
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 4 Issue 6 – June 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 17

Data Cache with Distributed Cache: A Design

Approach

Shah Imran Alam#1, Samar Wazir*2, Aqeel khalique#3, Syed Imtiyaz Hassan#4
Department of Computer Science & Engineering

Jamia Hamdard (Hamdard University), New Delhi, India

Abstract

Caching techniques has helped developers

to deliver applications that are capable of fast

turnaround time which otherwise could have been

much slower and under-performed software

solutions, less worthy of user’s appreciation.

Caching can typically be used at both hardware and

software levels with the same ultimate goal of either

achieving higher throughput or higher latency or

both together. Limiting the subject to software level

cache, the caching techniques could further be

introduced in one of the two categories namely web

cache and data cache. While web cache is often

defined in the context of a browser which is a client-

side application, the data cache is defined in the

context of caching needs of a data extensive

application. In terms of a database management

system, it means a cache provisioned at the

database services itself whereas, in the context of

the application, it means the cache that spans

through layers of the application, more precisely

termed as tiers in a multi-tier application that is

designed to cache an already queried data. The

requirement of frequent data access in high

volumes, in distributed applications, drives the need

for more capable infrastructure towards building a

caching framework. In this paper, we focus our

discussion on data cache requirements of a

distributed application and the key design factors

that distinguish a distributed cache as an elegant

cache service provider plugin to such distributed

applications. We also propose a simplistic design

that could be used to implement the core of a custom

distributed cache.

Keywords

 Data Cache, Distributed cache, caching

strategies, Eviction policy, Custom cache.

I. INTRODUCTION

Databases are usually the most difficult and

costly off the shelf components of an application to

scale up in the software architecture. Generally,

distributed applications itself have a large volume of

caching requirements if they are data intrinsic

applications. The following are the key factors that

make the baseline reasons for the use of caching as a

solution in such applications.

Factors that pushes the designers to consider data

caching in distributed applications

A. To improve upon the performance of the

application.

The applications which largely depend on

database operations, especially very frequent read

operations on data set, based on some access pattern

are the ideal candidate to go as cache elements that

could save on the query time on next access request.

The query time directly from the database largely

depends on input-output operations which have a

high turnaround time and also depends on the two

ways, network communication time between the

data access layer and the database.

 Normally the data seek time is more expensive part

of the communication because of slow input-output

speed but in the case of multiple queries that are

executed as part of a single transaction, or a

complex join operation also could become a

performance bottleneck due to the network

communication delay.

B. To reduce the database load.

Scaling up the database itself is a costly affair

and if there is any such requirement then the data

cache could be helpful, as it may limit the number of

requests actually being served from the database

directly. So, when we consider this factor we are not

just optimizing the performance but also on the cost

of database scalability, hence gaining a dual

advantage.
C. To reduce web-service lookups.

Not only databases are the only components in

distributed application that are queried for data

access but there could be decoupled services

running on the cloud or even a network in case the

service provider component is implemented in a

heterogeneous technology stack. Typically web-

services are used to invoke such operations. In

particular, cases where these web-services offer the

lookup operations, the result set obtained becomes

an important piece of information that could be

requested much frequently and hence candidate to

be cached.

D. To obtain greater concurrency benefits.

For the read-only operations, that are the

fundamental requirements in most of the cases
where caching is employed, a greater concurrency

as compared the databases, could be achieved and

hence add up to the performance benefits.[1]

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 4 Issue 6 – June 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 18

II. INTRODUCTION TO DISTRIBUTED

CACHE

A cache solution generally comes as a

pluggable component that could temporarily save

data in the memory instead of the file system so that

the subsequent requests could be served faster. That

data that is normally saved in a cache is either a data

object resulting from the direct query to the file

system database or could also be a result of

computations leading to derived data objects.

