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Abstract —   

The output of the system is a sequence of actions in 

some applications. There is no such measure as the 

best action in any in-between state; an action is 

excellent if it is part of a good policy. A single action 

is not important; the policy is important that is the 

sequence of correct actions to reach the goal.  To be 

able to generate a policy the machine learning 

programs should able to assess the quality of policies 

and learn from past good action sequences.  Learning 

is the basic capacity of intelligent agents. An agent 

changes its behaviour based on its previous 

experiences through learning. An intelligent agent 

must be formalized by knowledge and be able to act 

on this knowledge. In many single-agent systems for 

learning the policy of an agent in uncertain 

environments, the reinforcement learning techniques 

have been applied successfully. Many existing single-

agent models for sequential decision making are 

derived from a general model and are distinguished 

by assumptions. Q-learning algorithms are used for 

this purpose. Single agent learning model is given in 

this paper.  Four single agent reinforcement learning 

algorithms are implemented and results are compared. 

Single agent Q-learning Algorithm and Sarsa 

Learning Algorithm gives some results for the 

problem. However adding eligibility traces in single 

agent learning algorithms i.e. Q(λ) learning and 

Sarsa(λ) learning gives performs better than the 

previous algorithms. The paper shows the results of 

all four algorithms and performance comparisons 

among them.  

 

 
Keywords — Q-learning, Reinforcement learning, 

Sarsa Learning, Single Agent 

I. INTRODUCTION   

Consider the example market chain that has 

hundreds of stores all over a country selling thousands 

of goods to millions of customers. The point of sale 

terminals record the details of each transaction i.e. 

date, customer identification code, goods bought and 

their amount, total money spent and so forth. This 

typically generates gigabytes of data every day. What 

the market chain wants is to be able to predict who are 

the likely customers for a product. Again, the 

algorithm for this is not evident; it changes over time 

and by geographic location. If stored data is analyzed 

and turned into information then it becomes useful so 

that we can make use of an example to make 

predictions[1].  

We do not know exactly which people are likely 

to buy this product, or another product. We would not 

need any analysis of the data if we know it already. 

But because we do not know, we can only collect data 

and hope to extract the answers to questions from 

data.  

We do believe that there is a process that explains 

the data we observe. Though we do not know the 

details of the process underlying the generation of data 

– for example, customer behavior - we know that it is 

not completely random. People do not go to markets 

and buy things at random.  

When they buy beer, they buy chips; they buy ice 

cream in summer and spices for Wine in winter. There 

are certain patterns in the data. We may not be able to 

recognize the process completely, but still we can 

construct a good and useful approximation. That 

approximation may not explain everything, but may 

still be able to account for some part of the data. 

Though identifying the complete process may not be 

possible, but still patterns or regularities can be 

detected.  

Such patterns may help us to understand the process, 

or make predictions. Assuming that the near future 

will not be much different from the past and future 

predictions can also be expected to be right.  

There are many real world problems that involve 

more than one entity for maximization of an outcome.  

For example, consider a scenario of retail shops in 

which shop A sales clothes, shop B sales jewelry, shop 

C sales footwear and wedding house D. In order to 

build a single system to automate (certain aspects of) 

the marketing process, the internals of all shops A, B, 

C, and D can be modeled. The only feasible solution is 
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to allow the various stores to create their own policies 

that accurately represent their goals and interests. 

They must then be combined into the system with the 

aid of some of the techniques. The goal of each shop 

is to maximize the profit by an increase in sale i.e. 

yield maximization. Different parameters need to be 

considered in this: variation in seasons, the 

dependency of items, special schemes, discount, 

market conditions etc. Different shops can cooperate 

with each other for yield maximization in different 

situations. Several independent tasks that can be 

handled by separate agents could benefit from 

cooperative nature of agents[2]. 

