
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 issue 3 March 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 27

A Hybrid Ant Colony Optimization

Algorithm for Software Project Scheduling
S.Jagadeesan, S.Gayathri

Assistant Professor, Final Year Student

Master of computer Application, Department of Computer Application,

 Nandha Engineering College (Anna University), Erode-5,2Tamilnadu, India.

Abstract—The extraction of comprehensible

knowledge is one of the major challenges in many

domains. In this concept, an ant programming (AP)

framework, which is capable of mining classification

rules easily comprehensible by humans, and,

therefore, capable of supporting expert-domain

decisions, is presented. The algorithm proposed,

called grammar based ant programming (GBAP), is

the first AP algorithm developed for the extraction of

classification rules, and it is guided by a context-free

grammar that ensures the creation of new valid

individuals. To compute the transition probability of

each available movement, this new model introduces

the use of two complementary heuristic functions, in-

stead of just one, as typical ant-based algorithms do.

The selection of a consequent for each rule mined and

the selection of the rules that make up the classifier

are based on the use of a niching approach. The

performance of GBAP is compared against other

classification techniques on 18 varied data sets.

Experimental results show that our approach

produces comprehensible rules and competitive or

better accuracy values than those achieved by the

other classification algorithms compared with it.

Index Terms—Ant Colony Optimization (ACO),

Ant Programming (AP), classification, Data Mining

(DM), Grammar-Based Automatic Programming

(GBAP).

I. INTRODUCTION

DATA MINING (DM) involves the process of

applying specific algorithms for extracting

comprehensible, nontrivial and useful knowledge from

data. The discovered knowledgeshould have good

generalization performance, i.e., it should accurately

predict the values of some attributes or features of

data that were not used during the run of the DM

algorithm. This paper focuses on the classification

task of DM, whose goal is to predict the value of the

class given for the values of certain other attributes

(referred to as the predicting at-tributes). A model or

classifier is inferred in a training stage by analyzing

the values of the predicting attributes that describe

each instance, as well as the class to which each

instance belongs to. Thus, classification is considered

to be supervised learning, in contrast to unsupervised

learning, where instances are unlabeled. Once the

classifier is built, it can be used later to classify other

new and uncategorized instances into one of the

existing classes.A great variety of algorithms and

techniques have been used to accomplish this task,

including decision trees [1], decision rules [2], naive

Bayes [3], support vector machines [4], neural

networks [5], genetic algorithms [6], etc. In domains

such as medical diagnosis, financial engineering,

marketing, etc., where domain experts can use the

model inferred as a decision-support system, decision

trees and decision rules are especially interesting.

These techniques have a high-level representation and,

therefore, they allow the user to interpret and

understand the knowledge extracted. For example, in

medical problems, classification rules can be verified

by medical experts, thus providing better

understanding of the problem in-hand [9].

More recently, ant colony optimization (ACO) [7],

[8] has successfully carried out the extraction of rule-

based classifiers. ACO is a nature-inspired

optimization metaheuristic based on the behavior and

self-organizing capabilities of ant colonies in their

search for food. The first application of ACO to the

classification task was the widely spread Ant-Miner

algorithm, proposed by Parpinellyet al. [10], and it has

become a bench-mark algorithm in this field. Since

then, several extensions and modifications of this

sequential covering algorithm have been presented.

ACO-based automatic programming [11]—which is

another kind of automatic programming method that

uses ACO as search technique, has never been

explored to tackle classification problems.In this

concept, we first look at the AP works published in

the literature, to prove that the development of AP

algorithms and their application to DM is still an

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 issue 3 March 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 28

unexplored and promising research area. Then, we

explore the application of an AP algorithm for mining

classification rules, which takes advantage of the

inherent ben-efits of both ACO metaheuristic and

automatic programming. Our proposal can support

any number of classes, so that it can be easily applied

to a large variety of data sets, generating a rule-based

classifier. It aims to construct not only accurate but

also comprehensible classifiers. In contrast to other

ACO clas-sification algorithms, our proposal provides

more expressive power, because the grammar allows

to control several aspects related to comprehensibility,

such as the definition of specific operators, the

specification of the conditions that can appear in rule

antecedents or how these conditions are connected.

Moreover, our algorithm lacks the drawbacks of rule

induction using sequential covering algorithms, as

Ant-Miner, because it does not rule out examples

when building the classifier. The remainder of this

concept is organized as follows. In the next section we

present some related work on ACO and a brief review

of AP. In Section III, we describe the proposed

algorithm. Section IV explains the experiments carried

out, the data sets used and the algorithm set up. The

results obtained are discussed in Section V. Finally,

Section VI presents some concluding remarks.