The request scenario is that, if the required

data is found in the cache then it is served directly

and is termed as a ‘cache hit'. Otherwise, it is called

as a ‘cache miss' and would require the control to

direct the fetch routine to reach out to the database

and data be fetched from the storage. That means,

more the request could be directly fulfilled from the

cache less would be the load on the database and

also that would result in a lot of time-saving in the

network communication and the input-output hence

increasing the overall application performance. [2]

In the case of a distributed application, the

distributed components run on a different Java

virtual machine, assuming the case of a typical java

based application. The scenario could be easily

mapped in all technologies that support distributed

application’s development. If the cache is also

distributed along with the components, then this

cache distribution becomes a baseline for removing

performance bottleneck that leads the application to

drastically slow down resulting in an extremely poor

user experience. The cache distribution could be

modelled as an identical copy to gain the highest

degree of performance or could be modelled as a

partitioned cache to conserve the resource. [3]. The

essence, in general, remains unchanged, that is,

reuse the data by saving in high-speed memory that

could be needed to be accessed frequently. The

caching component’s distribution along with the

distributed component of the application adds

substantial complexity, especially to ensure that the

distributed cache should remain in sync and updated

with the master copy which is saved in the physical

storage.

There can be following ways to achieve cache level

distribution:

1. Notification based distributed caches – It

adopts master-slave architecture. When the master

node gets an update it sends notifies the rest of the

slave node. The notification policy is centralized in

this case. [4]

2. Reconciling distributed caches - The

synchronization policy mimics the batch update.

Based on pre-configured time delay the notes get

updated from the master not or reconcile

themselves.[5]

III. CACHING STRATEGIES

The techniques that are used to foresee and

figure out which data is stored in a faster

Storage that is a distributed cache is termed as

caching strategies. These approaches can take up

different paths based upon the pattern of data access

and how often the data is accessed.[6]

Locality is one of those factors which could be used

to decide upon the caching strategy. Applications

which display high tendency of locality of reference

phenomenon are preferred choices for performance

optimization with locality based strategies.[7]

Following are the well-known locality based

caching strategies.

A. Temporal Cache

Temporal locality is intended to the fetch data

or resources in comparatively small temporal gaps.

Temporal locality is more fit for frequently fetched

and relatively less volatile information. The more is

the temporal cache, the less would be the cache

miss.

B. Spatial locality

Unlike a temporal cache, spatial locality takes

the advantage of the use of data elements which are

positioned close in the storage. So adjacency

is the factor that takes over the charge in

this scenario.
C. Sequential Cache

A linear arrangement of the data is a typical

requirement to get benefitted from this Sequential

locality, which is a special case of spatial locality

itself. The fetch time benefit comes because of the

traverse is less costly.

D. Static Cache

Once the data values are cached, they are never

removed from the cache. Such cache is suited for

the applications which do not need to change of data

in the entire lifetime. Hence such cache

implementation does not need the synchronization

abilities. [8]

IV. THE WAY DISTRIBUTED CACHES WORK

A cache is comprised of a pool of data entries.

Every data-entry has an information that is a

duplicate of similar information in a backup store.

At the point when the cache of a CPU, of a web

browser or of an operating system needs to get

information, probable to exist in the cache, it

initially checks the cache. On the off chance that a

data-entry can be found in the cache, this coveted

information is utilized. This circumstance is known

as a ‘cache hit’.

The opposite scenario is when the cache is

looked up and found not to have the required data

value, is typically called as a ‘cache miss’. Then, the

missing data value retrieved from the physical

storage is normally copied into the cache, so that it

could be fetched upon the subsequent request.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 4 Issue 6 – June 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 19

During a cache miss, the CPU usually ejects some

other entry in order to make room for the previously

un-cached data value. The set of rules used to pick

up an entry to be removed from the cache is called

as cache ‘replacement policy’ or the ‘eviction

policy’. There are several proposed replacement

policies in the literature. One such popular

replacement policy, that is ‘least recently used’

(LRU), which substitute the least recently used data

element.[9]A better computation factor could be the

frequency as seen against the size of the data

element.

Contrary to read operation, When a system

writes an information to the cache, it should also

write that data to the backing storage either

synchronously or asynchronously. This timing

decision, of when to write is configured as the ‘write

policy’. A ‘write-through cache’, results in a

synchronous write whereas, in a ‘write-back’ or

‘write-behind’ cache, writes are done at a later time,

most suitable in an asynchronous fashion or in a

synchronous fashion as batch update routine. This

policy facilitates the marking procedure of the cache

locations that have been written over and are

marked dirty. [10]An explicit notification could also

be used to trigger the cache sync to begin to write

back the data to the main storage.

