 robotic arm based on windows

communication foundation,” Adv. Intell. Soft Comput., vol.

103, pp. 77–83, 2011.
[3] E. P. Lana, B. V Adorno, and C. J. Tierra-Criollo,

“Assistance Task Using a Manipulator Robot and User

Kinematics Feedback,” XI Simpósio Bras. Automação Intel.,
pp. 1–6, 2013.

[4] H. Sultan and E. M. Schwartz, “Robotic Arm Manipulator

Control for SG5-UT,” vol. 00, no. 407, pp. 1–5, 2007.
[5] J. Q. Gan, E. Oyama, E. M. Rosales, and H. Hu, “A complete

analytical solution to the inverse kinematics of the Pioneer 2

robotic arm,” Robotica, vol. 23, no. 1, pp. 123–129, 2005.
[6] P. Corke, Robotics, Vision and Control - Fundamental

Algorithms in MATLAB. 2011.

[7] J. K. Parker, a. R. Khoogar, and D. E. Goldberg, “Inverse
Kinematics of Redundant Robots Using Genetic

Algorithms,” Proc. IEEE Int. Conf. Robot. Autom., pp. 271–

276, 1989.
[8] F. Y. C. Albert, S. P. Koh, S. K. Tiong, C. P. Chen, and F. W.

Yap, “Inverse kinematic solution in handling 3R manipulator

via real-time genetic algorithm,” Proc. - Int. Symp. Inf.
Technol. 2008, ITSim, vol. 4, 2008.

[9] C. González, D. Blanco, and L. Moreno, “A memetic

approach to the inverse kinematics problem,” 2012 IEEE Int.
Conf. Mechatronics Autom. ICMA 2012, pp. 180–185, 2012.

[10] X. S. Wang, M. L. Hao, and Y. H. Cheng, “On the use of

differential evolution for forward kinematics of parallel
manipulators,” Appl. Math. Comput., vol. 205, no. 2, pp.

760–769, 2008.

[11] A. Henning, “Approximate Inverse Kinematics Using a
Database,” 2014.

[12] A. A. Mohammed and M. Sunar, “Kinematics Modeling of a

4-DOF Robotic Arm,” pp. 87–91, 2015.
[13] Z. Sui, L. Jiang, Y. Tian, and W. Jiang, “Proceedings of the

2015 Chinese Intelligent Automation Conference,” vol. 338,

no. 5988, pp. 151–161, 2015.
[14] N. N. Son, H. P. H. Anh, and T. Dinh Chau, “Inverse

kinematics solution for robot manipulator based on adaptive

MIMO neural network model optimized by hybrid
differential evolution algorithm,” 2014 IEEE Int. Conf.

Robot. Biomimetics, IEEE ROBIO 2014, pp. 2019–2024,

2014.
[15] R. N. Jazar, Theory of Applied Robotics: Kinematics,

Dynamics, and Control. 2010.
[16] Y. X. and M. Gen, Introduction to evolutionary algorithms.

Springer-Verlag London, 2010.

[17] H. Aytug and G. J. Koehler, “Stopping criteria for finite

length genetic algorithms,” INFORMS J. Comput., vol. 8, no.

2, pp. 183–191, 1996.

[18] H. Aytug and G. J. Koehler, “New stopping criterion for
genetic algorithms,” Eur. J. Oper. Res., vol. 126, no. 3, pp.

662–674, 2000.

[19] M. Studniarski, “Stopping criteria for genetic algorithms
with application to multiobjective optimization,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics), vol. 6238 LNCS, no. PART 1, pp.
697–706, 2010.

[20] H. Y. Fan and J. Lampinen, “A trigonometric mutation

operation to differential evolution,” J. Glob. Optim., vol. 27,
no. 1, pp. 105–129, 2003.

[21] M. Gabli, E. M. Jaara, and E. B. Mermri, “A Genetic

Algorithm Approach for an Equitable Treatment of Objective
Functions in Multi-objective Optimization Problems,” no.

May, 2014.

[22] Y. D. Zhao and X. X. Qiao, “Research on optimal multiple

sequence alignment,” Proc. Int. Conf. E-bus. E-Government,

ICEE 2010, pp. 5500–5505, 2010.

www.internationaljournalssrg.org
K DURAISAMY
Text Box
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) -volume 3 Issue 11 -November 2016

K DURAISAMY
Text Box
79