II. RELATED WORK

In this section, we first present some related work

on the application of ACO to classification. We then

provide a review of the various AP algorithms

published in the literature so far.

A. Ant Colony Optimization

ACO is an agent-based nature-inspired optimization

meta-heuristic placed into swarm intelligence (SI) . SI

is concerned with the development of multiagent

systems inspired by the collective behavior of simple

agents, e.g., flocks of birds, schools of fish, colonies

of bacteria or amoeba, or groups of insects living in

colonies, such as bees, wasps or ants. Specifically,

ACO bases the design of intelligent multi-agent

systems on the foraging behavior and organization of

ant colonies in their search for food, where ants

communicate between themselves through the

environment, in an indirect way, by means of a

chemical substance—pheromone—that they spray

over the path they follow—phenomenon known as

stigmergy. The pheromone concentration in a given

path increases as more ants follow this path, and it

decreases more quickly as ants fail to travel it, since

the evaporation in this path becomes greater than the

reinforcement. The higher is the pheromone level in a

path, the higher is the probability that a given ant will

follow this path.

ACO algorithms were initially applied to

combinatorial optimization problems finding optimal

or near optimal solutions. Since then, ACO algorithms

have been engaged in an increasing range of problem

domains, and they have also been shown to be

effective when tackling the classification task of DM .

The first algorithm that applied ACO to rule and func-

tions, as GP does). Then, each program is evaluated

and table is updated by evaporation and induction was

Ant-Miner , and it has become the most referred ACO

algorithm in this field. It follows a separate-and-

conquer approach where, starting from a training set

and an empty set of rules, it finds new rules to be

added to the set of discovered rules. As it discovers

new rules, it removes those instances of the training

set that are covered by each new rule, reducing the

size of the training set. Ant-Miner chooses a new term

for the current partial rule by applying the transition

rule, and it only considers including terms that have

not been previously chosen. It keeps on adding new

terms to build this rule antecedent until one term from

each available attribute has been selected, or until

when selecting any term that is still available, the

number of training instances covered by the rule is

reduced below the value specified by the minimum

cases per rule parameter .

TABLE 1

MODIFICATIONS EXTENSIONS OF ANT MINER

the original Ant-Miner. For example, Liu et al. [12]

Many of these extensions imply minor changes, and

the results obtained are slightly different from the ones

obtained by presented Ant-Miner2, where they applied

a much simpler heuristic function, acting on the

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 issue 3 March 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 29

assumption that pheromone reinforcement has enough

power to compensate possible errors induced by the

use of this less effective heuristic measure.

In contrast, Ant-Miner+, proposed by Martens et al.

[12], demonstrated superior accuracy results than the

previous Ant-Miner versions. This algorithm defines

the environment as a directed acyclic graph, which

allows the selection of better transitions and the

inclusion of interval rules. It also implements the

better performing max-min ant system (MMAS) and

uses a more accurate class-specific heuristic function.

Another key difference of Ant-Miner+ lies in the

value selected for the heuristic and the pheromone

exponent parameters—α and β. In fact, it introduces a

range for each parameter and lets the ants choose

suitable values in an autonomous way.

 In addition to these modifications, there are other

extensions related to the hybridization of ACO with

other metaheuristics. Among them, we appreciate the

hybrid particle swarm opti-mization (PSO)—ACO

algorithm, PSO/ACO2, developed by Holden et al.,

for the discovery of classification rules. PSO is

another optimization technique positioned among SI,

and inspired by the social behavior of birds in flocks

or fish in schools. PSO/ACO2 is also a sequential-

covering algorithm, and it can cope with both

numerical and nominal attributes.

B. Ant Programming

AP is an automatic programming technique that has

certain similarities with GP, but rather than using

genetic algorithms as search technique, it employs

ACO to search for programs. There are different

proposals using AP in the literature, which we now

review, although their application is limited to prob-

lems such as symbolic regression, and no applications

of AP to classification have been published so far.

The first work that combined the ants paradigm

with the automatic generation of programs was

presented by Roux and Fonlupt [12], and it was

closely related to GP. In fact, their algorithm started

by creating a random population of programs (trees)

using the ramped half-and-half initialization method

and storing a table of pheromones for each node of the

tree. Each pheromone table holds the amount of

pheromone associated with all possible elements (also

named terminals and func-tions, as GP does).These steps

are repeated until some criteria are satisfied, but notice

that new populations of programs are generated

according to the pheromone tables. This approach was

used to solve symbolic regression problems and a

multiplexor problem with relative success.