Moreover, system components, other than the cache

itself may also change the data elements in the

storage, which also makes the data stale in the cache.

The communication protocols employed by to keep

the data up-to-date are termed as ‘coherency

protocols’.[11]

V. SCENARIO OR THE USE CASES IN

WHICH DISTRIBUTED CACHE WORKS

A. To improve performance by replacing

expensive reads

An application which is dependent highly on

frequent database access will have frequent read

calls. Such calls are expensive due to

communication lag as well as input-output latency

which is quite high as compared to CPU operation's

time and depends on a on the business logic and

data retrieval patterns, for example, locality.

B. Partitioned distributed cache

Another use case of a distributed cache is a

partitioned Distributed cache, in which the part of

data lives in one node while the other parts of the

data are distributed among other nodes, sometimes

also with a backup copy of the data. This could be

useful if the amount of data is very large.

C. Complex queries and calculations result-set

In case data value comes from a combination of

database processing and complex calculations or

just complex computation itself, such results can be

cached, and requests coming again for the same

operational result can be fetched from the cache.

D. Session caching

Session Caching is the technique used to handle

failover. In this case, the session is cached and

duplicated across the whole of the cluster. So, if one

node fails, the control is transferred to another

working node and because the replicated session is

there to pick up and keep the communication alive.

E. Design improvement considerations

Once it has been decided that data caching is an

integral part of the architecture, choosing the right

caching solution can prove to be difficult. There is

always an option to implement a caching solution

from scratch. Another solution is to choose one of

the open-source caching products.

VI. IMPORTANT DESIGN ASPECTS

While choosing a caching solution or designing a

solution from scratch, the following aspects should

be considered

1) Does caching solution provide easy integration

with an ORM product?

It should be easy to integrate the caching

product with some of the popular ORM products

such as Hibernate and Toplink, to name a few. All

ORM tools map database entities to domain objects

typically modeled as simple objects with attributes

and corresponding getters and setters. Caching

solution should be capable of being used to cache

such objects returned by ORM.[12]

2) Does caching solution allow storage of objects

on disk in an efficient way?

In case the memory capacity is full, the cache

product should evict objects to a local disk. A

typical implementation may use plain serialization

whereas a good solution may use a more efficient

implementation that could probably use a format

that may need less memory space. The mechanism

employed could also provide a technology agnostic

solution as against serialization which works only

for Java object. These criteria could only be

considered if the possibility of failover is high and

that the cache data is large. This is when the solution

would require persisting cache data on a frequent

basis on the disk. Such caches empowers the

persistence capability

3) Is it easy to use?

A cache product should expose minimum API

for the client to use. For example, a good solution

may provide a single API to fetch the data from all

possible integrated sources of data storage, whether

it is from the local cache or from a distributed

partition. The more is the complexity hidden, more

are the chances of developer community adopting it

fast.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 4 Issue 6 – June 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 20

Another API simplification approach could be

providing a single function for putting the data in

the cache and updating the data store instead of two

separate functions. This typically models the façade

design pattern. The caching solution may support

many topologies for clustered data management by

using a single API, The movement from on topology

to the other remains simple. A consistent logical

view is always a preferred design.

4) Is it easy to maintain?

The cache product should have proper logging

facilities in order to debug the code. It should also

provide a good monitoring tool that could collect

and present the statics in a usable form. The

monitoring system should be pluggable to custom

built views and should have the capability to easily

build reports.

5) Does it adhere to standards?

Standards force the solution providing vendors

to follow single specification and hence the choice

of migration from one vendor to the other is always

open to the customers. For example, JSR107 is one

of standards for cache implementation.[13]

VII. LIMITATIONS OF EXISTING

SOLUTION THAT MAY MOTIVATE THE

CUSTOM IMPLEMENTATION.

1. The caching solution is specific to database

entities. Another caching mechanism like web

caching is missing.

2. ORM based cache loader is not available

for the ORM framework used in the project. It could

provide a clean design and more maintainable code.

