
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 4 Issue 9 – September 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 1

A Review: Software Security Testing

1Dr.S.Kannan, 2Mr.T.Pushparaj
1Research Supervisor, 2Research Scholar,

Madurai Kamaraj University, Madurai

Abstract

 Software security testing is an essential

means to ensure software security and trustiness.

Through the developingdifficulty of today’s software

applications order with the increasing modest

pressure has pushed the quality assurance of

developed software towards new heights. Software

testing is apredictable part of the software

development lifecycle, and possession in line with its

criticality in the pre and post development procedure

makes it something that should be provided with

improved and efficient methodologies and

techniques.Most technologists acknowledge this

responsibility’ssignificance, but themessential some

help in understanding how to tackle it. This new

section aims to deliver that help by exploring

software security best practices.Finally, the paper

points out future focus and development ways of

software security testing technology.

Keywords

 security testing, security functional

testing, security, vulnerability testing, testing tool,

Testing Frameworks.

I. INTRODUCTION

 Through the wide use of computer, software

developsextradifficult and large-scale, which also

consequences in more software security problems

increasingly. Software security is the capability of

software to delivernecessary function when it is

criticized. There isincreasing concern about security

testing, for it is observed as asignificant means to

improve security of software. Software security

testing is the method to identify whether the security

features of software implementation are reliablewith

the design. Software security testing can be separated

into security efficient testing and security

susceptibility testing. Security efficient testing

confirmswhether software security purposes are

executedacceptably and reliable with security

necessitiesfounding on security necessityrequirement.

Software security requirements mostly include data

privacy, reliability, obtainability, verification,

authorization, access control, audit, privacy

protection, security organization,etc. Security

susceptibility testing is to discover security

vulnerabilities as an attacker.

Susceptibility may be used to attack,

subsequent in a national of insecurity; Security

susceptibility testing is to recognize software security

susceptibilities. In this paper, the present approaches,

techniques and tools of security testing are examined

and summarized.

An essential and critical phase of the

computer security problem is a software problem.

Software deficiencies with security consequences

including implementation bugs such as buffer

overflows and design flaws such as unpredictable

error handling potential to be through us for years.

All too often, malicious intruders can hack into

systems by exploiting software faults. Internet-

enabled software requests current the greatest

common security risk encountered today, with

software‟s ever-expanding difficulty and extensibility

totaling additional fuel to the fire. Software security

best performs influence good software engineering

repetition and include rational about security initial in

the software life cycle, meaningful and understanding

shared threats, designing for security, and exposing

all software objects to detailed objective

riskexamines and testing. Let‟s look at how software

security fits into the general thought of operational

security and inspect some finest performs for

building security in.

II. TYPES OF SECURITY TESTING

A.Formal security testing

The basic idea of proper technique is to

build an accurate model of the software, and delivers

software form requirement maintained by some

formal requirement language. Formal security testing

approaches can be categorized into proposition

substantiating and perfect inspection. Theorem

showing transforms program into rational formula,

and then usages the axioms and rules to

demonstratethe program is a valid theorem. Model

checking designates the performance of the software

by national transfer system S, using formula F, built

by consecutive logic, computation tree logic or the μ

calculus,, to describe necessities of the software

execution, and finds software susceptibilities through

automatic exploration for the state in S, which does

not meet F.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 4 Issue 9 – September 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 2

FIG 1 Security testing approach

Its significantimpression is to establish

official model of security necessities, such as state

machine model. Security testing is proficient by

penetrating the state space for the specific state in

violation of security constraint, which is also

adangerous state.As the classicalsize and

difficultyescalation, the state space

producesexponentially, JPL established a formal

modeling framework (Flexible Modeling Framework,

FMF) using SPIN to solve state detonation problem,

and established a testing tool created on property

(Property Based Tester, PBT). Technique of formal

security testing has some restrictions. For theorem

substantiating is problematic to attainedroutinely, it

necessitates high-

Quality staff to examine, which is very time-

consuming. So it is commonly used to confirm the

enterpriseproperly rather than definite code. For the

model checking method, thorough algorithm needs

all practical execution states, so it is hard to test

infinite state system and low efficient.

B.Model-based security testing

Model-based testing constructs a model by

the performance andstructure of software, and

thenoriginates test belongings from test model.Lastly

drive software to run the test cases. The performance

of Software system can be designated by input and

Outputsequence, activity diagram, sequence

diagram, collaboration diagram, and condition or data

stream. Software performance model and structure

model is the particularexplanation of the tested

software, which can be used to produce test cases.