Boryczkaet al applied AP to solve symbolic

regression problems, calling their method ant colony

programming (ACP). They proposed two different

versions of ACP, known as the expression approach

and the program approach. In the expression

approach, the system generates arithmetic ex-

pressions in prefix notation from the path followed by

the ant in a graph. This graph is defined as G= (N, E)

where N is the set of nodes, which can represent either

a variable or an operator, and E is the set of edges,

each one with a pheromone value. Green et al. [38]

also presented an AP technique similar to the ACP

expression approach. In turn, in the program approach

the nodes in the graph represent assignment

instructions, and the solution consists of a sequence of

assignments that evaluate the function.

More recently, Shirakawaet al. [13] proposed

dynamic ant programming (DAP). Its main difference

with regard to ACP lies in the use of a dynamically

changing pheromone table and a variable number of

nodes, which leads to a more compact space of states.

The authors only compared the performance of DAP

against GP using symbolic regression problems.

III. GBAP: GRAMMAR BASED ANT

PROGRAMMING ALGORITHM

In this section we describe the main features of

grammar based ant programming (GBAP) algorithm.

In short, GBAP is an automatic programming

algorithm that uses ACO as its search technique

and which is also guided by a context-free grammar.

The GBAP algorithm has been conceived for

obtaining a specific classifier arising from a learning

process over a given training set. The output classifier

is an ordered rule list in which discovered rules are

sorted in descending order by their fitness. In case it

gets to the end of the classifier without any rule

antecedent covering this new instance, it would be

classified by the default rule.

As outlined in the following sections, the GBAP

algorithm cannot be fitted into a typical ACO system.

Due to the bounding of the pheromone levels to within

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 issue 3 March 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 30

the interval [τmin, τmax], and to the initialization of all

edges to the maximum pheromone amount allowed,

the algorithm with which GBAP shares more

characteristics may be the MMAS. However, unlike

how the reinforcement is carried out in GBAP, in

MMAS, only the best ant is responsible for updating

pheromone trails. The complexity of MMAS-based

algorithms is a complex re-search area, which has

been widely studied and analyzed by Neumann et al.

A. Environment and Rule Encoding

 GBAP prescribes a CFG for representing the

antecedent of the rule encoded by each individual.

Fig. 1. Space of states at a depth of four derivations.

The sample colored path represents the antecedent

found by a given ant.

 In an observation like in GP, grammar guided

systems also use the terminal and non-terminal

nomenclature, but here, it refers to the symbols of the

grammar, rather than to the leaf nodes or

function/internal nodes of an individual tree represen-

tation in GP.

In grammar guided GP, the grammar controls the

creation of the initial population of individuals, the

crossover, mutation, and reproduction processes; in

contrast with the grammar guided AP, because there

are no genetic operators involved, the grammar

looks after each movement of each ant in such a way

that each ant will follow a valid path and will find a

feasible solution to the problem.

Concerning the design of any ant inspired

algorithm, it is necessary to specify an environment

where ants cooperate with each other. In GBAP, the

environment is the search space com-prising all

possible expressions or programs that can be derived

from the grammar in the number of derivations

available. Thus, the environment adopts the shape of a

derivation tree, as shown in Fig. 1 at a depth of three

derivations.

Starting with the initial state of the environment,

which is associated with the start symbol defined by

the grammar, each ant tries to build a feasible solution

to the problem. Any solution found takes the form of a

path from the root node to a final state over the

derivation tree, as shown in the sample colored path in

Fig. 2. This path consists of sequence of states, where

each derivation step is given by applying one of the

available production rules at that point. A final state

represented in the figure with a double-border oval—

only contains terminal symbols and, therefore

represents the evaluatable expression of the antecedent

of the rule encoded. Although final states encode an

evaluatable antecedent, fulfilling the properties of an

artificial ants still have an internal memory to store the

path to do an offline pheromone update.

Regarding the individual encoding, GBAP follows

the ant=rule (i.e., individual = rule) approach [13]. As

aforemen-tioned, when ants have been created, they

only represent the antecedent of a new rule. The

consequent will be assigned by following the niching

approach described later in Section III-D.

B. Algorithm

The main steps of GBAP are detailed in the

pseudocode of Algorithm 1. It begins by starting up

the grammar, creating a cardinality table for each

production rule, and initializing the space of states

with the initial state. It also creates an empty object

that represents the classifier, which will contain the

remaining—winner—ants of the competition that

takes place in the niching algorithm in each

generation. The algorithm starts with the minimum

number of derivations that are necessary to find a

solution in the space of states and computes the

derivation step for each generation. Notice that in the

case of the grammar defined, at least two derivations

are needed to reach a solution from the initial state, as

can be seen in Fig. 1.

