
 SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 8–August 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 103

Huffman Text Compression Technique

Suherman
1
, Andysah Putera Utama Siahaan

2

Faculty of Computer Science

Universitas Pembanguan Panca Budi

Jl. Jend. Gatot Subroto Km. 4,5 Sei Sikambing, 20122, Medan, Sumatera Utara, Indonesia

Abstract— Huffman is one of the compression

algorithms. It is the most famous algorithm to

compress text. There are four phases in the Huffman

algorithm to compress text. The first is to group the

characters. The second is to build the Huffman tree.

The third is the encoding, and the last one is the

construction of coded bits. The Huffman algorithm

principle is the character that often appears on

encoding with a series of short bits and characters

that rarely appeared in bit-encoding with a longer

series. Huffman compression technique can provide

savings of 30% from the original bits. It works based

on the frequency of characters. The more the similar

character reached, the higher the compression rate

gained.

Keywords— Huffman, Compression, Algorithm,

Security

I. INTRODUCTION

A text is a collection of characters or strings into a

single unit. It contains many characters in it that

always cause problems in limited storage device and

speed of data transmission at the particular time.

Although storage can be replaced by another larger

one, this in not a good solution if there is another

solution. And this is making everyone try to think to

find a way that can be used to compress text.

Compression is the process of changing the original

data into code form to save storage and time

requirements for data transmission.A loseless

compression algorithm should emphasize the

originality of the data during compression and

decompression process[5].By using the Huffman

algorithm, text compression process is done by using

the principle of the encoding; each character is

encoded with a series of several bits to produce a more

optimal result. The purpose of writing this paper is to

investigate the effectiveness and the shortest way of

the Huffman algorithm in the compression of text and

explain the ways of compressing text using Huffman

algorithm in programming.

II. THEORIES

Data Compression is the process of shrinking data

to smaller bits than the original representation so that

it takes less storage space and less transmission time

while communicating over a network [2]. Huffman

algorithm was created by an MIT student named

David Huffman in 1952. It is one of the oldest

methods and most famous in text compression [5].

The Huffman code uses the principles similar to

Morse code. Each character is encoded only with a

few bits series, where characters that often appear with

a coded series of short bits and characters that rarely

appears is encoded with a longer set of bits. Based on

the type of map, the code is used to change the initial

message (the contents of the input data) into a set of

codeword‟s. Huffman algorithm uses static methods. A

static method is a method that always uses the same

code map but the sequence of character appearance

can be changed. This method requires two step. The

first step to calculate the frequency of occurrence of

each symbol and determine the map code, and the last

is to convert the message into a collection of code that

will be transmitted. Meanwhile, based on symbols

coding technique, Huffman uses the symbol wise

method. Symbol wise is a method that calculates the

frequncy of the characters in every

process.Tranforming text characters into symbolwise

is not an easy process [3]. The symbol is more often

occur will be given shorter code than the symbols that

rarely appears.

A. Greedy Algorithm

Greedy Algorithm solves a problem by selecting the

best distance at the particular time. Huffman problems

can be solved using a greedy algorithm as well [4]. A

greedy algorithm is an algorithm which follows the

problem-solving metaheuristic of making the optimum

choice. By calculating each step, the optimal solution

is resolved. For example, applying the greedy strategy

to the TSP to visit the nearest unvisited place.Greedy

algorithm never finds the global solution. This

algorithm is good at finding the nearest solution. Two

of the examples of greedy algorithms are Kruskal's

and Prim's algorithm.

B. The Relationship to Huffman Algorithm.

David Huffman encoded character by simply using

an ordinary binary tree, but after that, David Huffman

found that using a greedy algorithm can establish the

optimal prefix code. The use of greedy algorithm on

Huffman is at the election of two trees with the lowest

frequency in a Huffman tree. A greedy algorithm is

used to minimize the total cost. Cost is used to merge

www.internationaljournalssrg.org

 SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 8–August 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 104

two trees at the root of frequency equal to the number

two fruit trees that are combined. Therefore the total

cost of the establishment of the Huffman tree is the

total of the whole merger. Therefore, the Huffman

algorithm is one example of compression algorithm

that uses the greedy algorithm. Our goal is to calculate

the total cost incurred to establish the text.

