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Abstract — This paper presents the robot inverse 

kinematics solution for four Degrees of Freedom 

(DOF) through Differential Evolution (DE) 

algorithm. DE can handle real numbers (float, 

double) which leads more powerful than Genetic 

Algorithm (GA). We propose a multi-objective fitness 

function that makes an attempt to minimize the 

positional error and maximum angular displacement 

of the robot joints. Maximum angular displacement 

based fitness function adopt the constraints on 

different unrealistic rotational movement of the 

manipulator. We employ an equitable treatment of 

both fitness functions while maximizing these two over 

generations that iteratively selects the optimal weights 

of these two fitness functions automatically.  

Trigonometric mutation and binomial crossover 

improve the performance of the conventional DE 

technique. We compared the results of proposed 

multi-objective DE with GA and Algebraic Method 

(AM). Proposed multi-objective DE algorithm obtains 

less positional error than conventional DE, GA and 

AM while meeting the rotational constraints of the 

manipulator’s joints. 

 
Keywords— Inverse Kinematic, Differential 

Evolution, Multi-objective optimization, Genetic 

Algorithm, Robot manipulator with four degrees of 

freedom. 

I. INTRODUCTION 

Robot inverse kinematics is a topic largely addressed 

in robotic research for many years. Advancement of 

robotics technology are enlarging it areas of 

application and hence robots are now   often used in 

day-to-day activities of many fields of industry, 

science, and medicine. This elevates the inverse 

kinematics problem to the upfront of the robotic 

research. The inverse kinematics problem is to find 

the angular position of the robot joints which can 

achieve some expected position and orientation of the 

end effector that allows the robot to execute the 

required task.  The angular position of the robot joints 

is required to transform a motion so that the robot can 

perform some given tasks such as peg-hole insertion, 

parts mating and manufacturing assembly operation 

which are very common in day-to-day industry 

operation [1].  

    Robot kinematics problem can be categorized into 

two classes: forward kinematics problem in which 

position and orientation of the end effector can be 

directly computed from the angular position of the 

robot joints using Denavit-Hartenberg (DH) method 

and the inverse kinematics problem which is defined 

above.  The inverse kinematics problem is quite 

complex because it deals with solving a system of 

underdetermined nonlinear equations. As a result, this 

is not always possible to find a closed-form solution. 

Due to the underdetermined nature of the problem, 

sometimes multiple solutions may exist, however, 

none of them may not be admissible for the existing 

kinematic structure of the robot. In some cases, no 

solution at all may exist, i.e., robot cannot achieve the 

desired position and orientation of the end effector 

because it is very difficult to find the suitable 

constraints for solving the underdetermined system of 

non-linear equations.     

    Different solution techniques for this problem can 

be categorized into two major classes: closed-form 

analytical and numerical methods. Closed-form 

solutions are faster than the numerical solutions and it 

can identify all possible solutions, but these 

techniques are dependent on robot kinematic structure 

and it is not possible to obtain for different robot 

kinematic structures such as Crustcrawler AX-18 

Smart Robotic Arm [2]. In contrast, numerical 

solutions are more general because they are not 

dependent of the robot structure. However, numerical 

methods are slower because they normally first guess 

an initial solution and then find the final solution in an 

iterative manner and they converge into local optima. 

The quality of the solution depends on the set of 

starting values. In addition, when the numerical 

methods fail to converge, they cannot obtain the 

solution even if the solution of the inverse kinematics 

problem exists. 

     In this research we aim at determining the solution 

of inverse kinematics problem for Crustcrawler AX-

18 Smart Robotic Arm which has four degrees of 

freedom and a gripper.  This kind of robot 

manipulator are widely used in different industrial 

applications such as peg-hole insertion tasks, complex 

manipulations, obstacle avoidance and assistance 

tasks like serving drink to the users [3]. Though there 

are few closed form solutions using algebraic method 
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available in literature [1], [4], [5] for inverse 

kinematics of Crustcrawler AX-18 robot manipulator, 

however it does not always guarantee to provide the 

admissible solutions. To demonstrate this 

phenomenon, we conducted a simulation experiment 

using P. Corke’s matlab toolbox [6] with a four link 

robot manipulator with four degrees  of freedom.  The 

length of the links are equal to the length of the links 

of the Crustcrawler AX-18 robot manipulator [2] used 

in this experiment that are provided in Table 1.  

