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Abstract—The extraction of comprehensible 

knowledge is one of the major challenges in many 

domains. In this concept, an ant programming (AP) 

framework, which is capable of mining classification 

rules easily comprehensible by humans, and, 

therefore, capable of supporting expert-domain 

decisions, is presented. The algorithm proposed, 

called grammar based ant programming (GBAP), is 

the first AP algorithm developed for the extraction of 

classification rules, and it is guided by a context-free 

grammar that ensures the creation of new valid 

individuals. To compute the transition probability of 

each available movement, this new model introduces 

the use of two complementary heuristic functions, in-

stead of just one, as typical ant-based algorithms do. 

The selection of a consequent for each rule mined and 

the selection of the rules that make up the classifier 

are based on the use of a niching approach. The 

performance of GBAP is compared against other 

classification techniques on 18 varied data sets. 

Experimental results show that our approach 

produces comprehensible rules and competitive or 

better accuracy values than those achieved by the 

other classification algorithms compared with it. 

 

Index Terms—Ant Colony Optimization (ACO), 

Ant Programming (AP), classification, Data Mining 

(DM), Grammar-Based Automatic Programming 

(GBAP). 

 

I. INTRODUCTION 

 

DATA MINING (DM) involves the process of 

applying specific algorithms for extracting 

comprehensible, nontrivial and useful knowledge from 

data. The discovered knowledgeshould have good 

generalization performance, i.e., it should accurately 

predict the values of some attributes or features of 

data that were not used during the run of the DM 

algorithm. This paper focuses on the classification 

task of DM, whose goal is to predict the value of the 

class given for the values of certain other attributes 

(referred to as the predicting at-tributes). A model or 

classifier is inferred in a training stage by analyzing 

the values of the predicting attributes that describe 

each instance, as well as the class to which each 

instance belongs to. Thus, classification is considered 

to be supervised learning, in contrast to unsupervised 

learning, where instances are unlabeled. Once the 

classifier is built, it can be used later to classify other 

new and uncategorized instances into one of the 

existing classes.A great variety of algorithms and 

techniques have been used to accomplish this task, 

including decision trees [1], decision rules [2], naive 

Bayes [3], support vector machines [4], neural  

networks [5], genetic algorithms [6], etc. In domains 

such as medical diagnosis, financial engineering, 

marketing, etc., where domain experts can use the 

model inferred as a decision-support system, decision 

trees and decision rules are especially interesting. 

These techniques have a high-level representation and, 

therefore, they allow the user to interpret and 

understand the knowledge extracted. For example, in 

medical problems, classification rules can be verified 

by medical experts, thus providing better 

understanding of the problem in-hand [9]. 

 

More recently, ant colony optimization (ACO) [7], 

[8] has successfully carried out the extraction of rule-

based classifiers. ACO is a nature-inspired 

optimization metaheuristic based on the behavior and 

self-organizing capabilities of ant colonies in their 

search for food. The first application of ACO to the 

classification task was the widely spread Ant-Miner 

algorithm, proposed by Parpinellyet al. [10], and it has 

become a bench-mark algorithm in this field. Since 

then, several extensions and modifications of this 

sequential covering algorithm have been presented. 

 

ACO-based automatic programming [11]—which is 

another kind of automatic programming method that 

uses ACO as search technique, has never been 

explored to tackle classification problems.In this 

concept, we first look at the AP works published in 

the literature, to prove that the development of AP 

algorithms and their application to DM is still an 
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unexplored and promising research area. Then, we 

explore the application of an AP algorithm for mining 

classification rules, which takes advantage of the 

inherent ben-efits of both ACO metaheuristic and 

automatic programming. Our proposal can support 

any number of classes, so that it can be easily applied 

to a large variety of data sets, generating a rule-based 

classifier. It aims to construct not only accurate but 

also comprehensible classifiers. In contrast to other 

ACO clas-sification algorithms, our proposal provides 

more expressive power, because the grammar allows 

to control several aspects related to comprehensibility, 

such as the definition of specific operators, the 

specification of the conditions that can appear in rule 

antecedents or how these conditions are connected. 

Moreover, our algorithm lacks the drawbacks of rule 

induction using sequential covering algorithms, as 

Ant-Miner, because it does not rule out examples 

when building the classifier. The remainder of this 

concept is organized as follows. In the next section we 

present some related work on ACO and a brief review 

of AP. In Section III, we describe the proposed 

algorithm. Section IV explains the experiments carried 

out, the data sets used and the algorithm set up. The 

results obtained are discussed in Section V. Finally, 

Section VI presents some concluding remarks. 