Software testing models are usuallyused, such as

finite state machine, UML model, Markov chain.

Mark Blackburn complete research on model-based

security useful testing. The central project is

Automated SecurityFunctional Testing of NIST

Computer Security Division. The essentialimpression

is to use SCRModeling tool for softwareto model the

security functional requirements, which uses

thetechnique to describe security performance model

and then transforms itinto test description model.

The T-VEC tool will produce test vectors

establishment on test depiction model. It is also

important to increase test driver schema and shape

mapping between target thing and test situation.

Lastly test courses will be absorbedto run over

confirmed software. It is a common security valuable

testing technique, which depends on the possibility of

Development Testing

Design Maintenance

Analysis
Web Application Thread

Modeling/ Design and

Architecture Review

Web

Application

Source Code

Review

Web Application

Vulnerability

Assessment and

Penetration

testing

Solution and

Consulting &

Support

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 4 Issue 9 – September 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 3

security modeling capabilities, mainlyrelates to the

software, of which security determination can be

simply expressed by rational relations „and‟ or ‟or‟,

such as authorization, access control.

C.Fault injection-based security testing

Wenliang Du used fault injection technique

for softwaresecurity testing, which recognized fault.

Fault instillationattentions on the interaction opinions

of application and environment, including user input;

file system, network interface, and situation

variable.Connected project is PROTOS Security

Testing of Protocol Executions of OUSP; the aim of

the project is to test the protocol's safety. The highest

idea is to test whether software can replysuitably

using numerouskinds of protocol packets. In order to

determine software security susceptibilities, some

error data should be inserted into numerous protocol

packets, such as juggling the value of certain

protocol‟s field. Protocols maintained are HTTP, SIP,

WAP, SNMP, etc. The highest fault injection tools

are CECIUM, DOCTOR, ORCHESTRA, NFTAPE,

LOKI, Mendosus, OGSA, and FAIL-FCI. Fault

injection can professionallypretend a variability of

irregularperformance of software. The responsibility

injection determinations cankind the software

obligatoryspread a convinced state, which cannot

reach simply by the additional testing technology.

D.Fuzzy testing

Fuzzy Testing is effective to determine

security susceptibility,which develops more and more

attention. Fuzzy testing would inject random data

into package to test whether it can runusually under

the clutter input. Fuzzy testing is irrational, just

produces clutter data. Fuzzy testing would find flaws

of verifiedsoftware, which are problematic for the

other logical testing method.

E.Vulnerability scanning testing

Vulnerability scanning, as

asignificanttechnique to findsoftware security risks,

comprises testing space scanning and recognized

defects scanning. Testing space scanningcontracts

with network port, string, way data, network data and

other basics scanning, for instance,complete network

port scanning, it can be originate whether the port of

software is unlocked which should not open. Known

faults scanning find recognized flaws

regularlyfounding on the fault library.

F. Property-based testing

Paperdesignates a way of property -based

testing. Thetechniqueconverts security property of

software into requirementdesignated by TASPEC

language. It would extractthe code in relation to exact

property by program slicing technology, and discover

desecration of the code beside securityproperty

requirement. Property-based testing attentions on

some exact security properties, which can happen

requirement of classification and priority.

G.White box-based security testing

 These testing methodology aspectsunder

thecovers and into the subsystem of arequest.

Whileblack-box testing concerns itcompletely with

the inputs and outputs of arequest, white-box testing

allowsyou to see what is happening inside the

request. White box testing delivers a degree of

complexitythat is not obtainable with black-box

testing as the tester is able to refer to and interrelate

with the objects that includearequestrather than only

requiring access to the user interface. An instance of

a white-box system would be in-circuit testing where

someone is looking at the interconnections

amongeach module and confirming that each internal

connection is occupiedcorrectly. Additional example

from a dissimilar field might be an auto-mechanic

who looks at the inner-workings of a car to confirm

that all of the separateshares are occupiedcorrectly to

confirm the car drives properly.

H.Risk-based security testing

Brad Arkin, Gary McGraw,

etc.completeexploration on risk-basedsecurity testing,

which mutual the risk analysis, security testing with

software development lifecycle, as quick as possible

to invention high-risk security susceptibilities. This

methodaccentuated SDL (Security Development

Lifecycle). Misuse model, irregular scenario, risk

analysis and saturationtesting would be used in

numerousstep of software development.

III LITERATURE REVIEW

Gary McGraw, Bruce Potter. “Software

Security Testing”this research is a Testing software

security is a usually misunderstood task.