Another example of a domain that requires 

cooperative learning is hospital scheduling. It requires 

different agents to represent the regard of different 

people within the hospital. Hospital employees have a 

different outlook. X-ray operators may want to 

maximize the throughput on their machines. Nurses in 

the hospital may want to minimize the patient’s time 

in the hospital.  Since different people examine 

candidate with different criteria, they must be 

represented by cooperative agents.   The output of the 

system is a sequence of actions in some applications. 

There is no such measure as the best action in any in-

between state; an action is excellent if it is part of a 

good policy[3]. A single action is not important; the 

policy is important that is the sequence of correct 

actions to reach the goal.  To be able to generate a 

policy the machine learning programs should able to 

assess the quality of policies and learn from past good 

action sequences[4]. This paper is organized as 

Section II gives the concept of single agent learning, 

Section III describes Q-learning algorithm, Section IV 

gives the description about eligibility traces to be 

added in learning algorithm. Sarsa learning algorithm 

is given in Section V and Section VI describes 

experimental setup. Section VII put up the result 

comparisons of all four algorithms and finally 

concluding remark with the future scope.  

II. SINGLE AGENT LEARNING 

Learning is the basic capacity of intelligent agents. 

An agent changes its behaviour based on its previous 

experiences through learning. An intelligent agent 

must be formalized by knowledge and be able to act 

on this knowledge. In many single-agent systems for 

learning the policy of an agent in uncertain 

environments, the reinforcement learning techniques 

have been applied successfully[5].   

It is possible to treat a multiagent system as a 

`large’ single agent to learn the optimal joint policy 

using standard single-agent reinforcement learning 

methods. However, both the state and action space 

size exponentially with the number of agents. 

Representation this approach is infeasible for most 

problems. Reinforcement learning techniques are 

mainly helpful in the field where reinforcement 

information (expressed as penalties or rewards) is 

supply after a series of actions carried out in the 

environment[6]. Q-Learning, Sarsa and Temporal-

Difference (TD) Learning are common RL methods.   

 

Single Agent Model 

Many existing single-agent models for sequential 

decision making are derived from a general model and 

are distinguished by assumptions about the parameters 

of the general model.  An overview of the relevant 

model parameters for single agent systems are given 

here and some related issues are discussed[7]. A 

discrete environment is focused for simplicity which 

has a finite number of states and actions. 

 

Parameters 

A finite, discrete sequential decision-making 

problem can be specified using the following model 

parameters: 

 A discrete time step t = 0, 1, 2, 3, . . . . 

 A finite set of environment states S. A state s
t
 є S 

describes the state of the system at time step t. 

 A finite set of actions A. The action selected at 

time step t is denoted by a
t
 є A. 

 A reward function R: S × A → R which provides 

the agent with a reward r
t+1 

= R(s
t
, a

t
) based on the 

action at taken in state s
t
.  

 A state transition function T: S×A×S → [0, 1] 

which gives the transition probability       p(s
t
|a

t−1
, 

s
t−1

) that the system moves to state s
t
 when the 

action a
t−1 

is performed in state s
t−1

.     

  
Markov Decision Process   

Markov Decision Processes (MDPs) are the 

mathematical foundation for Reinforcement Learning 

in a single agent environment.  
 

Definition 1: Markov Decision Process is defined by 

(S, A,T, R). S is a finite discrete set of possible states. 

A is a finite discrete set of possible actions. T is an 

unknown transition function giving for each state and 

action T: S×A→S. R is an unknown real-valued 

reward function of the agent R: S×A→R. 

 

Solution techniques 

To compute an optimal policy π* for a given MDP, 

is given. An optimal policy should for every possible 

situation return the action that maximizes the 
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performance measure. The solution is found out by 

two techniques i.e. model based and model free 

techniques. Model-based techniques require a 

complete description of the model, while model-free 

techniques, also referred to as reinforcement learning, 

only learn based on the received observations and 

rewards.  