 

II. RELATED WORK 

 

In this section, we first present some related work 

on the application of ACO to classification. We then 

provide a review of the various AP algorithms 

published in the literature so far. 

 

A. Ant Colony Optimization 

 

ACO is an agent-based nature-inspired optimization 

meta-heuristic placed into swarm intelligence (SI) . SI 

is concerned with the development of multiagent 

systems inspired by the collective behavior of simple 

agents, e.g., flocks of birds, schools of fish, colonies 

of bacteria or amoeba, or groups of insects living in 

colonies, such as bees, wasps or ants. Specifically, 

ACO bases the design of intelligent multi-agent 

systems on the foraging behavior and organization of 

ant colonies in their search for food, where ants 

communicate between themselves through the 

environment, in an indirect way, by means of a 

chemical substance—pheromone—that they spray 

over the path they follow—phenomenon known as 

stigmergy. The pheromone concentration in a given 

path increases as more ants follow this path, and it 

decreases more quickly as ants fail to travel it, since 

the evaporation in this path becomes greater than the 

reinforcement. The higher is the pheromone level in a 

path, the higher is the probability that a given ant will 

follow this path. 

 

ACO algorithms were initially applied to 

combinatorial optimization problems  finding optimal 

or near optimal solutions. Since then, ACO algorithms 

have been engaged in an increasing range of problem 

domains, and they have also been shown to be 

effective when tackling the classification task of DM . 

The first algorithm that applied ACO to rule and func-

tions, as GP does). Then, each program is evaluated 

and table is updated by evaporation and induction was 

Ant-Miner , and it has become the most referred ACO 

algorithm in this field. It follows a separate-and-

conquer approach where, starting from a training set 

and an empty set of rules, it finds new rules to be 

added to the set of discovered rules. As it discovers 

new rules, it removes those instances of the training 

set that are covered by each new rule, reducing the 

size of the training set. Ant-Miner chooses a new term 

for the current partial rule by applying the transition 

rule, and it only considers including terms that have 

not been previously chosen. It keeps on adding new 

terms to build this rule antecedent until one term from 

each available attribute has been selected, or until 

when selecting any term that is still available, the 

number of training instances covered by the rule is 

reduced below the value specified by the minimum 

cases per rule parameter . 

TABLE 1 

MODIFICATIONS EXTENSIONS OF ANT MINER 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

the original Ant-Miner. For example, Liu et al. [12] 

Many of these extensions imply minor changes, and 

the results obtained are slightly different from the ones 

obtained by presented Ant-Miner2, where they applied 

a much simpler heuristic function, acting on the 
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assumption that pheromone reinforcement has enough 

power to compensate possible errors induced by the 

use of this less effective heuristic measure.  

 

In contrast, Ant-Miner+, proposed by Martens et al. 

[12], demonstrated superior accuracy results than the 

previous Ant-Miner versions. This algorithm defines 

the environment as a directed acyclic graph, which 

allows the selection of better transitions and the 

inclusion of interval rules. It also implements the 

better performing max-min ant system (MMAS) and 

uses a more accurate class-specific heuristic function.  

 

Another key difference of Ant-Miner+ lies in the 

value selected for the heuristic and the pheromone 

exponent parameters—α and β. In fact, it introduces a 

range for each parameter and lets the ants choose 

suitable values in an    autonomous way. 

 

   In addition to these modifications, there are other 

extensions related to the hybridization of ACO with 

other metaheuristics. Among them, we appreciate the 

hybrid particle swarm opti-mization (PSO)—ACO 

algorithm, PSO/ACO2, developed by Holden et al., 

for the discovery of classification rules. PSO is 

another optimization technique positioned among SI, 

and inspired by the social behavior of birds in flocks 

or fish in schools. PSO/ACO2 is also a sequential-

covering algorithm, and it can cope with both 

numerical and nominal attributes.  

 

B. Ant Programming 

 

AP is an automatic programming technique that has 

certain similarities with GP, but rather than using 

genetic algorithms as search technique, it employs 

ACO to search for programs. There are different 

proposals using AP in the literature, which we now 

review, although their application is limited to prob-

lems such as symbolic regression, and no applications 

of AP to classification have been published so far. 
 

