
 SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 5–May 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 46

Single Agent Learning Algorithms for

Decision making in Diagnostic Applications
 Deepak A. Vidhate

#1
, Dr. Parag Kulkarni

*2

#
Research Scholar, Department of Computer Engineering, College of Engineering, Pune, India

*
EKLaT Research Lab, Shivajinagar, Pune, Maharashtra, India

Abstract —

The output of the system is a sequence of actions in

some applications. There is no such measure as the

best action in any in-between state; an action is

excellent if it is part of a good policy. A single action

is not important; the policy is important that is the

sequence of correct actions to reach the goal. To be

able to generate a policy the machine learning

programs should able to assess the quality of policies

and learn from past good action sequences. Learning

is the basic capacity of intelligent agents. An agent

changes its behaviour based on its previous

experiences through learning. An intelligent agent

must be formalized by knowledge and be able to act

on this knowledge. In many single-agent systems for

learning the policy of an agent in uncertain

environments, the reinforcement learning techniques

have been applied successfully. Many existing single-

agent models for sequential decision making are

derived from a general model and are distinguished

by assumptions. Q-learning algorithms are used for

this purpose. Single agent learning model is given in

this paper. Four single agent reinforcement learning

algorithms are implemented and results are compared.

Single agent Q-learning Algorithm and Sarsa

Learning Algorithm gives some results for the

problem. However adding eligibility traces in single

agent learning algorithms i.e. Q(λ) learning and

Sarsa(λ) learning gives performs better than the

previous algorithms. The paper shows the results of

all four algorithms and performance comparisons

among them.

Keywords — Q-learning, Reinforcement learning,

Sarsa Learning, Single Agent

I. INTRODUCTION

Consider the example market chain that has

hundreds of stores all over a country selling thousands

of goods to millions of customers. The point of sale

terminals record the details of each transaction i.e.

date, customer identification code, goods bought and

their amount, total money spent and so forth. This

typically generates gigabytes of data every day. What

the market chain wants is to be able to predict who are

the likely customers for a product. Again, the

algorithm for this is not evident; it changes over time

and by geographic location. If stored data is analyzed

and turned into information then it becomes useful so

that we can make use of an example to make

predictions[1].

We do not know exactly which people are likely

to buy this product, or another product. We would not

need any analysis of the data if we know it already.

But because we do not know, we can only collect data

and hope to extract the answers to questions from

data.

We do believe that there is a process that explains

the data we observe. Though we do not know the

details of the process underlying the generation of data

– for example, customer behavior - we know that it is

not completely random. People do not go to markets

and buy things at random.

When they buy beer, they buy chips; they buy ice

cream in summer and spices for Wine in winter. There

are certain patterns in the data. We may not be able to

recognize the process completely, but still we can

construct a good and useful approximation. That

approximation may not explain everything, but may

still be able to account for some part of the data.

Though identifying the complete process may not be

possible, but still patterns or regularities can be

detected.

Such patterns may help us to understand the process,

or make predictions. Assuming that the near future

will not be much different from the past and future

predictions can also be expected to be right.

There are many real world problems that involve

more than one entity for maximization of an outcome.

For example, consider a scenario of retail shops in

which shop A sales clothes, shop B sales jewelry, shop

C sales footwear and wedding house D. In order to

build a single system to automate (certain aspects of)

the marketing process, the internals of all shops A, B,

C, and D can be modeled. The only feasible solution is

www.internationaljournalssrg.org

 SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 5–May 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 47

to allow the various stores to create their own policies

that accurately represent their goals and interests.

They must then be combined into the system with the

aid of some of the techniques. The goal of each shop

is to maximize the profit by an increase in sale i.e.

yield maximization. Different parameters need to be

considered in this: variation in seasons, the

dependency of items, special schemes, discount,

market conditions etc. Different shops can cooperate

with each other for yield maximization in different

situations. Several independent tasks that can be

handled by separate agents could benefit from

cooperative nature of agents[2].

Another example of a domain that requires

cooperative learning is hospital scheduling. It requires

different agents to represent the regard of different

people within the hospital. Hospital employees have a

different outlook. X-ray operators may want to

maximize the throughput on their machines. Nurses in

the hospital may want to minimize the patient’s time

in the hospital. Since different people examine

candidate with different criteria, they must be

represented by cooperative agents. The output of the

system is a sequence of actions in some applications.