III. IMPLEMENTATION

Thissection tries to figure out the Huffman

technique. There are four steps must be accomplished

to make the Huffman technique is fully operated.

These phases below explain the steps of its algorithm.

A. Phase One.

Assume the sentence is “LIKA-LIKU LAKI-LAKI

TAK LAKU-LAKU”. The text above is 33 length. It

must be categorized base on the character frequency.

The Character_Set function is to determine how many

times each character appears.

function Character_Set(text : string) :

string;

var

 temp : string;

 result : string;

begin

 temp := text;

 result := '';

 for i := 1 to length(temp) do

 for j := i + 1 to length(temp) do

 if temp[i] = temp[j] then temp[j] :=

'#';

 j := 1;

 for i := 1 to length(temp) do

 if temp[i] <> '#' then

 begin

 result := concat(result, temp[i]);

 inc(j);

 end;

 Character_Set := result;

end;

The first loop which is done by “for” is to replace

the duplicate character into „#‟. The second loop

removes the original text that consists of „#‟. The

illustration is showed below.

Original Text : LIKA-LIKU LAKI-LAKI TAK

LAKU-LAKU

Replaced Text : LIKA-###U

##########T############

Character Set : LIKA-U T

procedure Character_Freq(text : string);

var

 temp : string;

 freq : byte;

begin

 temp := Character_Set(text);

 for i := 1 to length(temp) do

 begin

 freq := 0;

 for j := 1 to length(text) do

 if temp[i] = text[j] then inc(freq);

 AddNode(Head, Tail, temp[i], freq);

 end;

end;

The above procedure calculates the frequency of

the character occurrence. First, the character set

function must be run to obtain a series of a single

character used; then the first character until the last

character must be compared to the original text to get

the frequency. The result will be sent to the node after

getting incremented. Figure 1 illustrates the characters

and their frequency obtain from Phase One.

Fig. 1 Unsorted character and frequency

The table must be sorted in ascending order and the

primary key is the frequency.

procedure Tree_Sorting;

var

 tASCII : char;

 tFreq : byte;

begin

 for i := length(cs) - 1 downto 1 do

 begin

 Current := Head;

for j := 1 to i do

 begin

 if Current^.Freq > Current^.Next^.Freq

then

 begin

 tASCII := Current^.ASCII;

 tFreq := Current^.Freq;

 Current^.ASCII := Current^.Next^.ASCII;

 Current^.Freq := Current^.Next^.Freq;

 Current^.Next^.ASCII := tASCII;

 Current^.Next^.Freq := tFreq;

 end;

 Current := Current^.Next;

end;

 end;

end;

The procedure above is to sort the unsorted list by

using bubble sort algorithm. The first node will be

compared to the next node, and the larger value will

be swapped and moved to the right. Figure 2

www.internationaljournalssrg.org

 SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 8–August 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 105

demonstrates the result after the sort.

Fig. 2 Character and frequency after sorted

B. Phase Two.

After the table is fully sorted, it is time to face the

most difficult step; that is to make the Huffman tree.

Each node must be categorized and put it on the linked

list. The Greedy algorithm takes apart at this section.

It needs to combine two nodes and make a new node

and make it as a parent of those earlier nodes. Let‟s

see the illustration below:

T - U I L A K

1 3 3 3 4 6 6 7

Draw the first two nodes, and release from the

table. Make a new node which will be their parent.

*

U * I L A K

4

3 3 4 4 6 6 7

T

-

1

3

The parent node will be inserted to the table in

ascending order using insertion algorithm. The first

node is now replaced by the third node before.

Moreover, It has to do the same way again until the

table consists of one node.

*

* I * L A K

6

4 4 6 6 6 7

U

3

3

*

* L A K *

8

6 6 6 7 8

*

I

4

4

*

A K * *

12

6 7 8 12

*

L

6

6

*

* * *

13

8 12 13

A

K

6

7

*

* *

20

13 20

*

*

8

12

*

*

33

33

*

*

13

20

T - U * I L A K

1 3 3 3 4 4 6 6 7

T - U * I * L A K

1 3 3 3 4 4 6 6 6 7

T - U * I * L A K *

1 3 3 3 4 4 6 6 6 7 8

T - U * I * L A K * *

1 3 3 3 4 4 6 6 6 7 8 12

T - U * I * L A K * * *

1 3 3 3 4 4 6 6 6 7 8 12 13

T - U * I * L A K * * * *

1 3 3 3 4 4 6 6 6 7 8 12 13 20

T - U * I * L A K * * * * *

1 3 3 3 4 4 6 6 6 7 8 12 13 20 33

Finally, the array consists of 15 nodes.