The first work that combined the ants paradigm 

with the automatic generation of programs was 

presented by Roux and Fonlupt [12], and it was 

closely related to GP. In fact, their algorithm started 

by creating a random population of programs (trees) 

using the ramped half-and-half initialization method 

and storing a table of pheromones for each node of the 

tree. Each pheromone table holds the amount of 

pheromone associated with all possible elements (also 

named terminals and func-tions, as GP does).These steps 

are repeated until some criteria are satisfied, but notice 

that new populations of programs are generated 

according to the pheromone tables. This approach was 

used to solve symbolic regression problems and a 

multiplexor problem with relative success. 

 

Boryczkaet al  applied AP to solve symbolic 

regression problems, calling their method ant colony 

programming (ACP). They proposed two different 

versions of ACP, known as the expression approach 

and the program approach. In the expression 

approach, the system generates arithmetic ex-

pressions in prefix notation from the path followed by 

the ant in a graph. This graph is defined as G= (N, E) 

where N is the set of nodes, which can represent either 

a variable or an operator, and E is the set of edges, 

each one with a pheromone value. Green et al. [38] 

also presented an AP technique similar to the ACP 

expression approach. In turn, in the program approach 

the nodes in the graph represent assignment 

instructions, and the solution consists of a sequence of 

assignments that evaluate the function. 

 

More recently, Shirakawaet al. [13] proposed 

dynamic ant programming (DAP). Its main difference 

with regard to ACP lies in the use of a dynamically 

changing pheromone table and a variable number of 

nodes, which leads to a more compact space of states. 

The authors only compared the performance of DAP 

against GP using symbolic regression problems. 

 

III. GBAP: GRAMMAR BASED ANT 

PROGRAMMING ALGORITHM 

 

In this section we describe the main features of 

grammar based ant programming (GBAP) algorithm. 

In short, GBAP is an automatic programming 

algorithm that      uses ACO as its search technique 

and which is also guided by a context-free grammar.  

 

The GBAP algorithm has been conceived for 

obtaining a specific classifier arising from a learning 

process over a given training set. The output classifier 

is an ordered rule list in which discovered rules are 

sorted in descending order by their fitness. In case it 

gets to the end of the classifier without any rule 

antecedent covering this new instance, it would be 

classified by the default rule. 

 

As outlined in the following sections, the GBAP 

algorithm cannot be fitted into a typical ACO system. 

Due to the bounding of the pheromone levels to within 
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the interval [τmin, τmax], and to the initialization of all 

edges to the maximum pheromone amount allowed, 

the algorithm with which GBAP shares more 

characteristics may be the MMAS. However, unlike 

how the reinforcement is carried out in GBAP, in 

MMAS, only the best ant is responsible for updating 

pheromone trails. The complexity of MMAS-based 

algorithms is a complex re-search area, which has 

been widely studied and analyzed by Neumann et al.  

 

A. Environment and Rule Encoding 

 

   GBAP prescribes a CFG for representing the 

antecedent of the rule encoded by each individual. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Space of states at a depth of four derivations. 

The sample colored path represents the antecedent 

found by a given ant. 

 

   In an observation like in GP, grammar guided 

systems also   use the terminal and non-terminal 

nomenclature, but here, it refers to the symbols of the 

grammar, rather than to the leaf nodes or 

function/internal nodes of an individual tree represen-

tation in GP. 

In grammar guided GP, the grammar controls the 

creation    of the initial population of individuals, the 

crossover,   mutation, and reproduction processes; in 

contrast with the grammar guided AP, because there 

are no genetic operators    involved, the grammar 

looks after each movement of each ant in such a way 

that each ant will follow a valid path and will find a 

feasible solution to the problem. 

 

Concerning the design of any ant inspired 

algorithm, it is necessary to specify an environment 

where ants cooperate with each other. In GBAP, the 

environment is the search space com-prising all 

possible expressions or programs that can be derived 

from the grammar in the number of derivations 

available. Thus, the environment adopts the shape of a 

derivation tree, as shown in Fig. 1 at a depth of three 

derivations. 

 

Starting with the initial state of the environment, 

which is associated with the start symbol defined by 

the grammar, each ant tries to build a feasible solution 

to the problem. Any solution found takes the form of a 

path from the root node to a final state over the 

derivation tree, as shown in the sample colored path in 

Fig. 2. This path consists of sequence of states, where 

each derivation step is given by applying one of the 

available production rules at that point. A final state 

represented in the figure with a double-border oval—

only contains terminal symbols and, therefore 

represents the evaluatable expression of the antecedent 

of the rule encoded. Although final states encode an 

evaluatable antecedent, fulfilling the properties of an 

artificial ants still have an internal memory to store the 

path to do an offline pheromone update. 

