
 SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 5–May 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 43

 Evolution of Incremental Map Reduce

Technique in Web Mining

 R.Shanthini
#1

, D.Vinotha
*2

PG student, Assistant Professor

Department of Computer Science, PRIST University College, Tamilnadu, India

Abstract- Big Data concern large-volume,

complex, growing data sets with multiple,

autonomous sources in a website for fast

development of networking, data storage. The data

mining is a computation process of discover large

sets of data’s. It extract information from website

based on the URL generations and transform into

understandable structure for further user. The Map

Reduce programming model is widely used for

large scale and one-time data-intensive distributed

computing, but lacks flexibility and efficiency of

processing small incremental data. So the data

mining concept not efficient perform of large

volume of data and increase the time frame

process. MRB graph input and Delta graph input

provide the updating graph MRB Graph. And the

cache process decreases the time in a main

memory. The final phase using the I2 MAP reduce

is using to search a website in shortest path way

from the servers by depending on user search

information and using extracting techniques The I2

reduce function of Updated MRB Graph the cache

process decreases the Time based on map shuffle

sort and merge process.

Keywords- Incremental processing, MapReduce,

iterative computation, big data

I. INTRODUCTION

 These days huge amount of digital data is being

gathered in many important areas, including e-

commerce, social network, finance, health care,

education, and environment. It has become

increasingly popular to mine such big data in order

to gain insights to help business decisions or to

afford better personalized, higher quality services.

In recent years, a large number of computing

frameworks have been established for big data

analysis. Among these frameworks, MapReduce

(with its open-source implementations, such as

Hadoop) is the most widely used in production

because of its simplicity, generality, and maturity.

We focus on improving MapReduce in this paper.

 Big data technology is constantly developing.

As new data and updates are being collected, the

input data of a big data mining algorithm will

gradually change, and the computed results will

become stale and obsolete over time. In many

circumstances, it is desirable to periodically refresh

the mining computation in order to keep the mining

results up-to-date. For example, the PageRank

algorithm computes ranking scores of web pages

based on the web graph structure for auxiliary web

search. However, the web graph structure is

constantly evolving; Web pages and hyper-links

are created, deleted, and updated. As the underlying

web graph evolves, the PageRank ranking results

gradually become stale, potentially lowering the

quality of web search. Therefore, it is desirable to

refresh the PageRank computation frequently.

 Fig. 1. MapReduce Computation

 II. MapReducing Phases

In this paper various provable MapReducing

phasing are discussed.

A. URL Generations

First phase of URL Generations problem the of

extracting the templates from a collection of

heterogeneous websites, which are generated for

the process for the data mining. In this the

problem of generating the website such that the

URL provided to the mining process for the map

reduce task, and thus, the correctness of extracted

website depends on the quality of data mining

process. The web mining technique for URL

normalization is proposed in this paper. Based on

www.internationaljournalssrg.org

 SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 5–May 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 44

the URL, the mining is directly to fetch the data

from website.

B. Content Extractions

In this phase, While the content extractions

program is directed toward extraction of

information from website sources. The objective of

the CE program is to develop technology to

automatically infer from the human language data

to entities being mentioned, the relations among

these entities that are directly expressed from the

website, and the events in which these entities

participate. Data sources include audio and image

data in addition to pure text, in English. The effort

involves to defining the research tasks in detail,

collecting and annotating data needed for training,

development, and mining evaluation.

C. I2 Map Reducing

In this phase, The Mapreduce using shortest path of

information retrieval from a collection of server.

Map reduce task based on merge, shuffling, sort,

MRB graph and Delta MRB graph. MRB Graph

edges are the fine-grain states that we would like to

preserve for incremental processing. The shuffling

phase groups the edge weights by the destination

vertex. I2 Map Reduce expects delta input data that

contains the newly inserted, deleted, or modified

pairs as the input to incremental processing. Both

the initial MRB graph and delta value can be

merged updated MRB graph value.

D. Efficient Retrieval Result

In this phase, we investigate constrained map

reduce in a large-scale unstructured distributed

environment. Map reduce task prediction based on

the MRB Graph and Delta graph. This process is

based on the phase of map and reduce task. It holds

the corresponding value based on the edge weights

of the map reduce. The Intermediate results are

shuffled to reduce tasks according to a partition

functions. After a Reduce task obtains then merges

intermediate results from all Map Tasks, it invokes

the Reduce function on each to generate the final

output.