3. Eviction policies could be implemented

with much fine-grained control and could be

mapped to production behavior which could be

different because of the nature of the application.

4. Monitoring capabilities may not have the

capability to provide the type of insight required.

5. A better design consideration is needed to

minimize the complexity of APIs used to integrate

the application. For example for database content

caching, an in-memory database could be used

instead of a hashmap as it will provide optimized

solutions with inherent advantages like indexing. It

also provides SQL queries to be forwarded to the in-

memory database in case an ORM framework is not

used or we need to integrate caching solution with a

legacy system.

We present here a basic Low-level design of a

distributed caching solution that could be used as a

guideline for the custom distributed cache

implementation

A. Class Diagram:

The class diagram in figure 1 presents the

structural view of core of a distributed cache

solution. Some of the important entities of the class

diagram are detailed as below. The names could

mean a reference to entities shown in the class

diagram as presented in figure 1 as well as the

functionality indicator.

1) CacheConsumer

The cache consumers provide the read-only

capability from the Cache. There is one cache

consumer for every entity. A cache consumer has an

instance of cache loader.

Example: For Account entity, we may have

AccountCacheLoader which implements

CacheLoader. So AccountCacheConsumer may

have a reference to AccountCacheLoader injected in

it.

2) Cache Group

A cache group is a collection of cache

consumers and all the cache Consumer in a cache

group share a common transaction. It could be

modeled as an attribute of CacheManager and hence

have a ‘HAS-A’ relationship with CacheManager.

This is similar to the concept of regions in many

known based caches. Every such cache group has its

own settings that could be configured for example

reconciliation time for a cache group is one such

parameter.

The cache group is defined in the configuration

and contains members in it which are either cache

consumers or cache managers or a combination of

both. It moreover also contains topic names to

which it sends the events and from which it listens

for updates Every entity extends CachebleObject

and inherits these properties

3) Cache Loader

Cache loader is the entity that connects to the

database and initializes the cache. Different

implementations are shown in the class diagram,

each with specialized storage mechanism in the

context.

Cache Loader contains these operations

a. Load() : Loads every entity from the

database.

b. loadByIds(Collection keys): Loads entities

whose keys are in the collection parameter.

c. loadVersionIds(): Loads only the version id

to compare with the cache version id.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 4 Issue 6 – June 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 21

Figure 1

4) CacheManager

A Cache Manager is extended from Cache

Consumer and provides both read and write

functionality. Like Cache consumer, there is one

Cache Manager for every entity. To retrieves the

data from the cache it uses the inherited methods

from cache consumer. whereas it implements its

own methods for putting the data into the cache. To

put the data into the cache it uses the instance of

Cache Provider. An implementation to Cache

Provider could be Map Provider which saves the

data into a hash map.

VIII. DISTRIBUTED CUSTOM CACHE

DEPLOYMENT

In figure 2 below we present the deployment

architecture for our custom distributed caching

solution. Central Server is a component that

contains all the entities in its cache. The Server

could be replicated to handle failover. The client

nodes (subsystem) are distributed and contain a

subset of the entities from Central Manager Node

that depicts the cacheConsumers who have the read

operations only. For example, a subsystem that is a

trading application will contain only 20 relevant

entities out of say 50 entities in the central manager,

whereas another subsystem says portfolio

application may contain only 15 entities out of those

50 entities in the cachegroup<manager> node.

Another use case that is supported by the

caching mechanism is event-based processing when

the data changes in the cache. Once the changed

entity is published to an event queue, the

EventListners which are registered to those event

queues perform the synchronization. A typical

example would be a ValidationEventListener which

extends itself from Event Listener.

ValidationEventListener contains the validation

logic.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 4 Issue 6 – June 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 22

Figure 2

Figure 3

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 4 Issue 6 – June 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 23

IX. INDEXING IN CACHE AND CRITERIA

DESIGN ASPECTS.

The cache implementation is map based that is

cache elements are stored in the form of <key,

value> pair. Where key is the id and value are the

entity. When required to query on some other field

we need to create criteria. Criteria object contains

only one public method: evaluate (), that fetches the

result based on the criteria.