 
Fig. 1 Two different configurations of the robot achieving 

the same target position, px = 10, py =10, pz =10. 

 

Fig. 1 shows the results of two robot configurations 

which can achieve the final target location px = 10, py 

=10, pz =10. Fig. 1 is developed using P. Corke’s 

matlab toolbox. We used different evolution 

algorithm to find the robot inverse kinematics 

solutions under two different conditions: without 

restrictions and with restrictions. The restriction 

includes the real constraint on angular displacement 

of the servomotor of the Crustcrawler AX-18 robot 

manipulator based on the capacity of the servomotor 

[2]. The restrictions are: 

 

  150,1501  ,   240,602  , 

  150,1503  ,   150,1504  .  

 

The solutions found without restrictions are θ1= -135o, 

θ2= -123.27o, θ3= 188.83o, and θ4= 134.84o and with 

restrictions are θ1= 45o, θ2= 72.42o, θ3= -2.29o, and 

θ4= -133.6o. The results show that the robot 

configuration without restrictions violate the 

constraints on θ2 and θ3. However, we found a viable 

solution with restrictions. This experiment shows that 

multiple solutions exist in robot inverse kinematics 

problem due to underdetermined nature of the linear 

systems (we have three linear equations for solving 

four degrees of freedom of the robot joints). Finding 

such viable solutions require an exhaustive search 

which is not always practically feasible for higher 

dimensions.  Existing numerical methods  on 

evolutionary algorithms, to name a few genetic 

algorithm [7], [8] and differential evolution [9], [10] 

provide solutions for the problems of exhaustive  

search with acceptable accuracy.  In practice, usually 

manually designed look-up tables based approximate 

inverse kinematics based solutions are used for 

controlling a robotic manipulator [11]. 
Existing research efforts based on evolutionally 

algorithms towards robot inverse kinematics mainly 

deal with minimizing the positional error. However, it 

is found that even the robot can achieve the target 

position with minimal position error, the solutions are 

not admissible solutions (the required robot 

configuration to achieve the target position is many 

times practically not feasible) due to the limitations of 

the servomotor to achieve very high angular 

displacement as shown in Fig. 1. 

     However, success of differential evolutions for its 

faster convergence and more accurate solutions over 

genetic algorithm (DE can tackle real and floating 

point numbers which is required for robot joint angles) 

has attracted to develop a multi-objective differential 

evolution algorithm for robot inverse kinematics 

problem. Unlike the existing researches, along with 

minimizing positional error, we try to minimize the 

maximum of the angular displacement of robot joints 

which naturally restrains on robot angular 

displacement and avoids to find the robot 

configuration with high angular displacement of the 

joints and hence assists in finding admissible 

solutions. Thus the proposed multi-objective 

differential evolution algorithm offers a practically 

viable solution for robot inverse kinematics problem 

through achieving the target position with minimal 

positional error and satisfying the angular constraints 

of the robot joints. 

This research offers the following technical 

contributions. Firstly, we propose a multi-objective 

differential evolution algorithm for robot inverse 

kinematics problem.  Secondly, we proposed two 

fitness functions: a) the first one minimizes the final 

positional error of the robot and (b) the second one 

minimizes the maximum angular displacement of the 

robot angular joints. The second fitness function 

restricts the rotational displacement of the angular 

joints of the robot while the first one attempts to 

arrive the end effector of the robot to the target 

position with minimal positional error.  Thirdly, we   

employ an unbiased treatment of both fitness 

functions that selects the optimal weights between 

these two functions iteratively over the generations. 

Fourthly, we exploited binomial crossover and 

trigonometric mutation for differential evolution 

approach that accelerates the convergence of the 

differential evolution algorithm. We implemented the 

multi-objective differential algorithm on Crustcrawler 

AX-18 robot manipulator [2] with four degrees of 

freedom. We also conducted the sensitivity analysis of 

the proposed algorithm. Experimental results 

demonstrate that proposed multi-objective differential 

evolution algorithm achieves less positional error and 

satisfy the angular constraints of the robot 

manipulator than genetic algorithm and algebraic 

method. We also developed the forward kinematics 

for the Crustcrawler AX-18 robot manipulator using 
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the Denavit-Hartenberg(DH) method. We modified 

the inverse kinematics solutions of the algebraic 

method for Crustcrawler AX-18 robot manipulator.  