There is no such measure as the best action in any in-

between state; an action is excellent if it is part of a

good policy[3]. A single action is not important; the

policy is important that is the sequence of correct

actions to reach the goal. To be able to generate a

policy the machine learning programs should able to

assess the quality of policies and learn from past good

action sequences[4]. This paper is organized as

Section II gives the concept of single agent learning,

Section III describes Q-learning algorithm, Section IV

gives the description about eligibility traces to be

added in learning algorithm. Sarsa learning algorithm

is given in Section V and Section VI describes

experimental setup. Section VII put up the result

comparisons of all four algorithms and finally

concluding remark with the future scope.

II. SINGLE AGENT LEARNING

Learning is the basic capacity of intelligent agents.

An agent changes its behaviour based on its previous

experiences through learning. An intelligent agent

must be formalized by knowledge and be able to act

on this knowledge. In many single-agent systems for

learning the policy of an agent in uncertain

environments, the reinforcement learning techniques

have been applied successfully[5].

It is possible to treat a multiagent system as a

`large’ single agent to learn the optimal joint policy

using standard single-agent reinforcement learning

methods. However, both the state and action space

size exponentially with the number of agents.

Representation this approach is infeasible for most

problems. Reinforcement learning techniques are

mainly helpful in the field where reinforcement

information (expressed as penalties or rewards) is

supply after a series of actions carried out in the

environment[6]. Q-Learning, Sarsa and Temporal-

Difference (TD) Learning are common RL methods.

Single Agent Model

Many existing single-agent models for sequential

decision making are derived from a general model and

are distinguished by assumptions about the parameters

of the general model. An overview of the relevant

model parameters for single agent systems are given

here and some related issues are discussed[7]. A

discrete environment is focused for simplicity which

has a finite number of states and actions.

Parameters

A finite, discrete sequential decision-making

problem can be specified using the following model

parameters:

 A discrete time step t = 0, 1, 2, 3,

 A finite set of environment states S. A state s
t
 є S

describes the state of the system at time step t.

 A finite set of actions A. The action selected at

time step t is denoted by a
t
 є A.

 A reward function R: S × A → R which provides

the agent with a reward r
t+1

= R(s
t
, a

t
) based on the

action at taken in state s
t
.

 A state transition function T: S×A×S → [0, 1]

which gives the transition probability p(s
t
|a

t−1
,

s
t−1

) that the system moves to state s
t
 when the

action a
t−1

is performed in state s
t−1

.

Markov Decision Process

Markov Decision Processes (MDPs) are the

mathematical foundation for Reinforcement Learning

in a single agent environment.

Definition 1: Markov Decision Process is defined by

(S, A,T, R). S is a finite discrete set of possible states.

A is a finite discrete set of possible actions. T is an

unknown transition function giving for each state and

action T: S×A→S. R is an unknown real-valued

reward function of the agent R: S×A→R.

Solution techniques

To compute an optimal policy π* for a given MDP,

is given. An optimal policy should for every possible

situation return the action that maximizes the

www.internationaljournalssrg.org

 SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 5–May 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 48

performance measure. The solution is found out by

two techniques i.e. model based and model free

techniques. Model-based techniques require a

complete description of the model, while model-free

techniques, also referred to as reinforcement learning,

only learn based on the received observations and

rewards.

III. Q-LEARNING ALGORITHM

The problem is modeled using a Markov decision

process (MDP). The rewards and the result of actions

are not deterministic so it has a probability distribution

for the reward p(rt+1|st,at) from which rewards are

sampled and there is a probability distribution for the

next state P(st+1|st,at). These help to model the

uncertainty in the system that may be due to forces we

cannot control in the environment. The Q-learning

algorithm is used for this purpose[8].

The features of Q-learning are that it presumes no

knowledge about state transitions and reward

functions. It must be learned from the environment. In

each step, the agent receives a signal from the

environment indicating its state s є S and chooses an

action a є A. Once the action is performed, it modify

the state of the environment and produce a

reinforcement signal r є R that is then used to evaluate

the quality of the decision by updating the

corresponding Q(s, a) values[9].

The policy π defines the agent’s behavior and is a

mapping from the states of the environment to actions.

π : sa . The policy defines the action to be taken in

any state. The value of a policy π, V
π
(st) is the

expected cumulative reward that will be received

while the agent follows the policy, starting from state

st.