III.  Q-LEARNING ALGORITHM 

The problem is modeled using a Markov decision 

process (MDP). The rewards and the result of actions 

are not deterministic so it has a probability distribution 

for the reward p(rt+1|st,at) from which rewards are 

sampled and there is a probability distribution for the 

next state P(st+1|st,at). These help to model the 

uncertainty in the system that may be due to forces we 

cannot control in the environment. The Q-learning 

algorithm is used for this purpose[8]. 

The features of Q-learning are that it presumes no 

knowledge about state transitions and reward 

functions.  It must be learned from the environment. In 

each step, the agent receives a signal from the 

environment indicating its state s є S and chooses an 

action a є A. Once the action is performed, it modify 

the state of the environment and produce a 

reinforcement signal r є R that is then used to evaluate 

the quality of the decision by updating the 

corresponding     Q(s, a) values[9]. 

The policy π defines the agent’s behavior and is a 

mapping from the states of the environment to actions. 

π : sa . The policy defines the action to be taken in 

any state. The value of a policy π,  V
π
(st) is the 

expected cumulative reward that will be received 

while the agent follows the policy, starting from state 

st. 

Algorithm 1 : Q-Learning  

1. initialize all Q(s, a) to 0 arbitrarily 

2. for all episodes  

3. initialize s 

4. repeat 

5. choose a using policy derived from Q 

e.g. -greedy policy 

6. take action a, observe r and s’ 

7. update Q(s, a) as  

8. Q(s, a) Q(s, a) +α (r + γ maxa Q(s’, 

a’) – Q(s, a)) 

9. ss’ 

10. until s is terminal state 

Discount rate parameter 0 ≤ γ < 1. It is considered 

as γ = 0.9. If γ =0, then only the immediate reward 

counts. As γ approaches 1, rewards further in the 

future count more, and it is said that agent becomes 

more farsighted. γ is less than 1 because there 

generally is a time limit to the sequence of actions 

needed to solve the task. The value of learning rate 

parameter α is gradually decreased in time for 

convergence and it has been shown that this algorithm 

converges to the optimal Q values.  
 

Steps in Q-Learning algorithm:  

Below steps are followed as actual 

implementation of learning update rule involved in Q-

learning for continuous time MDP. Let t0=0 and start 

with an initial arbitrary guess Q(s, a) = 0. 

Step 1: At any n
th

 transition epoch at time tn, 

observe the state s and select the product action         

a є argmaxa Q(s, a) with probability 1-ε and other 

product in A with probability ε for some ε>0. 

Step 2: If X(tn)=s and the product action was chosen 

is a then update its Q value as follows:  

      Q(s, a) Q(s, a) +α (r + γ maxa Q(s’, a’) – Q(s, 

a))…..(1) 

To explore, one possibility is to use -greedy 

policy search where with probability  we choose one 

action uniformly randomly among all possible actions 

i.e. explore and with probability 1 - , we choose the 

best action i.e. exploit. We do not want to continue 

exploring indefinitely but start exploiting once we do 

enough exploration. For this, we start with a high  

value and gradually decrease it.  

Repeat steps 1 & 2 infinitely. Convergence is 

slow as it is typical RL algorithm. The speed of 

convergence can be drastically improved using 

function approximations to           Q-values based on 

some observed features.  

Initially all Q(s, a) are 0 and they are updated in 

time as a result of trial episodes. Let us say we have a 

sequence of moves and at each move, we use above 

equation to update the estimate of Q-value of the 

previous state-action pair using the Q-value the 

current state-action pair. In the intermediate states, all 

rewards and therefore values are 0, so no update is 

done. When we get to the goal state, we get the reward 

r and then we can update the Q-value of the previous 

state-action pairs as γr. 
 