The organization of the remaining of the paper is as 

follows. Section II presents the literature review 

regarding the existing robot inverse kinematics 

solutions to algebraic method, genetic algorithm and 

differential evolution. Section III discusses the inverse 

kinematics problem formulation using algebraic, 

genetic and DE method. Section IV presents the 

proposed multi-objective differential evolution for 

robot inverse kinematics problems. Section V 

illustrates the experimental results and discussions. 

Section VI concludes the work.  

II. BRIEF LITERATURE REVIEW 

In this section, we present the existing solutions of 

robot inverse kinematics using three algorithms, 

Algebraic Method (AM), Genetic Algorithm (GA), 

and Differential Evolution (DE).  

A. Algebraic Method (AM) 

Sultan and Schwartz [4] presented a solution for 

the inverse kinematic of a 5 DOF robot arm which is 

practically a 4 DOF manipulator with a degree of 

freedom in the gripper. The inverse kinematic was 

obtained from the transformation matrix and the 

forward kinematic equations which resulted in two 

sets of possible solutions depending of the calculation 

of θ2 and θ3. The solution proposed can closely 

approximate desired points within 1 cm of the 

workspace boundaries. 

Ramirez and Toscano [1] proposed a closed-form 

solution to the inverse kinematic of a 5 DOF 

manipulator robot defining the existence conditions 

for all the possible solutions and the singular 

configurations were identified. The proposed method 

uses the desired position of the center of the gripper as 

well the direction of the gripper’s main axis. 

Mohammed and Sunar [12] studied the forward and 

inverse kinematic of a 4 DOF robotic arm. For the 

forward kinematic model, the problem was compared 

using the Denavit-Hartenberg convention and the 

product of exponentials, those two approaches 

showed an identical solution. In the solution for the 

inverse kinematic problem an algebraic method was 

implemented which made use of a fourth parameter 

besides the x, y, z desired point, called the end effector 

orientation. 

B. Genetic Algorithm y(GA) 

Joey and David [7] introduced the genetic algorithms 

for solving the inverse kinematics problem for 

redundant robots using a single fitness function which 

integrates the error of the final end effector position 

and the desired position and an additional term based 

on the angular joint displacements from the initial 

position of the robot. The results showed a 

significantly large final positioning error. They 

proposed for a future work to employ the Newton-

Raphson method to minimize the final error to zero of 

the genetic algorithm. 

F.Y.C. and S.P. [8] used a genetic algorithm to 

optimize the inverse kinematic for real-time trajectory 

planning manipulator. Using a new proposed 

crossover method called Dynamic Multilayered 

Chromosome Crossover (DMCC) they implemented 

the method for a planar manipulator of three degrees 

of freedom. The results indicated an improved of the 

number of iterations for the genetic algorithm. 

Zhen and Yan-Tao [13] proposed a multi population 

genetic algorithm (MPGA) in order to improve the 

global converge. Where the MPGA divides the whole 

population into several populations, then through 

artificial selection and an immigration operation 

forms a new population by selecting the best 

individuals from each category. The MPGA compared 

with the simple genetic algorithm (SGA) made the 

global solution more efficient and accelerated the 

converge speed. 

C. Differential Evolution (DE) 

Gonzalez and Blanco [9] demonstrated that a 

memetic approach increases the converge of the 

differential evolution algorithm for the inverse 

kinematic problem. They introduced a local search 

mechanism called discarding. The results using a 3 

DOF planar robot showed that the proposed method is 

able to solve the inverse kinematic accurately and in 

fewer generations than the conventional DE. 

Wang and Hao [10] studied the forward kinematic 

of a pneumatic parallel manipulator using genetic 

algorithm, particle swarm optimization and the 

differential evolution algorithms. The performance of 

the DE was quite better than the GA and PSO where 

the speed of the convergence of the DE was less than 

the other ones with a greater reliability to obtain the 

global optima for the forward kinematic. 

Nguyen and Ho Pham [14] proposed a hybrid 

differential evolution to train an adaptive MIMO 

neural network for the solution of inverse kinematic. 

The hybrid differential evolution algorithm applied to 

solve the inverse kinematic of a 3 DOF manipulator 

which is composed by the back-propagation algorithm 

and the DE algorithm proved a faster performance and 

better precision than the conventional back-

propagation algorithm or the solely differential 

evolution algorithm.  