Algorithm 1 High Level Pseudocode of GBAP

Require: numGenerations, numAnts, maxDerivations

1: Initialize grammar and space of states

2: Create an empty classifier

3: derivationStep ← ((maxDerivations −

2)/ numGenerations)

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 issue 3 March 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 31

4: maxDerivations ← 2

5: for i = 0 to i = numGenerations inc 1 do

6: Create list ants ← {}

7: for j = 0 to j = numAnts inc 1 do

8: ant ← Create new ant (see Procedure 2)

9: Store ant‘s path states in the space of states

10: ant, computing its fitness for each

available class in the data set

11: Add ant to the list ants

12: end for
13: Niching approach to assign the consequent to

the ants and to establish the classifier rules

(see Procedure 3)

14: for each ant in ants do

15: if f itness > threshold then

16: Update pheromone rate in the path

followed by

ant proportionally to its fitness and

inversely proportional to its path‘s

length

17: end if

18: end for
19: Evaporate the pheromone along the whole

space of states

20: Normalize values of pheromones

21: maxDerivations ←

maxDerivations+ derivationStep

22: end for
23: Establish the default rule in the classifier

24: predictiveAccuracy ← Compute the predictive

accu-racy obtained when running the classifier

built on the test set

25: return predictiveAccuracy

A new list of ants is initialized at the beginning of

each generation, and the algorithm fills this list,

creating the number of ants specified by a parameter.

The states visited by each new ant are stored in the

space of states. Then, the algorithm computes k fitness

values per ant, k being the number of classes in the

data set. Notice that at this point each ant encodes

only the antecedent of a rule because the consequent

has not been assigned yet.

Procedure 1 Ants Creation

Require: maxDerivations

1: Create list path ← {}

2: n ← Initial state

3: Add n to the list path

4: repeat

5: maxDerivations ← maxDerivations − 1

6: n ← Select next movement from space of

states, n being the source node, and

maxDerivations the num-ber of derivations

available

7: Add n to the list path

8: until (n is a final node)

9: ant ← New Ant with its path set to path

10: return ant

Once all ants have been created, these ants along

with the ants assigned to the classifier in the previous

generation will compete in the niching algorithm.

They will try to capture as many instances of the data

set as they can, as explained in Section III-F. Then, a

consequent is assigned to each ant. To conclude the

niching algorithm, the winner ants are assigned to the

classifier, replacing the previous rules.

Afterwards, each ant created in this generation of

the algo-rithm, reinforces the amount of pheromones

of the transitions followed only if it has a fitness

greater than the threshold value. To complete the

generation, an evaporation, and a normaliza-tion

process takes place. The maximum number of

derivations is also incremented by the derivation step.

The creation process of a given ant is described in

Procedure 1. First, the algorithm initializes a new

empty list to store the nodes visited by the new ant.

Then, it creates a new node n that corresponds to the

initial state of the environment and adds this node to

the path list. Following a stepwise approach, the main

loop of the algorithm takes care of selecting the next

movement of the ant from the current state, decreasing

by one the number of derivations that remain

available. It also adds the newly visited state to the list

path. It finishes when a final state is reached and,

therefore, the ant has found a solution. Finally, a new

ant is created from the list of visited states path.

C. Heuristic Measures

Another differentiating factor of GBAP with respect

to ACO algorithms lies in the use of two components

in the heuristic function that cannot be applied

simultaneously. To distinguish which one applies

GBAP, we need to find out which type of transition it

is about, considering two different cases, which we

refer as intermediate transitions (i.e., transitions not

involving production rules that imply the selection of

attributes of the problem domain) and final transitions

(i.e., transitions that suppose the application of

production rules of the type COND=‗operator‘,

‗attribute‘, ‗value‘;).

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 issue 3 March 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 32

D. Fitness Function and Consequent Assignment

The fitness function that GBAP uses in the training

stage to conduct the search process is the Laplace

accuracy. This measure was selected because it suits

well to multiclass. Notice that the number of

idealTokens is always greater or equal than

capturedTokens. Thus, the closer are their values, the

less penalized is the ant (in fact, if

capturedTokens=idealTokens, the ant is not

penalized).Once the k adjusted fitness values have

been calculated, the consequent assigned to each ant

corresponds to the one that reports the best adjusted

fitness. To conclude, individuals that have an adjusted

fitness greater than zero—and consequently cover at

least one instance of the train set—are added to the

classifier.

TABLE II

DATA SETS DESCRIPTION

IV. EXPERIMENTATION

In this section we will first present the data sets used

in the experimental study, along with the

preprocessing actions performed. Then, we explain the

cross validation procedure employed. Finally, the

parameter set-up for the different algorithms

considered in the comparison is presented.