Algorithm 1 : Q-Learning

1. initialize all Q(s, a) to 0 arbitrarily

2. for all episodes

3. initialize s

4. repeat

5. choose a using policy derived from Q

e.g. -greedy policy

6. take action a, observe r and s’

7. update Q(s, a) as

8. Q(s, a) Q(s, a) +α (r + γ maxa Q(s’,

a’) – Q(s, a))

9. ss’

10. until s is terminal state

Discount rate parameter 0 ≤ γ < 1. It is considered

as γ = 0.9. If γ =0, then only the immediate reward

counts. As γ approaches 1, rewards further in the

future count more, and it is said that agent becomes

more farsighted. γ is less than 1 because there

generally is a time limit to the sequence of actions

needed to solve the task. The value of learning rate

parameter α is gradually decreased in time for

convergence and it has been shown that this algorithm

converges to the optimal Q values.

Steps in Q-Learning algorithm:

Below steps are followed as actual

implementation of learning update rule involved in Q-

learning for continuous time MDP. Let t0=0 and start

with an initial arbitrary guess Q(s, a) = 0.

Step 1: At any n
th

 transition epoch at time tn,

observe the state s and select the product action

a є argmaxa Q(s, a) with probability 1-ε and other

product in A with probability ε for some ε>0.

Step 2: If X(tn)=s and the product action was chosen

is a then update its Q value as follows:

 Q(s, a) Q(s, a) +α (r + γ maxa Q(s’, a’) – Q(s,

a))…..(1)

To explore, one possibility is to use -greedy

policy search where with probability we choose one

action uniformly randomly among all possible actions

i.e. explore and with probability 1 - , we choose the

best action i.e. exploit. We do not want to continue

exploring indefinitely but start exploiting once we do

enough exploration. For this, we start with a high

value and gradually decrease it.

Repeat steps 1 & 2 infinitely. Convergence is

slow as it is typical RL algorithm. The speed of

convergence can be drastically improved using

function approximations to Q-values based on

some observed features.

Initially all Q(s, a) are 0 and they are updated in

time as a result of trial episodes. Let us say we have a

sequence of moves and at each move, we use above

equation to update the estimate of Q-value of the

previous state-action pair using the Q-value the

current state-action pair. In the intermediate states, all

rewards and therefore values are 0, so no update is

done. When we get to the goal state, we get the reward

r and then we can update the Q-value of the previous

state-action pairs as γr.

IV. ELIGIBILITY TRACES

Eligibility traces are one of the fundamental

procedures of reinforcement learning. To obtain a

more general method that learns more efficiently we

can combine Q-learning & Sarsa methods with

eligibility traces. Eligibility trace is a provisional

record of the happening of an event that is visiting a

state or the taking of an action[11].

www.internationaljournalssrg.org

 SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 5–May 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 49

Q(λ) Learning Algorithm

Q-learning is an off policy method, meaning that

the policy learned about need not be the same as the

one used to select actions. Mainly Q-learning learns

about the greedy policy. Typically Q-learning follows

a policy involving exploratory actions. Special

concern is required when introducing eligibility traces

because of this[12]. Q(λ) does not look ahead all the

way to the end of the episode in its backup. It only

looks ahead as far as the next exploratory action.

Watkins’s Q(λ) looks one action past the first

exploration using its knowledge of the action values.

Eligibility traces are manipulated just as in

Sarsa(λ)[13]. They are set to zero whenever an

exploratory (non-greedy) action is taken.

Model for Eligibility traces:

The trace update is thought of as occurring in two

steps. First, the traces for all state-action pairs are

either decomposed by γλ or if an exploratory action

was taken, set to 0. Second, the trace corresponding to

the current state and action is incremented by 1. The

overall result is

et(s, a) = sst. aat + γλet-1(s, a) if Qt-1(st, at) =

maxaQt-1(st, at)

 = 0 otherwise

whereas before xy is an identity indicator function,

equal to 1 if x = y and 0 otherwise. The rest of the

algorithm is defined by

Qt+1(s, a) = Qt(s, a) + αδtet(s,

a)… ……………………….(2)

where

δt = rt+1 + γmaxaQt(st+1, a’) – Qt(st, at)

Cutting off traces every time an exploratory action is

taken loses much of the advantages of using eligibility

traces.