 

Regarding the individual encoding, GBAP follows 

the ant=rule (i.e., individual = rule) approach [13]. As 

aforemen-tioned, when ants have been created, they 

only represent the antecedent of a new rule. The 

consequent will be assigned by following the niching 

approach described later in Section III-D. 

 

B. Algorithm 

 

The main steps of GBAP are detailed in the 

pseudocode of Algorithm 1. It begins by starting up 

the grammar, creating a cardinality table for each 

production rule, and initializing the space of states 

with the initial state. It also creates an empty object 

that represents the classifier, which will contain the 

remaining—winner—ants of the competition that 

takes place in the niching algorithm in each 

generation. The algorithm starts with the minimum 

number of derivations that are necessary to find a 

solution in the space of states and computes the 

derivation step for each generation. Notice that in the 

case of the grammar defined, at least two derivations 

are needed to reach a solution from the initial state, as 

can be seen in Fig. 1.                 

 

Algorithm 1 High Level Pseudocode of GBAP 

 

Require: numGenerations, numAnts, maxDerivations 

1: Initialize grammar and space of states  

2: Create an empty classifier  

3: derivationStep ← ((maxDerivations − 

2)/ numGenerations)  
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4: maxDerivations ← 2  

5: for i = 0 to i = numGenerations inc 1 do  

6: Create list ants ← {}  

7: for j = 0 to j = numAnts inc 1 do  

8: ant ← Create new ant (see Procedure 2)  

9: Store ant‘s path states in the space of states  

10: ant, computing its fitness for each 

available class in the data set  

11: Add ant to the list ants  

12: end for  
13: Niching approach to assign the consequent to 

the ants and to establish the classifier rules 

(see Procedure 3)  

14: for each ant in ants do  

15: if f itness > threshold then  

16: Update pheromone rate in the path 

followed by  

ant proportionally to its fitness and 

inversely proportional to its path‘s 

length 

17: end if  

18: end for  
19: Evaporate the pheromone along the whole 

space of states  

20: Normalize values of pheromones  

21: maxDerivations ← 

maxDerivations+ derivationStep  

22: end for  
23: Establish the default rule in the classifier  

24: predictiveAccuracy ← Compute the predictive 

accu-racy obtained when running the classifier 

built on the test set  

25: return predictiveAccuracy  

 

 

A new list of ants is initialized at the beginning of 

each generation, and the algorithm fills this list, 

creating the number of ants specified by a parameter. 

The states visited by each new ant are stored in the 

space of states. Then, the algorithm computes k fitness 

values per ant, k being the number of classes in the 

data set. Notice that at this point each ant encodes 

only the antecedent of a rule because the consequent 

has not been assigned yet. 

 

 

Procedure 1 Ants Creation 

 

Require: maxDerivations 

1: Create list path ← {}  

2: n ← Initial state  

3: Add n to the list path  

4: repeat  

5: maxDerivations ← maxDerivations − 1  

6: n ← Select next movement from space of 

states, n being the source node, and 

maxDerivations the num-ber of derivations 

available  

7: Add n to the list path  

8: until (n is a final node)  

9: ant ← New Ant with its path set to path  

10: return ant  

 

 

Once all ants have been created, these ants along 

with the ants assigned to the classifier in the previous 

generation will compete in the niching algorithm. 

They will try to capture as many instances of the data 

set as they can, as explained in Section III-F. Then, a 

consequent is assigned to each ant. To conclude the 

niching algorithm, the winner ants are assigned to the 

classifier, replacing the previous rules. 

Afterwards, each ant created in this generation of 

the algo-rithm, reinforces the amount of pheromones 

of the transitions followed only if it has a fitness 

greater than the threshold value. To complete the 

generation, an evaporation, and a normaliza-tion 

process takes place. The maximum number of 

derivations is also incremented by the derivation step. 

 

The creation process of a given ant is described in 

Procedure 1. First, the algorithm initializes a new 

empty list to store the nodes visited by the new ant. 

Then, it creates a new node n that corresponds to the 

initial state of the environment and adds this node to 

the path list. Following a stepwise approach, the main 

loop of the algorithm takes care of selecting the next 

movement of the ant from the current state, decreasing 

by one the number of derivations that remain 

available. It also adds the newly visited state to the list 

path. It finishes when a final state is reached and, 

therefore, the ant has found a solution. Finally, a new 

ant is created from the list of visited states path. 