Completecorrectly, it drives deeper than humble

black-box searching on the presentation layer (the

sort achieved by so-called application security

tools)and even outside the functional testing of

security device. Tester‟snecessity use risk-based

methods grounded in together the system's

architectural authenticityand the attacker's approach,

to gauge software security sufficiently. By

recognizingdangers in the system and making tests

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 4 Issue 9 – September 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 4

driven by those risks, a software security tester can

correctly focus on parts of code in which an attack is

probable to succeed. This methoddeliversanadvanced

level of software security declaration than

isconceivable with classical black-box testing.

David P. Gilliam, John D. Powell, Matt

Bishop. “Application of Lightweight Formal

Methods to Software Security” in this article stresses

a Properrequirement and confirmation of security has

establishedanexciting task. There is no single

technique that has establishedpossible. Instead, an

integrated method which associations several formal

methods can intensification the assurance in the

verification of software security possessions. Such

atechnique which specifies security properties in a

library that can be re-used by 2 instruments and their

methodologies established for the National

Aeronautics and Space Administration at the Jet

Propulsion Laboratory aredesignated herein The

Flexible Modeling Framework is a model

createdconfirmation instrument that uses Promela and

the SPIN model manager. The Property Based Tester

uses TASPEC and a Test Execution Monitor. They

are used to reductionsusceptibilities and unwanted

exposures in software during the growth and

protection life series. These tools are

currentlyexistencedirected with a COTS Server-

Agent Request.

 Ramaswamy Chandramouli, Mark

Blackburn. “Automated Testing of Security

Functions Using a Combined Model and Interface-

Driven Approach” this proposed an Independent

security practical testing on a product occupies a

backseat in traditional security assessment because of

the cost and stringent coverage necessities. In this

paper we present the particulars of amethod we have

established to automate security functional testing.

The essential framework is named Test Automation

Outline and the toolkit we have establishedfounded

on TAF we call it as TAF-SFT toolkit. The TAF-SFT

toolkit uses the text-baseddescription of security

functions providing by the product vendor and the

necessities of the underlying security model to

progress a machine-readable description of security

purposes using the Software Cost Reductionofficial

language. The subsequentinteractiverequirement

model is then processed through the TAF-SFT

Toolkit to produce test vectors. The interactive

model and the test vectors are then combined with

product interface conditions to mechanicallyproduce

test drivers. Exemplify the request of TAF-SFT

toolkit for security useful of a profitable DBMS

product. Also discuss the advantages and

disadvantages of using TAF-SFT toolkit for security

useful testing and the situations under which you

minimize the influence of disadvantages. Reports

Title: 18th Annual Computer Security Applications

Conference.

Du Wenliang, Mathur A P. “Vulnerability

Testing of Software System Using Fault

Injection”this paper proposed amethod for testing a

software system for conceivable security flaws.

Usually, security testing is complete using diffusion

analysis and officialapproaches.

Based on the observation that greatest

security faults are activated due to a flawed

communication with the situation, that view the

security testing problem as the problem of testing for

the fault-tolerance possessions of a software system.

Consider each environment agitation as a

responsibility and the resulting security cooperation a

disappointment in the allowance of such faults. Our

method is created on the well-known method of fault-

injection. Situation faults are inserted into the system

under test and system performance observed. The

failure to tolerate responsibilities is apointer of a

possible security flaw in the system. An

Environment-Application Communication fault

model is proposed. EAI permits us to choose what

faults to insert. Based on EAI,current a security-flaw

organization scheme. This arrangement was used to

categorize 142 security flaws in a susceptibility

database. This organizationexposed that 91 % of the

security faults in the database are enclosed by the

EAI model.

Xia Yi-min, etc. “Security Vulnerability

Detection Study Based on Static Analysis” this

research Software security testing is

asignificantresource to confirm software security and

trustiness. This paper first mostlydiscourses the

description and organization of software security

testing, and explores methods and tools of software

security testing extensively. Then it evaluates and

accomplishes the advantages and disadvantages of

numerous methods and the possibility of request,

presents taxonomy of security testing tools. Lastly,

the paper points out future focus and increase

directions of software security testing technology.

Ben Breech, Lori Pollock. “A Framework

for Testing Security Mechanisms for Program-Based

Attacks” this article Program susceptibilities leave

establishments open to mischievous attacks that can

result in plaindestruction to company finances,

resources, customer privacy, and data. Engineering

requests and schemes so that susceptibilities do not

happen would be the best answer, but this plan may

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 4 Issue 9 – September 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 5

be unreasonable due to fiscal restraints or insufficient

knowledge. Therefore, a variability of program and

system-based answershas been planned to contract

with susceptibilities in a controllable way.

