
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 5 Issue 3 – March 2018

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 19

To Provide Privacy and Message

Authentication Process Based Link Topology

Discovery in Software Defined Network
Thota Renuka Kalyani1, G. Sivalakshmi2

Final M.Sc Student1, Lecturer2
 1, 2 M. Sc Computer Science, Chaitanya Women’s PG College, Old Gajuwaka, Visakhapatnam

Andhra Pradesh

Abstract:

 Topology discovery is an essential service

in software defined network and it underpins many

higher layer services. When we refer to topology

discovery, we actually mean link discovery, since the

controller learns about the existence of network

nodes during the Open Flow handshake. By

implementing software defined network we can find

routing and forwarding of transferred message. In

the routing process we can find out link between

source nodes to neighbour node. If the link in

existing it can generate path and goes to next

neighbour for finding link. If the link does not exist it

will treat an attacker and source node will go to next

neighbours. Like this we can find out routing from

source node to destination node. After that we can

transfer data from source node to destination before

we can perform encryption process.. By performing

encryption process we can convert plain format data

in to cipher and send that cipher format to

destination node. Before transferring cipher format

data to destination node the source node will

generate message authentication code for cipher

data. The cipher format data and message

authentication send to destination node. The

destination node will retrieve cipher format data and

message authentication code. The destination node

will again generate message authentication code of

cipher data and verify that code. If the code is

verified it will perform the decryption process and

get original plain format data. In this paper we are

implementing secure link discovery protocol for

finding routing and forward message. By

implementing this protocol we can provide more

security of transfer message or data and efficient

routing of transfer message.

Keywords:

 Put your keywords here, keywords are

separated by comma.

I. INTRODUCTION

Software-defined networking is a new paradigm

which revolutionizes network architecture through

the introduction of a software-controlled,

programmable forwarding plane. Traditional

networking devices are typically autonomous in

nature. Each device hosts its own operating system,

runs distributed control-plane protocols and builds a

local network state. The operating system, which is

often proprietary, consults the local network state

and configures specialized forwarding hardware

through proprietary application programming

interfaces (API) . SDN, on the other hand, eliminates

these control-plane operations from network devices

and moves the operating system to a logically

centralized controller, also referred to as the network

operating system. The controller exposes the

network state learned from the forwarding devices to

software-based network applications. Routing

decisions are made by the applications and

communicated to the controller, which in turn

translates these decisions in to forwarding rules and

programs the appropriate devices. Forwarding

devices then perform packet header matching against

these rules to determine the port on which to send a

packet out. Communication between the network

applications and the controller occurs over so called

northbound APIs. Communication between the

controller and forwarding devices occurs over

southbound APIs. The forwarding devices constitute

the data-plane, the controller constitutes the control-

plane, and the networks applications form the

management-plane . the difference between

traditional networks and SDN networks.

SDN can also be defined in terms of three

abstractions: forwarding abstraction, distribution

abstraction, and specification abstraction.

• The forwarding abstraction allows network

applications to make routing decisions without

knowing any details of the underlying hardware.

This is achieved through the use of open and

standardized protocols for the communication with

the forwarding devices.

• The controller implements the distribution

abstraction. This abstraction is essentially

responsible for two tasks. First, it is responsible for

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 5 Issue 3 – March 2018

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 20

installing forwarding rules on the network devices.

Secondly, it gathers information about the

forwarding layer and exposes this state information

to network applications thereby allowing them to

build a global network view.

• The specification abstraction allows network

applications to express desired network behaviour

without being responsible for the actual

implementation of the behaviour itself.

SDN offers network operators many advantages.

Decoupling the control and data planes allows the

forwarding devices to be manufactured at lower

costs since they no longer require the computing

intelligence to perform control-plane processing .

The centralized control allows the controller to

maintain an up-to-date view of the full network

topology. The exposing of this network state to

software applications enables better informed

forwarding decisions. Softwarization of the

forwarding decisions accelerates innovation and

service creation. Network operators no longer need

to wait for standardization and implementation of

new protocols. Instead, new functionality can be

deployed as plug-and-play software modules.

II. RELATED WORK

One of the key roles of the SDN controller is to

provide and maintain a global view of the network.

The controller provides this view as an abstraction to

the application layer, hiding a lot of the complexity

of maintaining and configuring a distributed network

of individual network devices. In this chapter, we

focus on topology discovery, which is a critical

service provided at the control layer of the SDN

architecture, and which underpins the centralised

configuration and management in SDN. The

contribution of the research includes an analysis of

the overhead of the current de facto standard for

SDN topology discovery. We further propose an

improved version and implement two variants of the

basic idea. Our improved method achieves the same

functionality, while reducing both controller CPU

load and control traffic overhead by up to 40%. We

present experimental results which demonstrate this.