We can add multiple conditions in the query by

appending many criteria. The criteria object is

passed to the CriteriaUtil class that returns us the

final criteria which contain an array of all such

criteria. To support multiple conditions there are

many available Criteria like,

a. AndCriteria

b. OrCriteria

c. NotCriteria

d. NullCriteria

Indexed fields are specified while creating cache

consumers for that entity. The cache

contains a reference to an indexed map which again

contains <key, value> pair and where the key is the

indexed field and value is the reference to the

entities in the parent map. Because the entities in the

indexed map are only the reference and not the copy

of actual objects, so the only overhead is the data

structure but the search is faster.

X. RECONCILIATION SEQUENCE

A sequence diagram in figure 3 above illustrates

the behavioural aspect of the reconciliation

operation which is the focused functionality of our

discussion and the design.

To reconcile from the database only the version ids

are fetched and compared with the existing previous

version ids in the cache group. If the version ids are

changed then that entity is loaded from the database

and is added to a temporary map that is delta cache

map. The lock is obtained on the whole cache group

for the merge to happen. Once the merge of the delta

cache map with the previous cache is complete, the

lock is removed.

The put() operation:

The put() operation in cache Manager in

the normal context in any cache framework is not

the same as in this implementation. In normal

context, a put() operation is performed after a cache

miss occurs. The element is retrieved from the

database and before returning it back to the calling

function it is put into the cache via put() operation,

for future use. Because we get the whole copy of the

database in the cache, it means that the database is

no longer in the picture after loading. We get the

entity from the cache and we also update the entity

in the cache. The update happens through a call to

put(). This operation is, in turn, is responsible for

updating the database.

XI. CONCLUSION

In this paper, we have reviewed the purpose of

cache and its extension to a distributed application

in as distributed cache. We have also discussed

various design aspects which add value to the design

of a distributed cache. We have put an emphasis on

the fact that although various proprietary and open

source solutions are available, certain specialized

needs of the application may need a custom

implementation. Moreover, the architecture of the

application itself may not be open for easy

integration with the available solutions. The cost of

acquiring the solution or support may itself be a

reason to consider a custom solution which is

tailored to the in-house needs of the application and

is light weighted. We conclude our discussion with a

simplistic design of the core component that could

be used to realize a working implementation.

REFERENCES

[1] Wang Y, Rowe LA (1991) Consistency and Concurrency

Control. 367–376.

[2] Smith AJ (1982) Cache Memories. ACM Comput Surv

14:473–530. doi: 10.1145/356887.356892

[3] Cited R, City O, Data RU-A (2003) (12) United States

Patent. 1:0–4. doi: 10.1016/j.(73)

[4] KyleBrown Messaging To Update Distributed Caches.

http://wiki.c2.com/?MessagingToUpdateDistributedCaches.

Accessed 19 Jun 2017

[5] Borst S, Gupta V, Walid A, et al (2010) Distributed

Caching Algorithms for Content Distribution Networks.

[6] Cao P, Karlin AR, Li K A study of Integrated Prefetching

and Caching Strategies. 188–197.

[7] González A, Aliagas C, Valero M (1995) A Data Cache

with Multiple Caching Strategies Tuned to Different Types

of Locality. Ics 338–347. doi: 10.1145/224538.224622

[8] Sahuquillo J, Pont A (2000) Splitting the data cache: A

survey. IEEE Concurr 8:30–35. doi: 10.1109/4434.865890

[9] Podlipnig S, Böszörmenyi L (2003) A survey of Web cache

replacement strategies. ACM Comput Surv 35:374–398.

doi: 10.1145/954339.954341

[10] Koller R, Marmol L, Rangaswami R, Sundararaman S

(2013) Write Policies for Host-side Flash Caches. Proc 11th

USENIX Conf File Storage Technol 45–58.(2005) Cache

coherence protocol.

[11] Gupta P, Zeldovich N, Madden S (2011) A trigger-based

middleware cache for ORMs. Lect Notes Comput Sci

(including Subser Lect Notes Artif Intell Lect Notes

Bioinformatics) 7049 LNCS:329–349. doi: 10.1007/978-3-

642-25821-3_17

[12] JSR107Specification.odt.pdf.