A. Data Sets and Preprocessing

The performance of GBAP was tested on 18

publicly available data sets, both artificial and real-

world, selected from the machine learning repository

of the University of California at Irvine (UCI) . We

have selected problems with a wide range of

dimensionality with respect to the number of classes

and attributes. These data sets are listed in Table II,

where their particular characteristics are also

described.

Due to the fact that the data sets considered

contained numerical attributes and missing values,

two preprocessing actions were performed using

Weka.
2
 A first one entailed the replacement of missing

values with the mode (for nominal attributes) or the

arithmetic mean (for numerical attributes).

Furthermore, the other involved the discretization of

such data sets containing numerical attributes, by

applying Fayyad and Irani‘s discretization algorithm

[54]. The replacement of miss-ing values was done

before partitioning the data set, and the discretization

was applied for each specific training set, using the

same intervals found to discretize the corresponding

test set.

B. Cross Validation

For each data set and algorithm, we performed a

strati-fied tenfold cross-validation procedure, where

we randomly split each data set into ten mutually

exclusive partitions, P1, . . . , P10, containing

approximately the same number ofinstances and the

same proportion of classes present in the original data

set.

In addition, to avoid any chance of obtaining biased

results when evaluating the performance of stochastic

algorithms, ten executions per fold were performed,

using ten different seeds.

C. Algorithms and Parameter Set-Up

For comparison purposes, six other rule induction

algorithms were considered: three ant-based

algorithms, Ant-Miner,
3
 Ant-Miner+,

4
 and

PSO/ACO2,
5
 which were discussed in Section II-A; a

GP algorithm, Bojarczuk-GP , which will be

explained briefly next; and two well-known classi-

fiers, JRIP—the Weka‘s implementation of the

popular sequen-tial covering Repeated Incremental

Pruning to Produce Error Reduction (RIPPER)

algorithm—and PART, which extract rules from the

decision trees generated by the J48 Weka‘s algorithm.

It is worth noting at this point that every algorithm

used in the experimentation was run over the same

discretized partitions of the data sets previously

mentioned, even in the case of those capable of

handling numerical values.

Bojarczuk-GP is a GP algorithm for classification

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 issue 3 March 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 33

rule min-ing that reports good accuracy and

comprehensibility results when applied to medical

data sets. It is a constrained syntax algorithm which

represents the rules by defining a set of func-tions

consisting both of logical operators (AND, OR) and

re-lational operators (=,_=,≤, >). Bojarczuk-GP

follows a mixed individual = rule/rulesetapproach,

where each individualencodes a set of rules in

disjunctive form that predict the same class, and the

classifier generated for a given problem consists of k

individuals, k being the number of classes in the data

set. The genetic operators considered by this algorithm

are crossover and reproduction, so that no mutation is

performed during the evolution.

For each algorithm, excluding GBAP, its user-

defined pa-rameters were set to the values reported by

the authors in the aforementioned references. The

parameter configuration is summarized in Table III.

As it can be observed, GBAP seems to have more

parameters than the other ACO-based algorithms, and

it may be a disadvantage for the final user.

Nevertheless, the other ACO algorithms also have

parameters that are hidden for the final user. For

example, in the paper were Ant-Miner+ was proposed,

the authors describe parameters such as α, β, early

stopping criterion, or param-eters that are implicit to

the MMAS approach followed by this algorihtm—τ0,

τmin and τmax—, but the authors have preset their value

in the code of the algorithm. We could have reduced

the number of user-defined parameters just to four—

numAnts, numGenerations, maxDerivations, and

minCasesPerRule—prefixing the value for the rest of

pa-rameters in the algorithm‘s code to the values

reported in Table III, but this could be also a

disadvantage for a given expert user, because it will

probably be more difficult to harness the power of the

algorithm. Thus, the first four parameters of GBAP

are mandatory, and the other six parameters—

enclosed into square brackets—are optional, having a

default value.

For GBAP, the configuration considered in Table

III was adopted after carrying out a cross-validation

procedure over three data sets (primary-tumor,

hepatitis, and wine), using val-ues from different

ranks for each parameter, and then analyzing which

specific set-up globally reported the best values. It is

worth mentioning that no single combination of

parameter values performed better for all data sets as

expected. Nevertheless, notice that this adopted

configuration should be tuned when classifying a

particular data set.

V. RESULTS AND DISCUSSION

The performance and the understandability of the

model proposed is compared to other classification

algorithms. The aim of this section is to analyze

statistically and interpret the experimental results

obtained. Recall that in DM there is no classification

algorithm that performs better than all others for every

data set, as stated by the no free lunch theorem .