Unfortunately, proposed approaches are often poorly

tested, since current testing methods focus on the

mutual case whereas susceptibilities are often

oppressed by uncommon inputs.

In this paper, we present the design of a

testing framework that allows theeeffectual,

automatic and methodical testing of security

mechanisms intended to avoid program based attacks.

The key insight of the framework is that dynamic

gathering technology permits us to supplement and

pretend attacks during program implementation.

Thus, a security apparatus can be tested exhausting

any program, not only those with

recognizedsusceptibilities.

J.Irena. “Software Testing Methods and

Techniques” In this paper main testing methods and

techniques are presently described. General

organization is outlined: two testing approaches black

box testing and white box testing, and their regularly

used methods. Black Box techniques:

CorrespondingSeparating, Boundary Value Analysis,

Cause-Effect Graphing Methods, and Assessment

Testing. White Box techniques: Basis Path Testing,

Loop Testing, and Control Assembly Testing. Also,

the organization of the IEEE Computer Society is

exemplified.

E. F. Miller, “Introduction to Software

Testing Technology”, in this article Software Testing

& Validation Methods Software testing is

amovement which is intended for assessingaquality

or competence of a program and confirms that it

meets the compulsory result. It examines the software

for definition bugs. Software testing is not impartial

used for finding and fixing of infections but it also

confirms that the system is occupiedpermitting to the

conditions. Software testing is a series of procedure

which is intended to make certain that the computer

code does what it was designed to do. In this paper if

have designated different software testing levels and

methods

M. Shaw, “Prospects for an engineering

discipline of software,” this research though

software engineering is not yet a factual engineering

discipline, it has the possible to become one. Older

engineering fields are inspected to determine the

attractiveness that software engineering might have.

The current state of software technology is

deliberated, covering information handling as an

economic force, the increasing role of software in

dangerous applications, the maturity of development

methods, and the technical basis for software

engineering practice. Five basic steps that the

software engineering occupation must take to become

a true engineering punishment are designated. They

are: understanding the nature of expertise,

distinguishingdissimilarbehaviors to get information,

inspiring routine practice, expecting professional

concentrations, and refining the coupling among

science and profitablerepetition.

B. Boehm, “Some Future Trends and

Implications for Systems and Software Engineering

Processes”this article In response to the accumulative

criticality of software within schemes and the

cumulativestresses being put onto 21st

periodschemes, systems and software engineering

procedures will changesuggestively over the next two

periods. This paper classifies eight comparatively

surprise-free movementsthe increasing

communication of software engineering and systems

engineering; augmentedimportance on users and end

value; increased emphasis on systems and software

reliability; progressively rapid alteration; cumulative

global connectivity and essential for systems to

interoperate; increasingly composite systems of

systems; increasing requirements for COTS, recycle,

and heritage systems and software incorporation; and

computational sufficiently. It also recognizes two

“wild card” trends: increasing software autonomy

and groupings of biology and computing. It then

converses the likely inspirations of these trends on

systems and software engineering procedures

between now and 2025, and

offeringsadevelopingascendable spiral procedure

model for coping with the resulting challenges and

chances of emerging 21st century software-intensive

systems and systems of systems.

M. I. Babar, “Software Quality

Improvement for chargecreated systems finished

Stakeholders Quantification”, this exploration based

on Software quality declaration plays an

significantpart to patterned the general quality of the

software

productparticularly when a creation is a value based

system. The appreciated software product or product

line is tested under severeconditions to meet the

leastrestrictions of software quality. This paper

emphases on stakeholders, necessities engineering,

dissimilar testing methods being functional in

software specialized environment, problems and

current fashions to resolution the

obligationdifficulties for continuous software quality

development.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 4 Issue 9 – September 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 6

These paper offerings the criticality of stakeholders,

necessities and software testing approaches for

software specialists in terms of quality assurance. A

model is planned in order to realize a high quality

worth based software request. There is the terrible

need to participateparticipants, necessities and testing

in order to appraise the performance and excellence

of a worth based system.

A methodical stakeholder investigation

framework does not exist, and there is the essential of

a methodical framework that may be accepted as a

normal. This investigation also emphases on a

systematic shareholder‟s identification and

quantification framework.