 

C. Heuristic Measures 

 

Another differentiating factor of GBAP with respect 

to ACO algorithms lies in the use of two components 

in the heuristic function that cannot be applied 

simultaneously. To distinguish which one applies 

GBAP, we need to find out which type of transition it 

is about, considering two different cases, which we 

refer as intermediate transitions (i.e., transitions not 

involving production rules that imply the selection of 

attributes of the problem domain) and final transitions 

(i.e., transitions that suppose the application of 

production rules of the type COND=‗operator‘, 

‗attribute‘, ‗value‘;). 
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D. Fitness Function and Consequent Assignment 

 

The fitness function that GBAP uses in the training 

stage to conduct the search process is the Laplace 

accuracy. This measure was selected because it suits 

well to multiclass. Notice that the number of 

idealTokens is always greater or equal than 

capturedTokens. Thus, the closer are their values, the 

less penalized is the ant (in fact, if 

capturedTokens=idealTokens, the ant is not 

penalized).Once the k adjusted fitness values have 

been calculated, the consequent assigned to each ant 

corresponds to the one that reports the best adjusted 

fitness. To conclude, individuals that have an adjusted 

fitness greater than zero—and consequently cover at 

least one instance of the train set—are added to the 

classifier. 

TABLE II 

DATA SETS DESCRIPTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. EXPERIMENTATION 

 

In this section we will first present the data sets used 

in the experimental study, along with the 

preprocessing actions performed. Then, we explain the 

cross validation procedure employed. Finally, the 

parameter set-up for the different algorithms 

considered in the comparison is presented. 

 

A. Data Sets and Preprocessing 

 

The performance of GBAP was tested on 18 

publicly available data sets, both artificial and real-

world, selected from the machine learning repository 

of the University of California at Irvine (UCI) . We 

have selected problems with a wide range of 

dimensionality with respect to the number of classes 

and attributes. These data sets are listed in Table II, 

where their particular characteristics are also 

described. 

 

Due to the fact that the data sets considered 

contained numerical attributes and missing values, 

two preprocessing actions were performed using 

Weka.
2
 A first one entailed the replacement of missing 

values with the mode (for nominal attributes) or the 

arithmetic mean (for numerical attributes). 

Furthermore, the other involved the discretization of 

such data sets containing numerical attributes, by 

applying Fayyad and Irani‘s discretization algorithm 

[54]. The replacement of miss-ing values was done 

before partitioning the data set, and the discretization 

was applied for each specific training set, using the 

same intervals found to discretize the corresponding 

test set. 

 

B. Cross Validation 

For each data set and algorithm, we performed a 

strati-fied tenfold cross-validation procedure, where 

we randomly split each data set into ten mutually 

exclusive partitions, P1, . . . , P10, containing 

approximately the same number ofinstances and the 

same proportion of classes present in the original data 

set.  

 

In addition, to avoid any chance of obtaining biased 

results when evaluating the performance of stochastic 

algorithms, ten executions per fold were performed, 

using ten different seeds. 

 

C. Algorithms and Parameter Set-Up 

 

For comparison purposes, six other rule induction 

algorithms were considered: three ant-based 

algorithms, Ant-Miner,
3
 Ant-Miner+,

4
 and 

PSO/ACO2,
5
 which were discussed in Section II-A; a 

GP algorithm, Bojarczuk-GP , which will be 

explained briefly next; and two well-known classi-

fiers, JRIP—the Weka‘s implementation of the 

popular sequen-tial covering Repeated Incremental 

Pruning to Produce Error Reduction (RIPPER) 

algorithm—and PART, which extract rules from the 

decision trees generated by the J48 Weka‘s algorithm. 

It is worth noting at this point that every algorithm 

used in the experimentation was run over the same 

discretized partitions of the data sets previously 

mentioned, even in the case of those capable of 

handling numerical values. 

 

Bojarczuk-GP is a GP algorithm for classification 
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rule min-ing that reports good accuracy and 

comprehensibility results when applied to medical 

data sets. It is a constrained syntax algorithm which 

represents the rules by defining a set of func-tions 

consisting both of logical operators (AND, OR) and 

re-lational operators (=,_=,≤, >). Bojarczuk-GP 

follows a mixed individual = rule/rulesetapproach, 

where each individualencodes a set of rules in 

disjunctive form that predict the same class, and the 

classifier generated for a given problem consists of k 

individuals, k being the number of classes in the data 

set. The genetic operators considered by this algorithm 

are crossover and reproduction, so that no mutation is 

performed during the evolution.  

