
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 5 Issue 7 – July 2018

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 21

A Formal Approach using PEPA to

Performance Analysis of Service-Oriented

Architecture Style Specified through Graph

Transformation System

Afshin Bamshadi
Department of software engineering, Faculty of computer engineering, Islamic Azad University, Malayer, Iran

Abstract

 By spread of distributed extensive, concurrent

software systems, and the necessity of possessing an

efficiently acceptable software, it is required that

performance evaluation be ensued during the

preliminary processes of software development prior

to implementation. Modifying the software following

the implementation, with the purpose of increasing

efficiency would be both cost-effective and time-

consuming. Among the present architectural styles,

service-oriented style is the best alternative to cope

with extensiveness and distributedness due to its

highest level of abstractiveness. Graph

transformation system (GTS) is a formal, intelligible

and dynamic language for architectural modeling. In

this study, we have presented a method implying

PEPA language for performance evaluation of

service-oriented architectural style which has been

modeled by graph transformation system. To assess

performance evaluation through PEPA there is a

need for identifying systems behavior and structure,

which have been extracted from the graphs; this

means that the architectural model specified by graph

transformation systems has been transformed to

PEPA performance model which is a formal modeling

performance language based on process algebra.

Finally action throughput of software systems and

state of utilization of each component and also

capacity utilization of each component has been

analyzed and their related charts have been

represented.

Keywords - service-oriented architectural style,

graph transformation system, PEPA, performance

evaluation, software architecture.

I. INTRODUCTION

In traditional approaches, performance analysis is

conducted subsequent to implementation, which in

case of low performance of software system, the

designing operation must be repeated which is neither

time-efficient nor cost-effective. In modern approach,

which has been referred to as software performance

engineering, performance analysis is predicted in the

preliminary stages of development and prior to

implementation [1]. In performance engineering,

analysis is performed on architectural model the

process in which the nuances are removed and only

the whole are dealt with. The properties which are

often examined in performance engineering include

the following:

i) Throughput: the number of transactions which

receive services in unit of time.

ii) Utilization: the fraction of time which the

resource wastes while giving services to a

customer relative to the overall time.

In architectural level, reflexes are made to

components, their interaction and their relationships

constraints [2]. Graph transformation system, as a

formal, dynamic and highly expressive competency,

can be used for architectural description. GTS can

well express the structure and behavior of the system

in which the nodes, components and edges display

interactive and communicative behavior of the system.

In this study, service-oriented architectural style

which have been modeled by graph transformation

systems [3] have been employed as architectural

model. The information required for creating

performance model, i.e. system’s structure and

behavior, has been extracted and ultimately the PEPA

model has been reached to. Then, adding the temporal

information to PEPA model, performance evaluation

has been conducted.

Among different architectural styles, service-

oriented style, due to its high level of abstraction, is

the best alternative for coping with complexity,

extendedness and distributedness of today’s systems

to this end, performance evaluation has been

conducted on this style. The concepts of object and

component have some similarities with the concept of

service; however, as can be seen in the Figure 1, the

service-oriented style enjoys much abstraction level

compared to that of object-oriented and component-

based style.

Fig.1 Comparing object-oriented, component-based and

service-oriented styles from the viewpoint of level of

abstraction

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 5 Issue 7 – July 2018

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 22

PEPA is a formal language based on process

algebra and suitable for modeling and performance

evaluation. There exist other methods for

performance modeling including queuing network

and petri net. However, process algebra has been

employed in the present paper due to the followings

reasons:

1. Formality: its mathematical base which can

result in its accurateness, correctness and

unambiguity.

2. Abstractness: removing the details and

constructing a performance model by means of

the system’s generals, that is components and

interactions.

3. Compositionality: constructing the system by

means of interaction of collections of sub-

systems which has simplified the model.

When performance model is created in PEPA,

performance analysis is conducted through computing

such characteristics as action throughput, states

utilization of each component and also capacity

utilization of each component. The proposed

approach is present in Figure 2.

Fig.2 Proposed framework for modeling and

performance analysis

The outline of the rest of the paper is as follows. In

second part, the related works will be referred to. The

third section will include PEPA language. The

structural and behavioral elements of the style will be

extracted in section four and five of the study

respectively. The sixth section is devoted to

transforming the proposed model to performance one.