 

III.INVERSE KINEMATIC PROBLEM FORMULATION 

Given the current (initial) and the desired position 

of the end effector of the robot that is defined by the 

user, we formulate the robot inverse kinematic 

problem is to find the angular position of the end 

effector to reach the desired position with minimal 

positional error and the minimum rotational 

displacement between the current joint angles and the 

joint angles of the end effector. 
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A. FORWARD KINEMATICS 

 

Fig. 2  Four DOF Crustcrawler AX-18 robot manipulator robot 

configuration 

For a kinematic model, a robot manipulator can be 

considered as a chain of links attached by joints. We 

can determine the position and orientation of the end 

effector or TCP (Tool Center Point) given a set of 

geometrical characteristic of the robot and a base 

frame, and this analysis is called forward kinematics. 

We use the Denavit-Hartenberg(DH) convention for 

the   representation of the robot forward kinematic 

model. The DH convention are described by four 

parameters (link length, link twist, joint distance and 

joint angle) as given below [15]. 

1. Link length (ai) is the distance between zi-1 and zi 

axes along the xi axis, ai is the kinematic length of 

link (i). 

2. Link twist (αi) is the required rotation of the zi-1 axis 

about the xi axis to become parallel to the zi axis. 

3. Joint distance (di) is the distance between xi-1 and xi 

axes along the zi-1 axis. Joint distance is also called the 

link offset. 

4. Joint angle (θi) is the required rotation of xi-1 axis 

about the zi-1 axis to become parallel to the xi axis. 

The robot studied in this paper has four revolute 

joints, the di has a fixed value and θi is the variable. 

After applying the DH convention on this robot 

manipulator as shown in Figure 1, the values of the 

four parameters (ai, αi, di and θi) are listed in the Table 

1.  

 

Table 1. Denavit-Hartenberg Parameters    

Frame ai αi di θi 

O1 0 π/2 d1 θ1 

O2 a1 0 0 θ2 

O3 a2 0 0 θ3 

O4 a3 π/2 0 θ4 

O5 a4 0 d2 0 

 

For our robot manipulator, the value of d1= 4.36 

cm, a1 = 6.75 cm, a2 = 17.23 cm, a3 = 6.3 cm, d2 = 2.0 

cm and a4 = 11.7 cm. The DH parameters facilitates to 

obtain each homogeneous transformation i-1Ai for the 

four coordinate systems of the robot manipulator 

which is given by as follows. 
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The transformation matrix that links the position 

and orientation of the end effector or TCP is given by 
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The 0R5 matrix is called the rotation matrix that 

describes the orientation of the frame O4 relative to 

the base frame and the vector 0P5 is the position of the 

center of the TCP frame. The matrix for the robot 

forward kinematics is presented where the notation 

used are ci=cosθi, si=sinθi, cij=cos(θi+θj), 

sij=sin(θi+θj), cijk=cos(θi+θj+θk) and sijk=sin(θi+θj 

+θk). 

After simplifying the 0P5 vector using the product and 

sum difference identities, we obtain the position of the 

end effector which is given by, 

 

2312234132112341223414 ccaccaccascdccapx 

2312234132341212123414 csacsassdscacsapy 

234323223422344211 sasacdsasadpz   

And the end effector orientation as, 

432    

B. APPROACHES TO INVERSE KINEMATIC 

We compare three different methods for the inverse 

kinematics solution, they are described below. 

ALGEBRAIC METHOD 

To solve the inverse kinematic problem by algebraic 

method, we use the equations of the forward 

kinematic and after some algebraic operation using 

trigonometric identities we have: 

 

)/(tan 1

1 xy pp , 

)/(tan)2/(sin 1
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1
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3 aaaaCB   , 

324   , where  

 cossinsin 2431 daadpC z  and 

 sincoscossin/ 2431 daapB y   

www.internationaljournalssrg.org
K DURAISAMY
Text Box
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) -volume 3 Issue 11 -November 2016


K DURAISAMY
Text Box
74



SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 10–October2016 

ISSN: 2348 – 8387                     www.internationaljournalssrg.org                         Page 5 

GENETIC ALGORITHM 

Genetics algorithms emulate natural selection of a set 

of individuals in order to search the best solution for a 

determined problem. The genetic configuration of 

each individual is a possible solution. GA starts with 

an initial population and those are submitted to an 

evolutionary process in such way that the best adapted 

individuals will continue to reproduce among them 

and over several generations the best adapted will 

stands out. We tailor the genetic algorithm for a multi-

objective inverse kinematic solution based on: 

selection, cross-over and elitism that are discussed 

below. 