A. Predictive Accuracy Analysis

A first evaluation criterion for the comparison is the

pre-dictive accuracy. Table IV shows average values

for predic-tive accuracy with standard deviation. The

best classification accuracies for each data set are

highlighted in bold typeface. Analyzing the table, it is

possible to realize that GBAP is competitive with

respect to all the other algorithms considered, and it

also obtains the best results on 50% of the data sets

used in the experimentation. In those data sets where

GBAP does not reach the best results, its classification

results are quite competitive. With regard to the

standard deviation values, we can also observe that

GBAP globally yields middling values in terms of

stability.

Though GBAP obtains the best average accuracy

values, we performed the Friedman test with the aim

of comparing the results obtained and analyzing if

there are significant differences between the

classifiers. The Friedman test compares the average

rankings of k algorithms over N data sets. Average

rankings of all the algorithms considered are

summarized at the bottom of Table IV. Looking at

these ranking values, it can be noticed that the lowest

ranking value, i.e., the best global position, is obtained

by our proposal. The computed value for the Friedman

statistic of average rankings distributed according to

the F-distribution with k−1 and (k−1)(N−1) degrees

of free-dom is 8.7404, which is greater than the tabled

critical value at the α= 0.1 significance level, C0=

[0,(FF)0.1,6,102=1.8327]. Thus, we reject the null-

hypothesis that all algorithmsperform equally well

when α= 0.1.

Because of the rejection of the null-hypothesis by

the Friedman test, we proceed with a post-hoc test to

reveal the per-formance differences. Thus, the

performance of GBAP is statistically better than those

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 issue 3 March 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 34

of the PSO/ACO2, Ant-Miner+, Ant-Miner and

Bojarczuk-GP algorithms, because the difference

between their mean rank value and the mean rank of

GBAP is greater than the mentioned critical value.

These results are captured in Fig. 3, where one can

also see that GBAP achieves competitive or even

better accuracy results than PART and JRIP.

Note that both at a significance level of α= 0.05 and

α=0.01, the Friedman test also rejects the null-

hypothesis. In thefirst case, the Bonferroni–Dunn

critical value is 1.8996, so that GBAP is significantly

more accurate than Ant-Miner+, Ant-Miner and GP.

At the α= 0.01 significance level, the Bonferroni–

Dunn critical value is equal to 2.2639 and, there-fore,

GBAP is significantly more accurate than Ant-Miner

and GP. In both cases, GBAP is the control algorithm

and its results are quite competitive or better than the

results obtained by the other algorithms.

To contrast the results obtained after the application

of the Bonferroni–Dunn‘s procedure, we can use the

Holm test, which is more powerful than the first one

and makes no additional assumptions about the

hypotheses tested [59]. The advantage of the

Bonferroni–Dunn test lies in the fact that it is easier to

de-scribe and visualize because it uses the same

critical difference for all comparisons. In turn, the

Holm test is a step-down post-hoc procedure that tests

the hypotheses ordered by significance, comparing

each pi with α/(k−i) from the most significant p value.

Table V shows all the possible hypotheses of

comparison between the control algorithm and the

others, ordered by their p value and associated with

their level of significance α. Tocontrast the results

obtained by the Bonferroni–Dunn method, we applied

the Holm test, which rejects those hypotheses that

have a p value less or equal to 0.025. Thus, at a

significance

TABLE III

PREDICTIVE ACCURACY(%)COMPARATIVE

RESULTS

Fig. 2. Bonferroni–Dunn test. All classifiers whose

ranks are outside the shaded interval have significant

differences with respect to GBAP (p <0.1).

level of α= 0.05, according to the Holm test and

regarding to the predictive accuracy results, GBAP is

statistically better than PSO/ACO2, Ant-Miner+, Ant-

Miner and Bojarczuk-GP algorithms.

TABLE IV

HOLM TABLE FORα= 0.05

B. Comprehensibility Analysis

A second evaluation criterion is the

comprehensibility of the knowledge acquired. In

contrast to predictive accuracy, comprehensibility is a

subjective concept, and it is frequently associated to

the syntactical simplicity of the classifier. Thus, the

smaller the number of rules and the number of

conditions appearing in them, the smaller the

complexity of the classifier.

Table VI summarizes both the classifier‘s rule set

complexity, by the average number of rules found per

data set, and the complexity of the rules, by the

average number of conditions per rule. The last but

one row of the table shows the average ranking value

of each algorithm using the Friedman test with respect

to the number of rules in the classifier, and the last

row does the same for the number of conditions per

rule. In both cases the control algorithm found is GP,

as it has the lowest ranking value.

Before analyzing the results obtained, it is

important to mention that all algorithms except GP

extract rules in the same form, as a conjunction of

conditions. However, GP employs the OR operator,

and due to the tree-based encoding of individuals in

GP, to compute fairly the number of rules and the

number of conditions per rule, for each OR operator it

is necessary to split the rule into two separate rules,

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 issue 3 March 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 35

without considering OR nodes as conditions.