One of the most important reasons to distribute

the network control is based on the fact that one

controller alone may not have enough capacity to

manage the whole network, and therefore it could

become a bottleneck in terms of processing power,

memory, or input/output bandwidth. As explained

in , in a centralized and reactive SDN network,

scalability problems can be caused by flow initiation

overhead or resiliency to failures. In large networks

with a distributed control plane, these scalability

problems may also arise, since controllers not only

have to process requests coming from switches it is

responsible for, but also requests sent from other

controllers. As in a centralized SDN network, in a

distributed SDN network, controllers have limited

capacity of memory and CPU that can be saturated if

the size of a network grows or if the switch load is

not distributed homogeneously between the

controllers, .In addition, increasing network traffic

lead to a reduction of the available bandwidth in the

links used by the control channels, limiting the

switch-to-controller communication. This situation

is critical in a reactive approach, given that the

controller cannot do anything about the control link

capacity as it cannot treat messages faster than it

receives them.

Several approaches have been proposed to

distribute the control plane across multiple

controllers to improve the scalability of SDN,

Kandoo , HyperFlow , and Onix , however, in these

approaches the controller placement is not defined.

Each one of those approaches distributes controller

states differently. Kandoo distributes controller

states by placing the controllers in two levels, a root

controller and multiple local controllers. Local

controllers respond to the events that do not depend

on global network state, while the root controller

takes actions that require a global network view.

HyperFlow handles state distribution of the

controllers through a publish/subscribe system based

on the WheelFS distributed file system. Finally,

controller state distribution in Onix is managed

through a distributed hash table. In general,

controller placement approaches are not concerned

with the controller scalability, because they assume

that commercial controllers are scalable in terms of

capacity (quantity of flows processed per second).

However, it has been demonstrated that, controller

overload and long propagation delays among

controllers and controllers-switches can lead to a

long response time of the controllers, affecting their

ability to respond to network events in a very short

time and reducing the reliability of communication.

III. PROPOSED SYSTEM

This paper we are implementing secure link

discovery protocol for finding route form source

node to destination node and also provide security of

transferring data. In the implementation of this

protocol we can also provide authentication of

transferred message. By performing message

authentication we can identify the transferred

message is corrupt or not. Because in the network

we have attacker for corrupt data or loss the

information. So that we can provide authentication

of message and also provide security of transferred

message. Before transferring message from source

node to destination node the software defined

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 5 Issue 3 – March 2018

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 21

network controller information related to all nodes

or switches in the network. The nodes information

contains id, ip address of each node, port number

and also maintain link status of each node in the

network. The software defined network controller

also send those links status all nodes in the network.

So that by using link status we can identify routing

from source node to destination node. After finding

routing from source node to destination node the

source node will perform encryption process for

converting message into cipher format. The source

node takes that cipher format data and generates

message authentication code by suing message

digest five algorithm. The completion message

authentication process the source node will send

cipher format data and authentication to destination

node. The destination node will retrieve and perform

the authentication process of message. If the

message authentication process succeeds then the

destination node will perform the decryption process

and get original plain format data.

A) Nodes Initiation Process:

 In this module every node will send request

to software defined network controller for

communication purpose. The SDN controller will

accept request and send id, distance between nodes

in the network. In the initiation process the software

defined network controller also maintain information

related to all nodes. The information of all nodes

contains id of each node, ip address of nodes and

port number. After sending the all nodes id and

distances the software defined network controller

will also send link status all nodes in the network. by

using link status we can find out routing from source

node to destination node. The implementation

process of routing is as follows.

B) Shortest path route discovery:

 In this module the source node will send

request to software defined network controller and

controller will check the all node link status. Based

on link status of all nodes the software defined

network controller will find the shortest route by

calculating distance of all nodes in the network. in

the routing process the software defined network

controller will take all route information and check

the if the link is exits its neighbour node of source

node. If the link is exists it take those distance value

and add into variable. Take another node of route

and find out link is exists and take distance values

add to variable. This process will repeat until end of

the route. Take those routing distance value and

compare for finding smallest values. Take that

smallest value containing routing as shortest route

and transferred message through that path. After

completion of routing process the source node will

perform the encryption process.

C) Encryption process:

 In this module the source node will

transferred message to destination node. Before

transferring message the source node perform the

encryption process. The implementation process of

encryption is as follows.

1. Input the text .

2. Convert the previous text to ASCII code.

3. Convert the previous ASCII code to binary data.

4. Find out One’s complement of the previous binary

data.

5. After converting one’s complement that data can

be generate in grid with size of 32*32.