IV. ELIGIBILITY TRACES  

Eligibility traces are one of the fundamental 

procedures of reinforcement learning. To obtain a 

more general method that learns more efficiently we 

can combine Q-learning & Sarsa methods with 

eligibility traces. Eligibility trace is a provisional 

record of the happening of an event that is visiting   a 

state or the taking of an action[11].  
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Q(λ) Learning  Algorithm 

Q-learning is an off policy method, meaning that 

the policy learned about need not be the same as the 

one used to select actions. Mainly Q-learning learns 

about the greedy policy. Typically Q-learning follows 

a policy involving exploratory actions. Special 

concern is required when introducing eligibility traces 

because of this[12]. Q(λ) does not look ahead all the 

way to the end of the episode in its backup. It only 

looks ahead as far as the next exploratory action. 

Watkins’s Q(λ) looks one action past the first 

exploration using its knowledge of the action values. 

Eligibility traces are manipulated just as in 

Sarsa(λ)[13]. They are set to zero whenever an 

exploratory (non-greedy) action is taken.  

Model for Eligibility traces:  

The trace update is thought of as occurring in two 

steps. First, the traces for all state-action pairs are 

either decomposed by γλ or if an exploratory action 

was taken, set to 0. Second, the trace corresponding to 

the current state and action is incremented by 1. The 

overall result is   

et(s, a) = sst. aat + γλet-1(s, a)   if Qt-1(st, at) = 

maxaQt-1(st, at)            

           = 0      otherwise  

whereas before xy is an identity indicator function, 

equal to 1 if x = y and 0 otherwise. The rest of the 

algorithm is defined by  

Qt+1(s, a) = Qt(s, a) + αδtet(s, 

a)… ……………………….(2)  

where  

δt = rt+1 + γmaxaQt(st+1, a’) – Qt(st, at) 

Cutting off traces every time an exploratory action is 

taken loses much of the advantages of using eligibility 

traces.  
 

Algorithm 2 : Q(λ) algorithm  

1. initialize Q(s, a) arbitrarily and e(s, a) = 0  

for all s, a  

2. repeat for each episode 

3. initialize s, a 

4. repeat for each step of episode  

5. take action a, observe r, s’ 

6. choose a’ from s’ using policy derived from Q 

(ε-greedy) 

7. a* argmaxb Q(s’, b) 

8. δ r + γQ(s’, a*) – Q(s, a) 

9. e(s, a) e(s, a) + 1 

10. for all s, a 

11. Q(s, a)  Q(s, a) + αδe(s, a) 

12. If a’ = a* then e(s, a)  γλe(s, a)              

 else  e(s, a)  0 

13. s  s’; a a’ 

14. until s is terminal  

V. SARSA LEARNING ALGORITHM  

Sarsa is an on policy version of Q-learning where 

policy is used to determine also the next action. 

Instead of looking for all possible next actions and 

choosing the best, the on policy Sarsa uses the policy 

derived from Q-values to choose one next action a and 

uses its Q-value to calculate the temporal difference. 

On policy methods estimate the value of a policy 

while using it to take actions. They approximate Q-

value, the action values for current policy, and then 

improve the policy gradually based on the 

approximate values for the current policy[10]. The 

policy improvement can be done in the simplest way 

using ε-greedy policy with respect to current action 

value estimation.  Sarsa learning algorithm is used for 

this purpose. 

Algorithm 3 : Sarsa Learning  

1. initialize all Q(s, a) to 0 arbitrarily 

2. for all episodes  

3. initialize s 

4. repeat 

5. choose a using policy derived from Q e.g. -

greedy policy 

6. take action a, observe r and s’ 

7. update Q(s, a) as  

8. Q(s, a) Q(s, a) +α (r + γ Q(s’, a’) – Q(s, 

a)) 

9. ss’ aa’ 