 

For each algorithm, excluding GBAP, its user-

defined pa-rameters were set to the values reported by 

the authors in the aforementioned references. The 

parameter configuration is summarized in Table III. 

As it can be observed, GBAP seems to have more 

parameters than the other ACO-based algorithms, and 

it may be a disadvantage for the final user. 

Nevertheless, the other ACO algorithms also have 

parameters that are hidden for the final user. For 

example, in the paper were Ant-Miner+ was proposed, 

the authors describe parameters such as α, β, early 

stopping criterion, or param-eters that are implicit to 

the MMAS approach followed by this algorihtm—τ0, 

τmin and τmax—, but the authors have preset their value 

in the code of the algorithm. We could have reduced 

the number of user-defined parameters just to four—

numAnts, numGenerations, maxDerivations, and 

minCasesPerRule—prefixing the value for the rest of 

pa-rameters in the algorithm‘s code to the values 

reported in Table III, but this could be also a 

disadvantage for a given expert user, because it will 

probably be more difficult to harness the power of the 

algorithm. Thus, the first four parameters of GBAP 

are mandatory, and the other six parameters—

enclosed into square brackets—are optional, having a 

default value. 

 

For GBAP, the configuration considered in Table 

III was adopted after carrying out a cross-validation 

procedure over three data sets (primary-tumor, 

hepatitis, and wine), using val-ues from different 

ranks for each parameter, and then analyzing which 

specific set-up globally reported the best values. It is 

worth mentioning that no single combination of 

parameter values performed better for all data sets as 

expected. Nevertheless, notice that this adopted 

configuration should be tuned when classifying a 

particular data set. 

 

V. RESULTS AND DISCUSSION 

 

The performance and the understandability of the 

model proposed is compared to other classification 

algorithms. The aim of this section is to analyze 

statistically and interpret the experimental results 

obtained. Recall that in DM there is no classification 

algorithm that performs better than all others for every 

data set, as stated by the no free lunch theorem . 

 

A. Predictive Accuracy Analysis 

 

A first evaluation criterion for the comparison is the 

pre-dictive accuracy. Table IV shows average values 

for predic-tive accuracy with standard deviation. The 

best classification accuracies for each data set are 

highlighted in bold typeface. Analyzing the table, it is 

possible to realize that GBAP is competitive with 

respect to all the other algorithms considered, and it 

also obtains the best results on 50% of the data sets 

used in the experimentation. In those data sets where 

GBAP does not reach the best results, its classification 

results are quite competitive. With regard to the 

standard deviation values, we can also observe that 

GBAP globally yields middling values in terms of 

stability. 

 

Though GBAP obtains the best average accuracy 

values, we performed the Friedman test with the aim 

of comparing the results obtained and analyzing if 

there are significant differences between the 

classifiers. The Friedman test compares the average 

rankings of k algorithms over N data sets. Average 

rankings of all the algorithms considered are 

summarized at the bottom of Table IV. Looking at 

these ranking values, it can be noticed that the lowest 

ranking value, i.e., the best global position, is obtained 

by our proposal. The computed value for the Friedman 

statistic of average rankings distributed according to 

the F-distribution with k−1 and (k−1)(N−1) degrees 

of free-dom is 8.7404, which is greater than the tabled 

critical value at the α= 0.1 significance level, C0= 

[0,(FF)0.1,6,102=1.8327]. Thus, we reject the null-

hypothesis that all algorithmsperform equally well 

when α= 0.1. 

 

Because of the rejection of the null-hypothesis by 

the Friedman test, we proceed with a post-hoc test to 

reveal the per-formance differences. Thus, the 

performance of GBAP is statistically better than those 
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of the PSO/ACO2, Ant-Miner+, Ant-Miner and 

Bojarczuk-GP algorithms, because the difference 

between their mean rank value and the mean rank of 

GBAP is greater than the mentioned critical value. 

These results are captured in Fig. 3, where one can 

also see that GBAP achieves competitive or even 

better accuracy results than PART and JRIP. 

 

Note that both at a significance level of α= 0.05 and 

α=0.01, the Friedman test also rejects the null-

hypothesis. In thefirst case, the Bonferroni–Dunn 

critical value is 1.8996, so that GBAP is significantly 

more accurate than Ant-Miner+, Ant-Miner and GP. 