String representation of joint angles 
The solution for the inverse kinematic implemented 

with a genetic algorithm starts with encoding the joint 

angles represented in a binary string of 36 bits long 

where it is divided in 4 chains of 9 bits for each joint 

respectively. 

Initialization of the population 

The initialization of the population is based on binary 

vectors with a uniform distribution U (0,1). Where 

each vector is called individuals i=1,2,3...,Np where 

Np means the size of the population. Their genes are 

generated randomly. 

Selection 

When the GA enters to the main loop, the next step is 

the selection. Using a stochastic method known as 

roulette wheel selection, it selects the parents form the 

current population for further imitation of natural 

selection, where with a better fitness value it is most 

likely to be selected for breeding. Thus the probability 

of being selected as one candidate in all the current 

population is given by [16]: 





Np

i

i

i
i

f

f
p

1

 

 

Where i is the individual in the current population and 

fi is its corresponding fitness value. 

Decoding the individuals 

Each individual has to be decoded in order to using it 

for the fitness function evaluation. We implement the 

next equation [8],  
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Where θ correspond for each joint angle for a set of 9 

bits.  The first bit from the set represented by the 

mathematical sign (±) in the equation determines the 

rotating direction of the joint angle, 1 for positive and 

0 for a negative rotation.  b is the bit that can be either 

0 or 1 dynamically. 

Fitness Function 

For this paper we have implemented a multi-objective 

fitness function that takes into account the error of the 

difference of the target position and the proposed 

manipulator end effector point and the maximum 

angular displacement between the final joint angles 

and the initial joint angle given by the user. 

f1 is a sub-function that determines the difference 

between the target position and the end effector 

position and it is computed by the forward kinematic 

equation. The equation of the fitness function is 

defined by, 

 222

1 )()()(exp1),(
eee zzyyxxe ppppppPPf 

 

Where  zyx pppP ,,  and  
ee zeyxe pppP ,,  

are the final target and the end effector position 

respectively. f2 is the second sub-function that takes 

into account the maximum rotational displacement 

and it is computed by the following equation, 

 

},,,,,,,max{),( ,,44,,33,,22,,11,,2 igeIigeIigeIigeIigeIf 

 

Where igkekIigkekI ,,,,,    for  4,3,2,1k  

and  IIIII 4321 ,,,  , 

  
igeigeigeigeige ,,4,,3,,2,,1,, ,,,    

 

are the initial angular position vector and final angular 

position vector for individual i after generation g for 

the robot respectively where each element of the 

vector represents the angle of each joint. 

Converge analysis of genetic algorithm 

Aytug and Koehler [17], [18] showed that for a 

general Markov Chain model of genetic algorithm 

with elitism, an upper bound for the number of 

iterations t required to generate a population S+ which 

consists entirely of minimal solutions has been 

generated with probability   1,0 ; is given by, 

 

   llnt )1(,min1ln/)1ln(    

 

Where, l is the length of the chains that represent the 

individual, n is the population size and  1,0  is the 

mutation rate.  x  is the smallest integer greater than 

or equal to x. Studniarski [19] showed that for multi-

objective optimization, the (possibly unknown) 

number m of these solutions is bounded from below 

by some known positive integer m . Suppose also that 

there exists a number  m/1,0 ,an upper bound for 

the number of iterations t is given by, 

 

                 l
mt   1ln/1ln  

 

If no non-trivial lower bound m  is known, we may 

always use 1m . 
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DIFFERENTIAL EVOLUTION (DE) 

The main difference between DE and other 

Evolutionary Algorithms (EAs) is the implementation 

of the mutation operation. The mutation operation of 

DE applies the vector differentials between the 

existing population members for determining both 

degree and direction of the operation of the 

perturbation applied to the individual subject of the 

mutation operation.  

Initialization 

The algorithm starts with a dynamic initial 

population }{ jiP  , where the elements of the 

population are called “individuals” i = ,2,3,…,j. Their 

genes are generated randomly.  