10. until s is terminal state 

 
Sarsa(λ) Learning Algorithm 

The eligibility trace version of Sarsa is called as 

Sarsa(λ). The scheme in Sarsa(λ) is to relate the TD(λ) 

prediction method to state-action pairs rather than to 

states. Let et(s, a) denote the trace for state action pair 

s, a; substituting state action variables for state 

variables the equation becomes  

Qt+1 = Qt(s,a) + αδtet(s, a) for all s, 

a……………………..(3) 

where  

δt = rt+1 + γQt(st+1, at+1) – Qt(st, at) 

and   

et(s, a) = γλet-1(s, a) + 1        if s=st and a=at 

            = γλet-1(s, a)              otherwise  
 

One step Sarsa and Sarsa(λ) are on policy 

algorithms. The one step method strengthens only the 

last action of the sequence of actions that led to the 

high reward, whereas the trace method strengths many 

actions of the sequence. The degree of strengthening 

falls off (according to γλ) with steps from the 

reward[14]. 
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Algorithm 4 : Sarsa (λ) algorithm  

1. initialize Q(s, a) arbitrarily and e(s, a) = 0 for all 

s, a 

2. repeat for each episode 

3. initialize s, a, 

4. repeat for each step of episode 

5. take action a, observe r, s’ 

6. choose a’ from s’ using policy derived 

from Q (e.g. ε greedy) 

7. δ r + γQ(s’, a’) – Q(s, a) 

8. e(s, a) e(s, a) + 1 

9. for all s, a 

10. Q(s, a) Q(s, a) + αδe(s, a) 

11. E(s, a) γλe(s, a) 

12. s s’; aa’ 

13. until s is terminal  

VI. EXPERIMENTAL SETUP   

Model design:  

Maximize the sale of products that depends on 

price of product, customer age and period of sale. 

These are the information available to each agent i.e. 

shop. So it becomes the state of environment. Final 

result is to maximize profit by increasing total sale of 

products.  

 

Input Data set:  

We define the action set as the sale of possible 

product. i.e. A={p1,p2,p3…….p10} 

Hence action a A. State of the system is queue of 

customer in the particular month for the given shop 

agent. So state can be described as  

X(t) = { x1(t), x2(t),m } 

where  

x1  customer queue with age ==> { Y, M, O}  

i.e. young, middle and old age customer 

x2  price of product queue ==>{ H, M, L}  

i.e. High, Medium, Low 

m   month of product sale ==> { 1,2,3,4…..12 } 

In the system minimum, 108 states and actions 

are possible. The number of state-action increases as 

number of transactions increases. For simplicity, it is 

assumed that single state for each transaction else the 

state space becomes infinitely large. Shop agent 

observes the queue and decides product i.e. action for 

each customer/state. After every sale reward is given 

to the agent.  The table shows the snapshot of the 

dataset generated for single shop agent.  

 

 

 

 

 
 

Table 1: Snapshot of Dataset used 

 
 
 

In a particular season, the sale of one shop 

increases. With the help of cooperative learning, other 

shops learn about the increase in the sale & they can 

take necessary actions for their profit maximization. 

At time 0, the process X(t) is observed and classified 

into one of the states in the possible set of states 

(denoted by S).  After identification, of state the agent 

chooses a product action from A.  If the process is in 

state i and agent chooses a A, then 

i. The process transition into state j S with 

probability Pij(a)  

ii. And further, conditional on the event that the 

next state is j, the time until next transition is a 

random variable with probability distribution 

Fij(./a) 

After the transition occurs, product sale action is 

chosen again by the agent and (i) and (ii) are repeated. 

 
 

State & Action selection:  

An important component of Q-learning is the 

action selection mechanism. This mechanism is 

responsible for selecting the actions that the agent will 

perform during the learning process. Its purpose is to 

harmonize the trade-off between exploitation and 

exploration such that the agent can reinforce the 

evaluation of the actions it already knows to be good 

but also explore new actions.  It is common in Q-

learning to use a probabilistic approach for action 

selection. Actions with higher Q values are assigned 

higher probabilities, but every action is assigned a 

nonzero probability. ε-greedy exploration mechanism 

is considered for action selection. This mechanism 

selects a random action with probability ε and the best 

action i.e. the one that has the highest Q value at the 

moment, with probability 1- ε.  

As such it can be seen as defining a probability 

vector over the action set of the agent for each state. 