M.S. Sharmila and E. Ramadevi. "Analysis

of performance testing on web application” this paper

stress on Web Applications isextensively known as

the structure blocks of typical facility oriented

requests. Presentation of such an application system

is mostly dependent upon the apparatuses of web

requests. Testing web request is nothing but to find

out mistakes in its satisfied, function, usability,

navigability, recital, volume, and security.

Presentation testing is a used to regulate the

receptiveness, throughput, reliability, and/or

scalability of a system under a given assignment.

This paper offeringspresentation testing

thoughts, purposes, goals, types and obtainable tools

for testing web applications recital.

IV SECURITY TESTING APPROACH

We can take the subsequent method

though making and preparation for Security

testing.

1)Security Architecture Study:

The primary step is to recognize the

business necessities, security goals, and purposes in

terms of the security compliance of the group. The

test planning should consider all security aspects, like

the group might have planned to attain PCI

compliance.

2) Security Architecture Analysis:

Recognize and evaluate the necessities of the

application under test.

FIG 2 Software testing approach

3) Classify Security Testing:

Collect all system setup information used for

improvement of Software and Networks like

Operating Systems, technology, hardware. Create out

the list of Vulnerabilities and Security Risks.

4) Threat Modelling:

Based on above step, prepare Threat profile.

5) Test Planning:

Based on identified Threat, Vulnerabilities

and Security Risks prepare test plan to address these

issues.

6) Traceability Matrix Preparation:

 For separately recognized Threat,

Susceptibilities and Security Risks make Traceability

Matrix.

https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 4 Issue 9 – September 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 7

Security Testing Tool identification: All

security testing cannot be implemented manually, so

detect the tool to perform all security test cases faster

& extra dependably.

7) Test Case Preparation:

 Make the Security tests instance document.

8) Test Case Execution:

 Achieve the Security Test cases

implementation and retest the fault fixes. Perform the

Regression Test cases.

9) Reports:

 Arrange thorough report of Security Testing

which comprises Vulnerabilities and Threats limited,

describing risks, and still open issues etc.

V. CONCLUSION

 As testers we work on all sorts of systems,

including protection or life critical systems. It is

significant that we understand the depth that we may

essential to go to confirm adequate testing is done.

The directions of software security testing methods

include security functional model of approval, access

control; formal security testing; risk-based security

testing and its request in software engineering; threat

model and attack tree based security testing. In

addition, beside with the growth of web service

newly, how to deal with security testing.

REFERENCES

[1] Gary McGraw, Bruce Potter. “Software Security Testing”[J].

IEEESecurity & Privacy, 2004, 2(5):81-85.

[2] David P. Gilliam, John D. Powell, Matt Bishop. “Application

of Lightweight Formal Methods to Software Security”[C]. In

proc. 14thIEEE International Workshops on Enabling

Technologies (WETICE 2005), 13-15 June 2005, Linköping,

Sweden.pp.160-165.

[3] Yan Jiong, etc. “Survey of Model-Based Software Testing”

Computer Science, 2004.31(2)

[4] Ramaswamy Chandramouli, Mark Blackburn. “Automated

Testing of Security Functions Using a Combined Model and

Interface-Driven Approach”[C]. In proc. 37th Hawaii

International Conference on System Sciences (HICSS-37

2004), 5-8 January 2004, Big Island, HI, USA.

[5] Du Wenliang , Mathur A P. “Vulnerability Testing of

Software System Using Fault Injection”[R]. Coast TR 98-02,

1998.

[6] Du Wenliang, Aditya P. Mathur. “Testing for Software

Vulnerability Using Environment Perturbation”[C]. In proc.

DSN 2000.pp.603-612.

[7] George Fink, Matt Bishop. “Property Based Testing: A New

Approach to Testing for Assurance”[J]. ACM SIGSOFT

Software Engineering Notes, 1997, 22(4):74～80.

[8] Xia Yi-min, etc. “Security Vulnerability Detection Study

Based on Static Analysis” Computer Science, 2006.33(10).

[9] Ben Breech, Lori Pollock. “A Framework for Testing

Security Mechanisms for Program-Based Attacks”[J]. ACM

SIGSOFT Software Engineering Notes, 2005, 30(4).

[10] Lieven Desmet, Bart Jacobs, Frank Piessens, Wouter Joosen.

“Threat modeling for web services based web applications”.

In proc. Eighth IFIP TC-6 TC-11 Conference on

Communications and Multimedia Security (CMS 2004),

September 2004, UK.pp.161-174.