III. INCREMENTAL

ITERATIVE COMPUTATION

SCHEMES

The In this section, we present incremental

processing techniques for iterative computation.

Note that it is not sufficient to simply combine

the above solutions for incremental one step

processing and iterative computation. In below,

we discuss aspects of this process address in

order to attain an operational design.

A. Incremental Scheme

 Consider a series of jobs A1...Ai... that

incrementally refresh the results of an iterative

algorithm. Arriving fresh data and updates change

the problem structure. Consequently, structure data

develops across subsequent jobs. Intimate a job,

however, structure data stays constant, but state

data is iteratively updated and converges to a fixed

point. These kind of data must be handled in a

different way when starting an incremental iterative

job:

 Delta structured data. We partition the new data

and updates based on Equation, and generate a

delta structure input file per partition.

 Previously converged state data for job Ai, we

choose to use the converged state data Di1 from job

Ai1, rather than the random initial state D0 (e.g.,

random centroids in K means) for two reasons.

First, computed by Ai because there are often only

slight changes in the input data. Hence, Ai may

converge to Di much faster from Di1 than from D0.

Second, only the states in the last iteration of Ai1

need to be saved. Incase D0 were used, the system

would have to save the states of every iteration in

Ai1 in order to incrementally process the

corresponding iteration in Ai. Thus, our choice can

expressively speed up convergence, and reduce the

time and space overhead for saving states.

 Fig. 3. Architecture

www.internationaljournalssrg.org

 SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 5–May 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 45

B. Fault-Tolerance

Vanilla Map Reduce carry over the failed

Map/Reduce task in case task failure is identified.

However, the interdependency of prime Reduce

tasks and prime Map tasks in Incremental Map

Reduce entails more complicated fault-tolerance

solution. Incremental Map Reduce checkpoints the

prime Reduce task’s output state data and MRB

Graph file on HDFS in every iteration.

IV. CONCLUSION

This paper described Incremental Map Reduce

Technique, a Map Reduce-based framework for

incremental big data processing. Incremental Map

Reduce Technique combines a fine-grain

incremental engine, a general-purpose iterative

model, and a set of effective techniques for

incremental iterative computation. Real-machine

experiments shows that Incremental Map Reduce

Technique can significantly reduce the run time for

refreshing big data mining results compared to re-

computation on both plain and iterative Map

Reduce.

 ACKNOWLEDGMENTS

The Part of this paper has regarded in [1]. This new

version contains giant revision with new algorithm

designs, evaluation, proofs, and simulation effects.

 REFERENCES
[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data

processing on large clusters,” in Proc. 6th Conf. Symp.
Opear. Syst. Des. Implementation, 2004, p. 10.

[2] Harikrishnan Natarajan, SSRG-IJCSE pp 2-3. Truthful
bidding for cloud resources based on compettitve cloud
auction, costing and depreciation , Volume 3, Issue 3,
March 2016 .

[3] Avilash Roul E, SSRG-IJCSE pp 3-4,pricing method in
cloud computing, Volume 3, Issue 1, January 2016.

[4] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.
McCauley, M. J. Franklin, S. Shenker, and I. Stoica,
“Resilient distributed datasets: A fault-tolerant abstraction
for, in-memory cluster computing,” in Proc. 9th USENIX
Conf. Netw. Syst. Des. Implementation, 2012, p. 2.

[5] R. Power and J. Li, “Piccolo: Building fast, distributed
programs with partitioned tables,” in Proc. 9th USENIX
Conf. Oper. Syst. Des. Implementation, 2010, pp. 1–14.

[6] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I.
Horn, N. Leiser, and G. Czajkowski, “Pregel: A system for
large-scale graph processing,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2010, pp. 135–146.

[7] S. R. Mihaylov, Z. G. Ives, and S. Guha, “Rex: Recursive,
deltabased data-centric computation,” in Proc. VLDB
Endowment, 2012, vol. 5, no. 11, pp. 1280–1291.

[8] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein, “Distributed graphlab: A framework
for machine learning and data mining in the cloud,” in
Proc. VLDB Endowment, 2012, vol. 5, no. 8, pp. 716–727.

[9] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl,
“Spinning fast iterative data flows,” in Proc. VLDB
Endowment, 2012, vol. 5, no. 11, pp. 1268–1279.

[10] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst,
“Haloop: Efficient iterative data processing on large
clusters,” in Proc. VLDB Endowment, 2010, vol. 3, no. 1–
2, pp. 285–296.

www.internationaljournalssrg.org