Let x={x1,x2…xi} be one of these vectors, then the 

probability xi of selecting action i is given by 

Transaction 

ID 
Age Price Month 

Action 

Selected 

(Product) 

1 Y L 1 P1,P2,P4 

2 Y M 1 P2,P3 

3 Y H 1 P3,P4 

4 M L 1 P1,P2 

5 M M 1 P1,P2,P3 

6 M H 1 P4,P2 

7 O L 1 P1,P3 
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xi= (1- ε) + (ε / n)…………….if Q of i is the highest 

  = ε / n……………………….otherwise 

where n is the number of actions in the set.  

One way to assign such probabilities is  

P(ai/s) = K
Q’(s,ai) 

/ ∑j.K
Q’(s,aj)

 

P(ai/s) probability of selecting action ai 

s current state 

K constant > 0.  The high value of K assigns high 

probabilities to action i.e. maximum reward and a 

small value of K assign higher probabilities to other 

action i.e. minimum reward. 

VII. RESULTS   

In single agent learning, the number of rewards 

obtained with reference to variations in episodes, 

discount rate, learning rate are shown in graphs. For a 

particular episode, Sarsa learning receives more 

rewards than Q-learning.  An increase in the number 

of episodes also increases the number of rewards for 

both learning methods. For minimum discount rate 

numbers of rewards are less for both learning 

algorithms. For the same discount rate, numbers of 

rewards are more for Sarsa learning as compared to Q-

learning. Single agent   algorithms are implemented 

and results are compared.  The Q function values are 

tabulated for obtaining some insights. Q tables show 

the best action (that is an optimal product) for 

different individual states. By knowing the Q function, 

the shop agent can compute best possible product for a 

given state that gives maximum profit to it.  

Following graph shows for Single agent learning 

that for minimum learning rate numbers of rewards 

are less for both learning algorithms. For same 

learning rate, the numbers of rewards are more for 

Sarsa learning as compared to                Q-learning. 

Fig. 1 shows the result comparison of Rewards Vs 

Episodes for four single agent learning algorithms and  

Fig. 2 gives the result comparison of Rewards Vs 

Discount Rate for four single agent learning 

algorithms. Fig. 3gives the result comparison of 

Rewards Vs Learning Rate for four single agent 

learning algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1:   Comparison of Rewards Vs Episodes for four single agent 

learning algorithms 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig.2:   Comparison of Rewards Vs Discount Rate for four single 

agent learning algorithms 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

Fig. 3: Comparison of Rewards Vs Learning Rate for four single 

agent learning algorithms 
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Fig. 4: Products Vs Customer Age count for Q-Learning algorithm 

for three age groups  

 

Fig. 5: Products Vs Customer Age count for Sarsa Learning 
algorithm for three age groups 

Fig. 4 shows the result of Products Vs Customer 

Age count for Q-Learning algorithm for three age 

groups and  Fig. 5 gives the result of  Products Vs 

Customer Age count for Sarsa Learning algorithm for 

three age groups. In single agent learning the result 

analysis, is done by two different ways. Firstly, for a 

given month & customer age group, the product is 

identified. Learning shows that for a given month and 

an age group which products are to be selected that are 

best for sale. Shop agent will understand that in a 

month which products are to be sold to the customers 

having the age group. Second, it shows that in a year, 

the specific number of products is purchased by 

particular customer age group. Shop agent will 

understand that in a year number of products is to be 

sold to the customers having the different age group. 

Sarsa algorithm gives better results than  Q-learning 

and converges fast as compared to Q-learning. 

CONCLUSION 

Learning algorithms are best suitable for decision 

making. Single agent learning is the first step of 

development to further learning methods. It uses 

sequential decision making, the environment is not 

fully observable, less expertise with less knowledge 

and information. Performance is limited in the single 

agent system. Hence, the future work is to emphasize 

on the implementation of multiagent learning 

algorithms for the scenario to overcome the limitations 

in single agent learning.  
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