[11] P. Ron. Software testing. Vol. 2. Indianapolis: Sam‟s, 2001.

[12] S. Amland, "Risk-based testing:" Journal of Systems and

Software, vol. 53, no. 3, pp. 287–295, Sep. 2000.

[13] Redmill and Felix, “Theory and Practice of Risk-based

Testing”, Software Testing, Verification and Reliability, Vol.

15, No. 1, March 2005.

[14] B. Agarwal et al., “Software engineering and testing”. Jones

& Bartlett Learning, 2010.

[15] K. Bogdan. “Automated software test data generation”.

Software Engineering, IEEE Transactions on 16.8 (1990):

870-879.

[16] Jacobson et al. The unified software development process.

Vol.1. Reading: Addison-Wesley, 1999.

[17] Everett et al., “Software testing: testing across the entire

software development life cycle”. John Wiley & Sons, 2007.

[18] J.Irena. “Software Testing Methods and Techniques”, 2008,

pp. 30-35.

[19] Guide to the Software Engineering Body of Knowledge,

Swebok, A project of the IEEE Computer Society

Professional Practices Committee, 2004.

[20] E. F. Miller, “Introduction to Software Testing Technology”,

Software Testing & Validation Techniques, IEEE, 1981, pp.

4-16

[21] M. Shaw, “Prospects for an engineering discipline of

software,”IEEE Software, November 1990, pp.15-24

[22] D. Nicola et al. "A grey-box approach to the functional

testing of complex automatic train protection systems."

Dependable Computing-EDCC 5. Springer Berlin

Heidelberg, 2005. 305-317.

[23] J. A. Whittaker, “What is Software Testing? And Why Is It

So Hard?” IEEE Software, 2000, pp. 70-79.

[24] N. Jenkins, “A Software Testing Primer”, 2008, pp.3-15.

[25] Luo, Lu, and Carnegie, "Software Testing Techniques-

Technology Maturation and Research Strategies‟, Institute

for Software Research International-Carnegie Mellon

University, Pittsburgh, Technical Report, 2010.

[26] M. S. Sharmila and E. Ramadevi. "Analysis of performance

testing on web application." International Journal of

Advanced Research in Computer and Communication

Engineering, 2014.

[27] S. Sampath and R. Bryce, Improving the effectiveness of

Test Suite Reduction for User-Session-Based Testing of Web

Applications, Elsevier Information and Software Technology

Journal, 2012.

[28] B. Pedersen and S. Manchester, Test Suite Prioritization by

Costbased Combinatorial Interaction Coverage International

Journal of Systems Assurance Engineering and Management,

SPRINGER, 2011.

[29] S. Sprenkle et al., "Applying Concept Analysis to User-

sessionbased Testing of Web Applications", IEEE

Transactions on Software Engineering, Vol. 33, No. 10,

2007, pp. 643 - 658

[30] C. Michael, “Generating software test data by evolution,

Software engineering”, IEEE Transaction, Volume: 27, 2001.

[31] A. Memon, “A Uniform Representation of Hybrid Criteria

for Regression Testing”, Transactions on Software

Engineering (TSE), 2013.

[32] R. W. Miller, “Acceptance testing”, 2001, Data retrieved

from

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 4 Issue 9 – September 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 8

(http://www.dsc.ufcg.edu.br/~jacques/cursos/map/recursos/T

estin g05.pdf)

[33] Infosys, “Metric model”, white paper, 2012. Data retrieved

from (http://www.infosys.com/engineering-

services/whitepapers/ Documents/comprehensive-metrics-

model.pdf)

[34] B. Boehm, “Some Future Trends and Implications for

Systems and Software Engineering Processes”, 2005, pp.1-

11.

[35] R. Bryce, “Test Suite Prioritization and Reduction by

Combinational based Criteria”, IEEE Computer Society”,

2014, pp.21-22.

[36] M. I. Babar, “Software Quality Enhancement for value based

systems through Stakeholders Quantification”, 2005, pp.359-

360. Data retrieved

from(http://www.jatit.org/volumes/Vol55No3/10Vol55No3.p

df)

http://www.dsc.ufcg.edu.br/~jacques/cursos/map/recursos/Testin
http://www.dsc.ufcg.edu.br/~jacques/cursos/map/recursos/Testin
http://www.dsc.ufcg.edu.br/~jacques/cursos/map/recursos/Testin
http://www.infosys.com/engineering-services/whitepapers/
http://www.infosys.com/engineering-services/whitepapers/