At the α= 0.01 significance level, the Bonferroni–

Dunn critical value is equal to 2.2639 and, there-fore, 

GBAP is significantly more accurate than Ant-Miner 

and GP. In both cases, GBAP is the control algorithm 

and its results are quite competitive or better than the 

results obtained by the other algorithms. 

To contrast the results obtained after the application 

of the Bonferroni–Dunn‘s procedure, we can use the 

Holm test, which is more powerful than the first one 

and makes no additional assumptions about the 

hypotheses tested [59]. The advantage of the 

Bonferroni–Dunn test lies in the fact that it is easier to 

de-scribe and visualize because it uses the same 

critical difference for all comparisons. In turn, the 

Holm test is a step-down post-hoc procedure that tests 

the hypotheses ordered by significance, comparing 

each pi with α/(k−i) from the most significant p value. 

Table V shows all the possible hypotheses of 

comparison between the control algorithm and the 

others, ordered by their p value and associated with 

their level of significance α. Tocontrast the results 

obtained by the Bonferroni–Dunn method, we applied 

the Holm test, which rejects those hypotheses that 

have a p value less or equal to 0.025. Thus, at a 

significance 

 

TABLE III 

PREDICTIVE ACCURACY(%)COMPARATIVE 

RESULTS  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Fig. 2. Bonferroni–Dunn test. All classifiers whose 

ranks are outside the shaded interval have significant 

differences with respect to GBAP (p <0.1). 

level of α= 0.05, according to the Holm test and 

regarding to the predictive accuracy results, GBAP is 

statistically better than PSO/ACO2, Ant-Miner+, Ant-

Miner and Bojarczuk-GP algorithms. 

TABLE  IV 

HOLM TABLE FORα= 0.05 

 

 

 

 

 

 

 

B. Comprehensibility Analysis 

 

A second evaluation criterion is the 

comprehensibility of the knowledge acquired. In 

contrast to predictive accuracy, comprehensibility is a 

subjective concept, and it is frequently associated to 

the syntactical simplicity of the classifier. Thus, the 

smaller the number of rules and the number of 

conditions appearing in them, the smaller the 

complexity of the classifier. 

 

Table VI summarizes both the classifier‘s rule set 

complexity, by the average number of rules found per 

data set, and the complexity of the rules, by the 

average number of conditions per rule. The last but 

one row of the table shows the average ranking value 

of each algorithm using the Friedman test with respect 

to the number of rules in the classifier, and the last 

row does the same for the number of conditions per 

rule. In both cases the control algorithm found is GP, 

as it has the lowest ranking value. 

 

Before analyzing the results obtained, it is 

important to mention that all algorithms except GP 

extract rules in the same form, as a conjunction of 

conditions. However, GP employs the OR operator, 

and due to the tree-based encoding of individuals in 

GP, to compute fairly the number of rules and the 

number of conditions per rule, for each OR operator it 

is necessary to split the rule into two separate rules, 
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without considering OR nodes as conditions. 

 

The first statistical analysis is carried out 

considering the av-erage number of rules in the output 

classifier. At a significance level of α= 0.05 the 

application of the Friedman test rejects the null-

hypothesis, because the value of the statistic, 23.4734, 

does not belong to the critical interval C0= 

[0,(FF)0.05,6,102=2.1888]. To show the significant 

differences we applied thepost-hoc Bonferroni–Dunn 

test. The Bonferroni–Dunn‘s crit-ical value is 1.8995 

when alpha = 0.05, which means that GP, JRIP and 

Ant-Miner+ are statistically better than GBAP. In 

turn, GBAP does not perform significantly worse than 

Ant-Miner, PSO/ACO2 and PART. 

 

Regarding the number of rules in the output 

classifier, the best possible result would be to mine 

one rule per class, but this may not lead to good 

results when the distribution of instances per class is 

not located in a definite space region. This can be 

observed in the behavior of the GP algorithm, because 

it nearly extracts one rule per class and, therefore, it 

obtains the best results in this respect. Notice that in 

this algorithm, although OR nodes are not considered 

to be conditions but a way of join-ing two different 

rules predicting the same class, the algorithm tends to 

minimize this kind of operator, as it decreases sub-

stantially the simplicity component of the fitness 

function, and, therefore, decreases the quality of the 

rules mined. In addition, this number of rules may not 

be enough for obtaining accurate results in many data 

sets, as it can be deduced looking at the accuracy 

results obtained by GP algorithm in Section V-A. 