6. After that we can shift outer circle in clock wise

and inner circle shift anti clock wise.

7. The completion of shifting operation we can get

that data and send to destination node.

After completion of encryption process the

source node will generate authentication code and

send to destination node. The implementation

process message authentication code is as follows.

Message Authentication Code Process:

In this module the source node will generate

authentication code for cipher format data. The

generation of authentication code is as follows.

D) Algorithm: authentication code of message or

data

 Input: The plain text

 Output: authentication code message and append to

message

E) Procedure:

 Msg_Len= Calculate length of (message)

 Block_len=length of block is 128 or 256 or 512

 Res_bits---->take the 16 bits are reserved bit

 P=Msg_len%Block_len;

 Q=Block_len-(Msg_len+Res_bits)

 If(Q>0)

 Flappend the Q zeros to end of file

 Else if(Q<0)

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 5 Issue 3 – March 2018

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 22

 RBlock_len+Q

 Fl append R zeros to end of the file

 Fl the reserved bits are append to end of file

The following steps are generating signature of file

as

Len calculate length of file after append zero to

end of file

Count len/Block_len

 For I 1 to count

S0

Sreverse[∑block_len
a (A®B)V(A^B)]

Where BAscii value of character (A)

Sigsig+to_binary(S)

FNcipher+sig

The source node takes those cipher format data and

authentication code send to destination node through

shortest path. The destination node id will retrieve

cipher format data and authentication code again

generates authentication code for cipher format data.

The generation of authentication code is same as

message authentication process. After completion of

verification process the destination node will

perform the decryption process. The implementation

of decryption process is as follows.

1. The receiver will get cipher format data and

generate grid with size of 32*32.

 2. After completion grid generation we can perform

clock wise shift of outer circle and anti clock wise of

inner circle of grid. That way we can perform all

circle shifting and get shifted cipher format data.

3. Take that shifted data and perform the once

complement for completion length of message.

4. After completion of once complement we can

convert that data into ascii format.

5. After that data can be convert into character.

 6. After converting character we can get original

plain format data.

By implementing those concepts we can improve

performance for finding routing and also provide

more security of transferred message.

IV. CONCLUSIONS

In this paper we are proposed secure link

topology discovery for transferring data from source

node to destination node. Before transferring data

the server will build network and the network will

contain link state of each node in the network. After

that the server will send all remaining nodes

information to all nodes. The completion of network

building source node will enter transferred message

and performing the encryption process. By

performing encryption process the message will be

convert into cipher format. Take the cipher format

and generate authentication code for that cipher

format data. After completion of message

authentication code and source node will send cipher

format data and message authentication code to

destination node. Before sending information the

server will find out shortest route and also find out

each node link status. if the link status is available in

the every node and sever will send information

through shortest route. The destination node will

retrieve cipher format data and message

authentication code. After that the destination node

will perform the decryption process and get original

plain format data without corrupting of cipher

format data. If the cipher format data is corrupted

stop the decryption process and will not get any

message. By implementing those concepts we can

provide more security of transferred message and

also generate an efficient routing discovery by using

link topology.

REFERENCES

[1] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,”

Queue, vol. 11, no. 12, p. 20, 2013.

[2] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska,

“Efficient topology discovery in software defined

networks,” in IEEE ICSPCS, 2015.

[3] GENI Wiki. [Online]. Available:

http://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtoco

l

[4] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N.

McKeown, and S. Shenker, “Nox: Towards an operating

system for networks,” SIGCOMM Comput. Commun. Rev.,

vol. 38, no. 3, Jul. 2008.

[5] Open Flow Standard. [Online]. Available:

https://www.opennetworking.org/sdn-

resources/onfspecifications/openflow

[6] IEEE standard for local and metropolitan area networks–

station and media access control connectivity discovery,”

IEEE Std 802.1AB-2009 (Revision of IEEE Std 802.1AB-

2005), pp. 1–204, Sept 2009.

[7] B. Lantz, B. Heller, and N. McKeown, “A network in a

laptop: rapid prototyping for software-defined networks,” in

Proceedings of the 9th ACM SIGCOMM Workshop on Hot

Topics in Networks.

[8] Open vSwitch. [Online]. Available: http://openvswitch.org

[9] Scapy Library. [Online]. Available:

http://www.secdev.org/projects/scapy/doc/usage.htm

[10] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-

hashing for message authentication,” IETF RFC 2104, pp.

1–11. , February 1997.

[11] S. Turner and L. Chen, “Updated security considerations for

the md5 message-digest and the hmac-md5 algorithms,”

IETF RFC 6151, 2011.

[12] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx:

Detecting security attacks in software-defined networks,” in

NDSS’15, February 2015.