Algorithm 2 : Q(λ) algorithm

1. initialize Q(s, a) arbitrarily and e(s, a) = 0

for all s, a

2. repeat for each episode

3. initialize s, a

4. repeat for each step of episode

5. take action a, observe r, s’

6. choose a’ from s’ using policy derived from Q

(ε-greedy)

7. a* argmaxb Q(s’, b)

8. δ r + γQ(s’, a*) – Q(s, a)

9. e(s, a) e(s, a) + 1

10. for all s, a

11. Q(s, a)  Q(s, a) + αδe(s, a)

12. If a’ = a* then e(s, a)  γλe(s, a)

 else e(s, a)  0

13. s  s’; a a’

14. until s is terminal

V. SARSA LEARNING ALGORITHM

Sarsa is an on policy version of Q-learning where

policy is used to determine also the next action.

Instead of looking for all possible next actions and

choosing the best, the on policy Sarsa uses the policy

derived from Q-values to choose one next action a and

uses its Q-value to calculate the temporal difference.

On policy methods estimate the value of a policy

while using it to take actions. They approximate Q-

value, the action values for current policy, and then

improve the policy gradually based on the

approximate values for the current policy[10]. The

policy improvement can be done in the simplest way

using ε-greedy policy with respect to current action

value estimation. Sarsa learning algorithm is used for

this purpose.

Algorithm 3 : Sarsa Learning

1. initialize all Q(s, a) to 0 arbitrarily

2. for all episodes

3. initialize s

4. repeat

5. choose a using policy derived from Q e.g. -

greedy policy

6. take action a, observe r and s’

7. update Q(s, a) as

8. Q(s, a) Q(s, a) +α (r + γ Q(s’, a’) – Q(s,

a))

9. ss’ aa’

10. until s is terminal state

Sarsa(λ) Learning Algorithm

The eligibility trace version of Sarsa is called as

Sarsa(λ). The scheme in Sarsa(λ) is to relate the TD(λ)

prediction method to state-action pairs rather than to

states. Let et(s, a) denote the trace for state action pair

s, a; substituting state action variables for state

variables the equation becomes

Qt+1 = Qt(s,a) + αδtet(s, a) for all s,

a……………………..(3)

where

δt = rt+1 + γQt(st+1, at+1) – Qt(st, at)

and

et(s, a) = γλet-1(s, a) + 1 if s=st and a=at

 = γλet-1(s, a) otherwise

One step Sarsa and Sarsa(λ) are on policy

algorithms. The one step method strengthens only the

last action of the sequence of actions that led to the

high reward, whereas the trace method strengths many

actions of the sequence. The degree of strengthening

falls off (according to γλ) with steps from the

reward[14].

www.internationaljournalssrg.org

 SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 5–May 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 50

Algorithm 4 : Sarsa (λ) algorithm

1. initialize Q(s, a) arbitrarily and e(s, a) = 0 for all

s, a

2. repeat for each episode

3. initialize s, a,

4. repeat for each step of episode

5. take action a, observe r, s’

6. choose a’ from s’ using policy derived

from Q (e.g. ε greedy)

7. δ r + γQ(s’, a’) – Q(s, a)

8. e(s, a) e(s, a) + 1

9. for all s, a

10. Q(s, a) Q(s, a) + αδe(s, a)

11. E(s, a) γλe(s, a)

12. s s’; aa’

13. until s is terminal

VI. EXPERIMENTAL SETUP

Model design:

Maximize the sale of products that depends on

price of product, customer age and period of sale.

These are the information available to each agent i.e.

shop. So it becomes the state of environment. Final

result is to maximize profit by increasing total sale of

products.

Input Data set:

We define the action set as the sale of possible

product. i.e. A={p1,p2,p3…….p10}

Hence action a A. State of the system is queue of

customer in the particular month for the given shop

agent. So state can be described as

X(t) = { x1(t), x2(t),m }

where

x1  customer queue with age ==> { Y, M, O}

i.e. young, middle and old age customer

x2  price of product queue ==>{ H, M, L}

i.e. High, Medium, Low

m  month of product sale ==> { 1,2,3,4…..12 }

In the system minimum, 108 states and actions

are possible. The number of state-action increases as

number of transactions increases. For simplicity, it is

assumed that single state for each transaction else the

state space becomes infinitely large. Shop agent

observes the queue and decides product i.e. action for

each customer/state. After every sale reward is given

to the agent. The table shows the snapshot of the

dataset generated for single shop agent.