 

TABLE  V 

RULE SET LENGTH AND RULE COMPLEXITY 

COMPARATIVE RESULTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE  VI 

 

AVERAGE RESULTS OF THE ALGORITHMS 

 

 

 

 

 

 

 

perfectly illustrated in the results obtained by the GP 

algorithm, as it is the most comprehensible algorithm; 

however it obtains the poorest accurate results. 

Despite, we can conclude by saying that the GBAP 

algorithm presents a good comprehensibility-accuracy 

tradeoff, since it is the algorithm that presents the best 

ranking in accuracy, though it does not give rise to 

bad comprehensibility results, reaching quite 

competitive results in this sense, as shown before. 

 

In contrast, by using the niching algorithm 

described in Section III-F, GBAP ensures the selection 

of the number of rules that are necessary to cover the 

examples of each class, also achieving very good 

classification results. The second statistical analysis 

involved the average num-ber of conditions per rule 

measured. To check whether the algorithms present 

differences, we applied the Friedman test at the same 

significance level considered in the previ-ous study, 

α= 0.05. The F-distribution‘s statistic value is 

22.0539, which neither belongs to the critical interval 

C0=[0, (FF )0.05,6,102 = 2.1888]. Therefore, there are 

significantdifferences between the algorithms. The 

subsequent application of the Bonferroni–Dunn test 

revealed that GBAP performs significantly better than 

Ant-Miner+ and PSO/ACO2 in this aspect. Another 

conclusion of this test is that GBAP is not 

significantly better than GP, Ant-Miner, JRIP and 

PART, nei-ther significantly worse than these 

algorithms, which is more important. 

 

Regarding this measure, it should be pointed out 

that the use of a grammar in GBAP has a benefit 

because we can restrict the complexity of each rule by 

the number of derivations allowed for such grammar. 

Thus, we can arrange a trade-off between rule 

complexity and performance, reaching a compromise 

(longer rules may report better rules as they can 
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TABLE  VII 

SAMPLE CLASSIFIER ON HEPATITIS DATA SET 

 

 

 

 

 

 

 

 

 

 

 

 

discover more complex relationships between 

attributes). As seen in Table VII, the GBAP algorithm 

is the third-best algorithm in obtaining a small number 

of conditions per rule, only beaten by GP and Ant-

Miner. The reason why the GP algorithm obtains the 

lowest values of conditions per rule may lie in the fact 

that this algorithm considers a simplicity component 

in the fitness function, and so the algorithm tries to 

minimize this factor. GBAP also takes into account 

the complexity of the rules in the reinforcement, as 

seen in Section III-E. 

 

Finally, an example of a classifier obtained by 

GBAP on a training fold of the hepatitis data set is 

shown in Table VIII. 

 

VI. CONCLUSIONS AND FUTURE WORK 

 

In this concept, we have presented a novel ACO-

based au-tomatic programming algorithm guided by a 

CFG for multi-class classification. This algorithm, 

called GBAP, uses two complementary heuristic 

measures that conduct the search process for valid 

solutions, and offers as well the opportunity to the 

user to modify the complexity of the rules mined by 

simply varying the number of derivations allowed for 

the grammar. In addition, the niching algorithm 

developed, which is responsible for assigning a 

consequent to the rules and selecting the rules that 

make up the final classifier, avoids the disadvantages 

of sequential covering algorithms, because it neither 

removes nor rules out examples from the training data 

set. 

 

Though GBAP has been originally designed for the 

DM classification task, it can also be applied to other 

kinds of problems, setting up another way of 

evaluating individuals and designing a suitable 

grammar for the subject problem. 

 

We have compared GBAP with other representative 

rule-induction algorithms: three state-of-the-art 

algorithms (Ant-Miner, Ant-Miner+ and PSO/ACO2), 

a GP algorithm, and two other industry standard 

classifiers (JRIP and PART) over eighteen different 

data sets. Non-parametrical statistical methods have 

been used to analyze the accuracy and com-

prehensibility of the algorithms to conclude, on the 

one hand, that GBAP is statistically more accurate 

than PSO/ACO2, Ant-Miner+, Ant-Miner and the GP 

algorithm at a significance level of 95%, and that 

GBAP is also competitive with JRIP and PART in 

terms of accuracy. On the other hand, compre-

hensibility results prove that GBAP is a competitive 

classifier in this sense, too. We consider these results 

promising, as they demonstrate that AP can be 

successfully employed to tackle classification 

problems, just as GP has demonstrated in previous 

research. 
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