For the inverse kinematic problem with a four 

dimensional vector and Np, the size of the population, 

the DE algorithm has a population of size Np joint 

configuration,  

 

 
gNpggg qqqP ,,2,1 ...,,,


  

 

Where g is the number of generation, g=0,1,…,gmax 

and q


is a  vector array also called as individual 

codded as a floating point of  D=4 length, for the 

solution  of the inverse kinematic of 4 DOF each 

individual is a four dimensional vector defined as: 

],,,[],,,[ ,,4,,3,,2,,1,,4,3,,2,,1, gigigigigigigigigi qqqqq 


For all i=1, 2,…,Np. At the generation g=0 the DE 

starts with an initial population generated by a 

randomly uniform distribution with a search space 

defined by the joint upper and lower bounds as  

 

 LoHiLo
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 )1,0(0,  

 

For the robot configuration presented in this paper we 

consider the joints limits  
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Mutation 
In each generation the mutation process begins with 

the selection of three randomly individuals of the 

population. The 
giq ,


 individual to be perturbed is 

called the target vector which could be replaced by a 

mutant vector also known as donor vector. The 

giv ,


donor vector is obtained through the differential 

mutation operation based on three chosen individuals. 

The difference of any two of these three vectors is 

scaled by a scalar factor F and the scaled difference is 

added to the remaining vector to obtain the donor 

vector which is given by, 

 

)(
,,,,

321 grgrgrgi iii qqFqv


  

Where from i=1,2,…,Np on the generation g for each 

target vector, the ith  difference vectors 
gr iq

2


and 

gr iq
3


, 

and the base vector 
gr iq

,1


 belong to the current 

population gP . The indices i

gr1
, i

gr2
and i

gr3
 are 

randomly chosen  from ],..,1[ Npi   in such a way that 

they are mutually exclusive. 

Beside the mutation presented before we implemented 

the trigonometric mutation [20], when the 

trigonometric mutation operation is performed, 

instead of an individual randomly taken from the three 

chosen ones as the original mutation of DE, the donor 

to be perturbed is taken to be the center point of the 

hypergeometric triangle. The mutation operation is 

performed according to the following equations: 

))(())((
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Where 

pqfp
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,1
1

  , pqfp
gr i  /|)(|

,2
2

 , pqfp
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,3
3

 , 

|)(||)(||)(|
,,, 321 grgrgr iii qfqfqfp
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Crossover 

For the purpose to increment the diversity and as well 

the enrichment of the mutation strategy used in the 

step before, we used the binomial crossover. The 

crossover step takes the donor vector giv ,


 to 

exchanges its components with the target vector 
giq ,


 

that is regulated by a constant crossover rate  1,0Cr .  

As result we form the trial vector 

 
giDgigigi uuuu ,,,,2,,1, ,...,,

  as follows: 
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,,,
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Where i=1,2,…,Np and j=1,2,…,D and )1,0(,ijrand  

is a uniformly distributed random number. 

Selection 
After obtaining the fitness function of the trial vector 

and the target vector we compare them through the 

Greedy selection which one is better. If the trial vector 

is better than the target vector, the trial vector will 

replace it for the next generation otherwise the target 

vector will stay as it is presented in the equation 
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qfufifu
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Where f  is the maximized fitness function used for 

the differential evolution algorithm. 
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IV.   MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION 

FOR INVERSE KINEMATICS SOLUTIONS 

In this paper we have implemented a multi-objective 

fitness function that takes into account the positional 

error and maximum angular displacement of the robot 

joints and returns a real number (weighted linear 

combination of positional error and maximum angular 

displacement of the robot joints), )( ,giqf


that 

measures the adaptability of each sequence. 

 





H

h

hhgi fwqf
1

, )(


 

 

Where wh is the weight that defines the importance of 

each sub-function. These weights are computed 

dynamically in each iteration g with the equation [21],  
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Where H is the number of sub-functions, h = 1…H, 

1, gbq


is the best individual among solutions of the 

population in the previous generation Pg-1. )(~ gw
h

 is 

the dynamic weight satisfying the following 

conditions, 

1)(0 ~  gw
h

 and  



H

h
h

gw
1

~ 1)(  

 

Where g represents the iteration step of the GA 

algorithm. f1 is a sub-function that takes into account 

the difference between the target position and the final 

position of the end effector and it is computed by 

forward kinematics algorithm presented in section 

IIIA. The equation of the fitness function is denied by 

  