Table 1: Snapshot of Dataset used

In a particular season, the sale of one shop

increases. With the help of cooperative learning, other

shops learn about the increase in the sale & they can

take necessary actions for their profit maximization.

At time 0, the process X(t) is observed and classified

into one of the states in the possible set of states

(denoted by S). After identification, of state the agent

chooses a product action from A. If the process is in

state i and agent chooses a A, then

i. The process transition into state j S with

probability Pij(a)

ii. And further, conditional on the event that the

next state is j, the time until next transition is a

random variable with probability distribution

Fij(./a)

After the transition occurs, product sale action is

chosen again by the agent and (i) and (ii) are repeated.

State & Action selection:

An important component of Q-learning is the

action selection mechanism. This mechanism is

responsible for selecting the actions that the agent will

perform during the learning process. Its purpose is to

harmonize the trade-off between exploitation and

exploration such that the agent can reinforce the

evaluation of the actions it already knows to be good

but also explore new actions. It is common in Q-

learning to use a probabilistic approach for action

selection. Actions with higher Q values are assigned

higher probabilities, but every action is assigned a

nonzero probability. ε-greedy exploration mechanism

is considered for action selection. This mechanism

selects a random action with probability ε and the best

action i.e. the one that has the highest Q value at the

moment, with probability 1- ε.

As such it can be seen as defining a probability

vector over the action set of the agent for each state.

Let x={x1,x2…xi} be one of these vectors, then the

probability xi of selecting action i is given by

Transaction

ID
Age Price Month

Action

Selected

(Product)

1 Y L 1 P1,P2,P4

2 Y M 1 P2,P3

3 Y H 1 P3,P4

4 M L 1 P1,P2

5 M M 1 P1,P2,P3

6 M H 1 P4,P2

7 O L 1 P1,P3

www.internationaljournalssrg.org

 SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 5–May 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 51

xi= (1- ε) + (ε / n)…………….if Q of i is the highest

 = ε / n……………………….otherwise

where n is the number of actions in the set.

One way to assign such probabilities is

P(ai/s) = K
Q’(s,ai)

/ ∑j.K
Q’(s,aj)

P(ai/s) probability of selecting action ai

s current state

K constant > 0. The high value of K assigns high

probabilities to action i.e. maximum reward and a

small value of K assign higher probabilities to other

action i.e. minimum reward.

VII. RESULTS

In single agent learning, the number of rewards

obtained with reference to variations in episodes,

discount rate, learning rate are shown in graphs. For a

particular episode, Sarsa learning receives more

rewards than Q-learning. An increase in the number

of episodes also increases the number of rewards for

both learning methods. For minimum discount rate

numbers of rewards are less for both learning

algorithms. For the same discount rate, numbers of

rewards are more for Sarsa learning as compared to Q-

learning. Single agent algorithms are implemented

and results are compared. The Q function values are

tabulated for obtaining some insights. Q tables show

the best action (that is an optimal product) for

different individual states. By knowing the Q function,

the shop agent can compute best possible product for a

given state that gives maximum profit to it.

Following graph shows for Single agent learning

that for minimum learning rate numbers of rewards

are less for both learning algorithms. For same

learning rate, the numbers of rewards are more for

Sarsa learning as compared to Q-learning.

Fig. 1 shows the result comparison of Rewards Vs

Episodes for four single agent learning algorithms and

Fig. 2 gives the result comparison of Rewards Vs

Discount Rate for four single agent learning

algorithms. Fig. 3gives the result comparison of

Rewards Vs Learning Rate for four single agent

learning algorithms

Fig. 1: Comparison of Rewards Vs Episodes for four single agent

learning algorithms

Fig.2: Comparison of Rewards Vs Discount Rate for four single

agent learning algorithms

Fig. 3: Comparison of Rewards Vs Learning Rate for four single

agent learning algorithms

www.internationaljournalssrg.org

 SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 5–May 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 52

Fig. 4: Products Vs Customer Age count for Q-Learning algorithm

for three age groups

Fig. 5: Products Vs Customer Age count for Sarsa Learning
algorithm for three age groups

Fig. 4 shows the result of Products Vs Customer

Age count for Q-Learning algorithm for three age

groups and Fig. 5 gives the result of Products Vs

Customer Age count for Sarsa Learning algorithm for

three age groups. In single agent learning the result

analysis, is done by two different ways. Firstly, for a

given month & customer age group, the product is

identified. Learning shows that for a given month and

an age group which products are to be selected that are

best for sale. Shop agent will understand that in a

month which products are to be sold to the customers

having the age group. Second, it shows that in a year,

the specific number of products is purchased by

particular customer age group. Shop agent will

understand that in a year number of products is to be

sold to the customers having the different age group.