In this step, there are two modelsof tree.

- Double Linked List.

- Binary Tree Linked List.

Fig. 3Double & Binary Tree Linked List

Figure 3 shows the hierarchy of the array. The *

indicates the node has a parent. Figure 4 is the

www.internationaljournalssrg.org

 SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 8–August 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 106

complete diagram of the Huffman tree.

Fig.4Huffman Tree

The aim using two models of linked list is to avoid

the searching procedures. The search can be either

breadth-first or depth-first search to form the bit code,

but it takes time and advanced programming

technique. However, a list can be used to replace the

backtracking procedure. The procedure track what the

parent is.

procedure Huffman_Tree;

var

 tFreq : byte;

 tASCII : char;

 InsertN : NodeP;

 NewNode : NodeP;

begin

 tASCII := '*';

 Current := Head;

 while Current^.Next <> NIL do

 begin

 InsertN := Head;

 tFreq := Current^.Freq +

Current^.Next^.Freq;

 Current^.Bit := 0;

 Current^.Next^.Bit := 1;

 while InsertN <> NIL do

 begin

 if tFreq <= InsertN^.Freq then

 begin

 new(NewNode);

 NewNode^.Freq := tFreq;

 NewNode^.ASCII := tASCII;

 NewNode^.Next := InsertN;

 NewNode^.Prev := InsertN^.Prev;

 InsertN^.Prev^.Next := NewNode;

 InsertN^.Prev := NewNode;

 NewNode^.Left := Current;

 NewNode^.Right := Current^.Next;

 Current^.Parent := NewNode;

 Current^.Next^.Parent := NewNode;

 break;

 end

 else if tFreq > Tail^.Freq then

 begin

 new(NewNode);

 NewNode^.Freq := tFreq;

 NewNode^.ASCII := tASCII;

 Tail^.Next := NewNode;

 NewNode^.Prev := Tail;

 Tail:=NewNode;

 Tail^.Next := NIL;

 NewNode^.Left := Current;

 NewNode^.Right := Current^.Next;

 Current^.Parent := NewNode;

 Current^.Next^.Parent := NewNode;

 break;

 end;

 InsertN := InsertN^.Next;

 end;

 Current := Current^.Next;

 Current := Current^.Next;

 end;

end;

Huffman Tree procedure is used to form the

Huffman tree by processing the earlier linear tree.The

nodes must be marked “what is on the left” and “what

is on the right”. It is done by adding a sign 0 or 1 to

the node field.

type

 NodeP = ^Node;

 Node = record

 ASCII : char;

 Bit : byte;

 Code : string;

 Dec : byte;

 freq : byte;

 Prev,

 Next : NodeP;

 Parent,

 Left,

 Right : NodeP;

 end;

ASCII : where character is

memorized.

Bit : node sign. (left or right)

Code : Huffman code.

Dec : decimal code.

Freq : occurence of the

character.

Next, Prev,

Parent,

Left, Right : represent the connected

nodes.

The first two nodes must be combined. The first

node will be marked as „0‟ since it is on the left and

the second node will be marked as „1‟ since it is one

the right. Moreover, both nodes have the same parent,

and the parent has two children, the nodes. After the

parent node is created, it must be inserted into the

linked list by combining the value of the node and the

value of the linked list. The node must be added to the

left of the larger or same value. However, if the parent

node is greater than every node, it has to be inserted

after the last node.