The first statistical analysis is carried out

considering the av-erage number of rules in the output

classifier. At a significance level of α= 0.05 the

application of the Friedman test rejects the null-

hypothesis, because the value of the statistic, 23.4734,

does not belong to the critical interval C0=

[0,(FF)0.05,6,102=2.1888]. To show the significant

differences we applied thepost-hoc Bonferroni–Dunn

test. The Bonferroni–Dunn‘s crit-ical value is 1.8995

when alpha = 0.05, which means that GP, JRIP and

Ant-Miner+ are statistically better than GBAP. In

turn, GBAP does not perform significantly worse than

Ant-Miner, PSO/ACO2 and PART.

Regarding the number of rules in the output

classifier, the best possible result would be to mine

one rule per class, but this may not lead to good

results when the distribution of instances per class is

not located in a definite space region. This can be

observed in the behavior of the GP algorithm, because

it nearly extracts one rule per class and, therefore, it

obtains the best results in this respect. Notice that in

this algorithm, although OR nodes are not considered

to be conditions but a way of join-ing two different

rules predicting the same class, the algorithm tends to

minimize this kind of operator, as it decreases sub-

stantially the simplicity component of the fitness

function, and, therefore, decreases the quality of the

rules mined. In addition, this number of rules may not

be enough for obtaining accurate results in many data

sets, as it can be deduced looking at the accuracy

results obtained by GP algorithm in Section V-A.

TABLE V

RULE SET LENGTH AND RULE COMPLEXITY

COMPARATIVE RESULTS

TABLE VI

AVERAGE RESULTS OF THE ALGORITHMS

perfectly illustrated in the results obtained by the GP

algorithm, as it is the most comprehensible algorithm;

however it obtains the poorest accurate results.

Despite, we can conclude by saying that the GBAP

algorithm presents a good comprehensibility-accuracy

tradeoff, since it is the algorithm that presents the best

ranking in accuracy, though it does not give rise to

bad comprehensibility results, reaching quite

competitive results in this sense, as shown before.

In contrast, by using the niching algorithm

described in Section III-F, GBAP ensures the selection

of the number of rules that are necessary to cover the

examples of each class, also achieving very good

classification results. The second statistical analysis

involved the average num-ber of conditions per rule

measured. To check whether the algorithms present

differences, we applied the Friedman test at the same

significance level considered in the previ-ous study,

α= 0.05. The F-distribution‘s statistic value is

22.0539, which neither belongs to the critical interval

C0=[0, (FF)0.05,6,102 = 2.1888]. Therefore, there are

significantdifferences between the algorithms. The

subsequent application of the Bonferroni–Dunn test

revealed that GBAP performs significantly better than

Ant-Miner+ and PSO/ACO2 in this aspect. Another

conclusion of this test is that GBAP is not

significantly better than GP, Ant-Miner, JRIP and

PART, nei-ther significantly worse than these

algorithms, which is more important.

Regarding this measure, it should be pointed out

that the use of a grammar in GBAP has a benefit

because we can restrict the complexity of each rule by

the number of derivations allowed for such grammar.

Thus, we can arrange a trade-off between rule

complexity and performance, reaching a compromise

(longer rules may report better rules as they can

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 issue 3 March 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 36

TABLE VII

SAMPLE CLASSIFIER ON HEPATITIS DATA SET

discover more complex relationships between

attributes). As seen in Table VII, the GBAP algorithm

is the third-best algorithm in obtaining a small number

of conditions per rule, only beaten by GP and Ant-

Miner. The reason why the GP algorithm obtains the

lowest values of conditions per rule may lie in the fact

that this algorithm considers a simplicity component

in the fitness function, and so the algorithm tries to

minimize this factor. GBAP also takes into account

the complexity of the rules in the reinforcement, as

seen in Section III-E.

Finally, an example of a classifier obtained by

GBAP on a training fold of the hepatitis data set is

shown in Table VIII.

VI. CONCLUSIONS AND FUTURE WORK

In this concept, we have presented a novel ACO-

based au-tomatic programming algorithm guided by a

CFG for multi-class classification. This algorithm,

called GBAP, uses two complementary heuristic

measures that conduct the search process for valid

solutions, and offers as well the opportunity to the

user to modify the complexity of the rules mined by

simply varying the number of derivations allowed for

the grammar. In addition, the niching algorithm

developed, which is responsible for assigning a

consequent to the rules and selecting the rules that

make up the final classifier, avoids the disadvantages

of sequential covering algorithms, because it neither

removes nor rules out examples from the training data

set.