Sarsa algorithm gives better results than Q-learning

and converges fast as compared to Q-learning.

CONCLUSION

Learning algorithms are best suitable for decision

making. Single agent learning is the first step of

development to further learning methods. It uses

sequential decision making, the environment is not

fully observable, less expertise with less knowledge

and information. Performance is limited in the single

agent system. Hence, the future work is to emphasize

on the implementation of multiagent learning

algorithms for the scenario to overcome the limitations

in single agent learning.

REFERENCES

[1] Babak Nadjar Araabi, Sahar Mastoureshgh, and Majid Nili
Ahmadabadi ―A Study on Expertise of Agents and Its

Effects on Cooperative Q-Learning‖ IEEE Transactions on
Evolutionary Computation, vol:14, pp:23-57, 2010

[2] Young-Cheol Choi, Student Member, Hyo-Sung Ahn ―A

Survey on Multi-Agent Reinforcement Learning:
Coordination Problems‖, IEEE/ASME International

Conference on Mechatronics and Embedded Systems and

Applications, pp. 81 – 86, 2010.
[3] Zahra Abbasi, Mohammad Ali Abbasi ―Reinforcement

Distribution in a Team of Cooperative Q-learning Agent‖,

Proceedings of the 9th ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking,

and Parallel/Distributed Computing, IEEE Computer Society

[4] La-mei GAO, Jun ZENG, Jie WU, Min LI ―Cooperative
Reinforcement Learning Algorithm to Distributed Power

System based on Multi-Agent‖ 2009 3rd International

Conference on Power Electronics Systems and Applications
Digital Reference: K210509035

[5] Adnan M. Al-Khatib ―Cooperative Machine Learning

Method‖ World of Computer Science and Information
Technology Journal (WCSIT) ISSN: 2221-0741 Vol.1, No.9,

380-383, 2011.

[6] Ethem Alpaydin ―Introduction to Machine Learning‖ Second
Edition, MIT Press by PHI.

[7] Tom Mitchell ―Machine Learning‖ McGraw Hill

International Edition.
[8] Liviu Panait Sean Luke ―Cooperative Multi-Agent Learning:

The State of the Art‖, published in Journal of Autonomous

Agents and Multi-Agent Systems Volume 11 Issue 3, pp. 387
– 434, 05.

[9] Jun-Yuan Tao, De-Sheng Li ―Cooperative Strategy Learning

In Multi-Agent Environment With Continuous State Space‖,
IEEE International Conference on Machine Learning and

Cybernetics, pp.2107 – 2111, 2006.

[10] Dr. Hamid R. Berenji David Vengerov ―Learning,
Cooperation, and Coordination in Multi-Agent Systems‖, in

Proceedings of 9th IEEE International Conference on Fuzzy

Systems, 2000.
[11] M.V. Nagendra Prasad & Victor R. Lesser ―Learning

Situation-Specific Coordination in Cooperative Multi-agent

Systems‖ in Journal of Autonomous Agents and Multi-Agent
Systems, Volume 2 Issue 2, pp. 173 – 207, 1999.

[12] Ronen Brafman & Moshe Tennenholtz ―Learning to

Coordinate Efficiently: A Model-based Approach‖, in
Journal of Artificial Intelligence Research, Volume 19 Issue

1, pp. 11-23, 2003.

[13] Michael Kinney & Costas Tsatsoulis ―Learning
Communication Strategies in Multiagent Systems‖, in

Journal of Applied Intelligence, Volume 9 Issue 1, pp 71-91,

1998.
[14] Chern Han Yong & Risto Miikkulainen ―Coevolution of

Role-Based Cooperation in Multi-Agent Systems‖, in
technical Report AI07-338, University of Texas at Austin,

2007.

www.internationaljournalssrg.org