))()()(exp(1),( 222

1 eee zzyyxxe ppppppPPf 

 

Where },,{ zyx pppP   and },,{
ee zeyxe pppP   are 

the final target and the end effector position 

respectively. f2 is the second sub-function that takes 

into account the maximum rotational displacement 

and it is computed by the following equation [7] 

 

},,,,,,,max{),( 443322112 eIeIeIeIeIf 

 

Where KikIKikI  ,  for  4,3,2,1k  and 

 IIIII 4321 ,,,  ,  iiiii 4321 ,,,   are 

the initial and final rotational displacement vector 

after iteration g for the robot respectively where each 

element of the vector represents the angle of each 

joint.  

θ1i← rand (-5π/6, 5π/6), θ2i← rand (-π/3, 4π/3), θ3i← 

rand (-5π/6, 5π/6), θ4i← rand (-5π/6, 5π/6). 

We computed the crossover probability as follows 

[22], 

Pseudocode 1. Multi-objective Differential Evolution 

         Function θfinal = DE_Robot_kinematics (P, 
I ) 

         % input P represents coordinates of target point  

         %  IIIII 4321 ,,,  ,
I is the initial angular 

         % position vector. 

         % And output θfinal represents the corresponding 

          angle of the robot joints    

1. % Parameters initialization 

g←0, gmax←200, M←0.2, Cr←0.8, F←0.2, Np←150 

 

2. % Initial population with respect to limits 

Pop  ←  ige ,, ; ige ,,  = [θ1e,g,i, θ2e,g,i, θ3e,g,i, θ4e,g,i], 

 i = 1,2, .., Np 

f1 ( ige ,, ) = exp(-err); err = ||P -fwdkine( ige ,, )|| 

f2 ( ige ,, ) = exp(-angdist); angdist = max( I ,
ige ,, ) 

},,,,,,,max{),( ,,44,,33,,22,,11,,2 igeIigeIigeIigeIigeIf   

f = w1f1+w2f2 ,    w1=0.5, w2 = 0.5 

3. while (g <= gmax)  

4.    for (i = 0; i <= Np; i++)  

5.       r1←rand(Np), r2←rand(Np), r3←rand(Np) 

6.       % Mutation 

      m← rand(0,1) 

      if m< Pm { 

         if m<=Mt 

            Compute ui using trigonometric mutation 

         else 

7.              ui← xr3 + F(xr1 - xr2)  

         end if 
8.       else  

         ui← ige ,,  

      end if 
9.       % Crossover       

      if (rand(0,1) < Pc) 

10.          yi←ui} 

11.       else  

         yi← ige ,,   

      end if 

12.       %Selection  

      if f(yi) > f( ige ,, ) 

          ige ,,  ← yi  

13.        end if 

    end for 
14. 

 

 

   g←g+1 

end while 

final  ←
ige ,max,

maxarg   f ( = ige ,, max
 ) 
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As well the mutation probability Pm is defined as 

shown below [22], 


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 Determination of population size 

The minimum population size Np required for 

maintaining c species of equal fitness for g 

generations with probability g is determined by the 

equation: 

)/)1ln((/)/)1ln((

1

cccn G    

 
For c = 10 optima, generations G=100 with 

probability g = 0.999, the required population size, n 

= 131 individuals, so a population of 200 is enough to 

maintain subpopulations. 

The pseudocode of the multi-objective Differential 

Evolution (DE) is given in pseudocode 1.  

 

V. . EXPERIMENTAL RESULTS AND DISCUSSIONS 

We conducted the experiment on Crustcrawler AX-18 

robot manipulator with four degrees of freedom as 

illustrated in Fig. 2. The length of the links is 

provided in Table 1.  We run the algorithm for 200 

number of generations and we take 200 samples for 

each generation. Table 2 demonstrates the positional 

errors of GA, AM and proposed multi-objective DE 

algorithm. Table 2 illustrates that multi-objective DE 

offers less positional errors for all the five randomly 

selected   target positions than GA and AM method. 

For unbiased comparison, we select the value of φ 

automatically for AM method which provides the 

minimum positional error. We run GA algorithm for 

400 generations and each generation we allow the best 

100 genes.  