Though GBAP has been originally designed for the

DM classification task, it can also be applied to other

kinds of problems, setting up another way of

evaluating individuals and designing a suitable

grammar for the subject problem.

We have compared GBAP with other representative

rule-induction algorithms: three state-of-the-art

algorithms (Ant-Miner, Ant-Miner+ and PSO/ACO2),

a GP algorithm, and two other industry standard

classifiers (JRIP and PART) over eighteen different

data sets. Non-parametrical statistical methods have

been used to analyze the accuracy and com-

prehensibility of the algorithms to conclude, on the

one hand, that GBAP is statistically more accurate

than PSO/ACO2, Ant-Miner+, Ant-Miner and the GP

algorithm at a significance level of 95%, and that

GBAP is also competitive with JRIP and PART in

terms of accuracy. On the other hand, compre-

hensibility results prove that GBAP is a competitive

classifier in this sense, too. We consider these results

promising, as they demonstrate that AP can be

successfully employed to tackle classification

problems, just as GP has demonstrated in previous

research.

REFERENCES

[1] J. Han and M. Kamber, Data Mining: Concepts and

Techniques. San Mateo, CA: Morgan Kaufman, 2006.

[2] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, ―Machine

learning: A review of classification and combining

techniques,‖ Artif. Intell. Rev., vol. 26, no. 3, pp. 159–190,

Nov. 2006.

[3] H.-J. Huang and C.-N. Hsu, ―Bayesian classification for data

from the same unknown class,‖ IEEE Trans. Syst., Man,

Cybern. B, Cybern., vol. 32, no. 2, pp. 137–145, Apr. 2002.

[4] T.-M. Huang, V. Kecman, and I. Kopriva, ―Support vector

machines in classification and regression–An introduction,‖ in

Kernel Based Al-gorithms for Mining Huge Data Sets:

Supervised, Semi-supervised, and Unsupervised Learning

(Studies in Computational Intelligence). New York: Springer-

Verlag, 2006.

[5] S. Haykin, Neural Networks and Learning Machines, 3rd ed.

Upper Saddle River, NJ: Pearson, 2009.

[6] S. U. Guan and F. Zhu, ―An incremental approach to genetic-

algorithms-based classification,‖ IEEE Trans. Syst., Man,

Cybern. B, Cybern., vol. 35, no. 2, pp. 227–239, Apr. 2005.

[7] K. C. Tan, Q. Yu, C. M. Heng, and T. H. Lee. (2003, Feb.).

Evolutionary computing for knowledge discovery in medical

diagnosis. Artif. Intell. Med. [Online]. 27(2), pp. 129–154.

Available:

http://www.sciencedirect.com/science/article/B6T4K-

47RRWS9-2/2/ 5c8dfaf6e49d194b0c8ed6e2fd1b5117

[8] M. Dorigo and T. Stützle, The Ant Colony Optimization

Meta-

heuristic: Algorithms, Applications and Advances, F. Glover and

G. Kochenberger, Eds. Norwell, MA: Kluwer, 2002, ser. International

Series in Operations Research and Management Science.

[9] M. Dorigo and T. Stützle, The ant colony optimization

metaheuristic: Algorithms, applications and advances,

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium,

Tech. Rep. TR/IRIDIA/2000-32. [Online]. Available:

ftp://iridia.ulb.ac.be/pub/mdorigo/tec.reps/TR.11-

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 issue 3 March 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 37

MetaHandBook.pdf

[10] R. Parpinelli, A. A. Freitas, and H. S. Lopes, ―Data mining

with an ant colony optimization algorithm,‖ IEEE Trans. Evol.

Comput., vol. 6, no. 4,

pp. 321–332, Aug. 2002.

[11] J. R. Koza, Genetic Programming: On the Programming of

Computers by Means of Natural Selection. Cambridge, MA:

MIT Press, 1992.

[12] O. Roux and C. Fonlupt, ―Ant programming: Or how to use

ants for automatic programming,‖ in Proc. ANTS, M. Dorigo

and E. Al, Eds., 2000, pp. 121–129.

[13] P. Espejo, S. Ventura, and F. Herrera, ―A survey on the

application of genetic programming to classification,‖ IEEE

Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 2, pp.

121–144, Mar. 2010.

[14] J. Fürnkranz. (1999, Jan.). Separate-and-conquer rule learning.

Artif. Intell. Rev. [Online]. 13(1), pp. 3–54. Available:

http://portal.acm.org/ citation.cfm?id=309283.309291

[15] E. Bonabeu, T. Eric, and M. Dorigo, Swarm Intelligence:

From Natural to Artificial Systems. New York: Oxford Univ.

Press, 1999.

www.internationaljournalssrg.org