C. Phase Three.

In this step, the tree is already structured. It is time

to retrieve the node sign by making a loop until the

www.internationaljournalssrg.org

 SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 8–August 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 107

parent of the last node is empty (null).

procedure Write_Huffman;

var

 result : string;

 bit : string[1];

begin

 Current := Head;

 repeat

 result := '';

 Cursor := Current;

 Current^.Dec := 0;

 Biner := 1;

 if Cursor^.ASCII <> '*' then

 begin

 repeat

 if (Cursor^.Bit = 0) or

(Cursor^.Bit = 1) then

 begin

 Current^.Dec := Current^.Dec +

 (Cursor^.Bit * Biner);

 Biner := Biner * 2;

 str(Cursor^.Bit, Bit);

 insert(Bit, result, 1);

 end;

 Cursor := Cursor^.Parent;

 until Cursor^.Parent = NIL;

 end;

 Current^.Code := result;

 Current := Current^.Next;

 until Current^.Next = NIL;

end;

The nodes which are not parents are retrieved.

Moreover, the node sign from the node will be

inserted into a single string.

D. Phase Four.

Each node has consisted of code. This phase,

everything that has been coded is converted to a

Huffman table. Table 1 shows the priority of

characters. The character “K” has the most appearance

while the character “T” has the less one.Characters

with the highest emergence is having the shortest

binary code.

TABLE IHUFFMAN TABLE

Char Freq. Code Bit Len. Code Len.

T 1 1000 4 4

- 3 1001 4 12

U 3 1100 4 12

 3 1101 4 12

I 4 101 3 12

L 6 111 3 18

A 6 00 2 12

K 7 01 2 14

96

Each code represents the character. It consists of a

few digit of the binary string. The previous text will be

transformed into the new binary set. The old eight-bit

binary is replaced by the new one. Let‟s see the

example below:

Original Text : LIKA-LIKU LAKI-LAKI TAK

LAKU-LAKU

Original Code :

111 101 01 00 1001 111 101 01 1100 1101

111 00 01 101 1001 111 00 01 101 1101 1000

00 01 1101 111 00 01 1100 1001 111 00 01

1100

Bit Code :

11110101 00100111110101110011011110001101

100111100011011101100000 0111011110001110

01001111 00011100

Decimal Code :

254, 39, 215, 55, 141, 158,

55, 96, 119, 142, 79, 28

Fig. 5Running Program (Part. 1)

Fig. 6Running Program (Part. 2)

Fig. 7Running Program (Part. 3)

www.internationaljournalssrg.org

 SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 8–August 2016

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 108

Figure 5 to Figure 7 are the Huffman running

processes. The original text before compression takes

33 characters length. Sooner after being compressed,

the string only takes 12 characters. It saved 21

characters.

The illustration:

Original Text Length : 33

Coded Text Length : 12

Saving Rate : (33 – 12) / 33 *

100 %

 63.63636 %

By doing this algorithm, the compression rate

achieves 63% of the original message. Of course, it

will save the storage capacity.

IV. CONCLUSION

This research should explain the basic technique on

how to implement the compression algorithm.

Huffman algorithm can combine with the greedy

algorithm which always find the easiest ways from the

nearest node. There are four phases in the Huffman

algorithm to compress a text; the first is the phase to

manage and get the frequency of the character. The

second is the formation of the Huffman tree; the third

is to form the code from the node sign. Moreover, the

last phase is the encoding process. However, in this

paper, the author only perform the encoding method,

the decoding is under a project. Applying Huffman in

compression will again more space in the storage.

Huffman encoding is very powerful to the text

message which has similar character occurrence.

REFERENCES

[1] A. Malik, N. Goyat and V. Saroha, "Greedy Algorithm:
Huffman Algorithm," International Journal of Advanced

Research in Computer Science and Software Engineering,
vol. 3, no. 7, pp. 296-303, 2013.

[2] A. S. Sidhu and M. Garg, "Research Paper on Text Data

Compression Algorithm using Hybrid Approach," IJCSMC,
vol. 3, no. 12, pp. 1-10, 2014.

[3] H. Al-Bahadili and S. M. Hussain, "A Bit-level Text

Compression Scheme Based on the ACW Algorithm,"
International Journal of Automation and Computing, pp. 123-

131, 2010.

[4] I. Akman, H. Bayindir, S. Ozleme, Z. Akin and a. S. Misra,
"Lossless Text Compression Technique Using Syllable Based

Morphology," International Arab Journal of Information

Technology, vol. 8, no. 1, pp. 66-74, 2011.
[5] M. Schindler, "Practical Huffman coding," 1998. [Online].

Available: http://www.compressconsult.com/huffman/.

www.internationaljournalssrg.org