 

Table 2. Target positions and the corresponding 

final positions of the end effector of the robots  

 

Fig. 3 shows the mean diversity of the population 

at each generation for multi-objective differential 

evolution with three different mutation and crossover 

configurations: (a) fixed crossover and normal 

mutation method; (b) binomial crossover but without 

trigonometric mutation; and (c) binomial crossover 

and trigonometric mutation.  

 
Fig. 3 Mean diversity of the population at each generation for 

multi-objective DE with three mutation and crossover 

configurations.  

Fig. 3 shows that the mean diversity of the 

population for binomial crossover and trigonometric 

mutation decreases faster than normal crossover and 

mutation method which illustrates faster convergence 

of the binomial crossover with trigonometric mutation 

 

 
Fig. 4 weights (w1 and w2) of two fitness functions for multi-

objective DE over generations at three mutation and crossover 

configurations: (a) fixed crossover, (b) without trigonometric 
mutation and (c) with trigonometric mutation. 

Fig. 4 illustrates weights (w1 and w2) of two fitness 

functions over generations for multi-objective DE for 

the above three conditions. Fig. 4 demonstrates that 

binomial crossover with trigonometric mutation (c) 

selects the optimal weight values of w1 and w2 much 

faster (less than 50 generations) than fixed crossover 

and without trigonometric mutation (option (a) and 

(b)). This also illustrates the faster convergence of 

binomial crossover and trigonometric mutation than 

fixed crossover and mutation technique. The similar 

results were found in [20]. 

 
Fig. 5 Fitness value of the best individual at each generation for 

multi-objective DE with three mutation and crossover 
configurations.   

Fig. 5 illustrates the fitness values of the best 

individuals over generations Fig. 5 illustrates the 

fitness values over generations for the three different 

crossover and mutation methods. Fig. 6 (b) illustrates 

Target 

Position 

End Effector Position 

GA AM Proposed DE 

(10,10, 10) (10.8,8.8,11.9) (10.1,10.1,10) (10,10,10) 

(0, 7.5, 12) (2.7,7.4,11.3) (0, 6.8, 11.3) (0,7.5,12 ) 

(2, 13, -5) (2.9,15.4,-6.1) (2.1, 13.5, -

5.8) 

(2, 13 -5) 

(-6, 9.5, 4.3) (-9.5,9.0,3.9) (-5.9, 9.3, 

4.3) 

(-6, 9.5, 4.3) 

(3, -7, 13) (2.0,-9.5,16.1) (3, -7, 13) (3, -7, 13) 
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that binomial crossover with trigonometric mutation 

generates lower positional error than fixed crossover 

and without trigonometric mutation.  

Fig. 6 (a) illustrates the pareto front. Results of the 

pareto front shown in Fig. 6 (a) demonstrate that both 

positional error and maximum angular displacement 

cannot be simultaneously reduced, decreasing the 

value of one increases the value of the other and vice 

versa.  In this study, utilizing iterative dynamic weight 

selection based multi-objective DE algorithm, we find 

the optimal weight between positional error and 

maximum angular displacement of robot joints 

through fair treatment of both of the fitness functions. 

 
Fig. 6 (a) Pareto front for multi-objective DE; (b) Positional 

error multi-objective DE with three mutation and crossover 

configurations.   

 

VI. CONCLUSIONS 

This paper presents a multi-objective fitness 

function for Differential Evolution (DE) algorithm for 

robot inverse kinematics problem. The values of the 

two fitness functions are minimized in an iterative 

fashion over generations. We adopt an equitable 

treatment that offers optimal weights between these 

two fitness functions where maximizing the values of 

both fitness functions over generations. The first 

fitness function attempts to minimize the positional 

error while the other fitness function takes into 

account of maximum angular displacement of the 

robot joints that attempts to satisfy the constraints on 

angular displacement of robot joints. We also 

exploited the trigonometric mutation and binomial 

crossover that enhances the performance of 

conventional mutation and crossover method. 

Binomial crossover expedites the convergence of DE 

algorithm. We implemented the proposed multi-

objective differential evolution algorithm on 

Crustcrawler AX-18 robot manipulator. We 

performed the same robot inverse kinematics 

experiment using Genetic Algorithm (GA) and 

Algebraic Method (AM). Experimental results 

demonstrate that Multi-objective DE obtains less 

positional error and maximum angular displacement 

than GA and AM method. 
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