Performance evaluation will be dealt with in section

seven and finally, conclusions and suggestions for

further research will be represented in part eight of

the study.

A. The study

 To represent our proposed framework, the

study of electronic travel agency presented in [3] has

been used. This is represented in Figure 3.

Fig.3 Components of electronic travel agency [4]

In Figure 3, each node displays one component and

each edge shows one interaction or behavior. The

sequence diagram related to the employed scenario in

the study is displayed in Figure 4.

Fig.4 Sequence diagram used for the scenario of the

study [4]

II. RELATED WORKS

In [5] to have fault tolerance system, first the core

of service-oriented architectural style is developed,

then different communication and reconfiguration for

error tolerance have been developed by graph

transformation rules and ultimately the proposed

model using model checking technique has been

verified for graph transformations systems.

In an approach to evaluate performance, Aquilani

et al. [6] have presented architecture software. Their

approach was the possibility of automatic ganging of

a performance model based on queuing network (QN)

from a dynamic architecture model based on labeled

transition system (LTS).

In [7], from FDAF which is an aspect-oriented

approach for designing and multi validate analyzing

of non functional and real time properties has been

used for transforming automatic architectural

designing from UML to Rapid, and then performance

analysis has been conducted on its security aspects.

Kloul [8] has presented an approach to modeling

dynamic information and performance at the design

level. This approach translates a UML 2.0 model

into a processing algebra, PEPA nets. After building

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 5 Issue 7 – July 2018

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 23

the processing algebra model, the performance

analysis can be done.

Baresi et.al [9], in an approach to architectural

modeling and analyzing based on architecture style

modeling, by means of class diagram accompanied by

constraints and dynamic behavior using a graph

transformation system has been presented. They have

demonstrated their approach base on service-oriented

style.

Security and performance in service-oriented

applications has been investigated in [10] .in their

research, they used genetic algorithm approach to find

a collection of optimal services which can support

commercial products.

Danil Kina and colleagues [11] have presented a

simulation framework for evaluation restarting

algorithm performance in service-oriented systems

[SFERA]. They presented the SFERA framework for

restarting simulation in service-oriented architecture.

In [12] modeling and verification for

communicating reliable messaging has been used in

service-oriented architecture systems. They first

developed a core meta-model for service-oriented

architecture with required parameters for

communicating reliable messaging and then have

modeled a reconfiguration for delivery reliable

messaging by a graph model. In the end, a formal

verification of a collection of proposed rules has been

presented by means of combining analyzing tools

required for transforming graph and labeled transition

system.

In [13], an approach for automatic verification of

graph transformation systems by Bogor has been

presented. This approach supports both attributed

typed graph and layered graph transformation system.

The checked characteristics can be indicated directly

either by linear temporal logic or transformation rules.

In [14] and [15], Heckel et al. have presented the

idea of stochastic graph transformation system for

evaluating non functional properties. Resorting to the

fact that stochastic methods must be used for

evaluating performance and reliability and also

regarding the ability of graph transformation systems

in creating dynamic models, they have presented such

idea.

In [16] investigating and introducing AGG2.0 has

been dealt with and several analysis technique have

been introduced for graph transformation systems.

AGG supports determining characteristic of algebraic

graph transformation systems based on related

characters.

III. PEPA(PERFORMANCE EVALUATION

PROCESS ALGEBRA)

In this paper PEPA language is used for

performance modeling. This language is based on

process algebra. Due to its properties, this language is

the best language for performance evaluation at the

architectural level. The most important of which is

the abstractness of language.

In PEPA, system is made of collective interaction

of subsystems. Each activity in this language

possesses an action type which is always abbreviated

as type. Each activity of this language has a time

period which is a stochastic variable with exponential

distribution.

This parameter is called activity rate and is

abbreviated as rate.

In PEPA language, an action is displayed as (α, r)

where α is the type of action and r is a real number,

the activity rate. Components and activities are

primary and main parts of PEPA language. This

language has several combinators which one can use

in case of necessity combinators are presented in

Table 1:

Table 1: PEPA Combinators

After specifying activities of each component

using above combinators, the system equation must

be created. The system equation is as follows:

Sys = (C1 <op1, op2> C2 <op3> C3)

The above example shows that C1 and C2 have

interaction with op1 and op2 and C2 and C3 have

interaction with op3 [17], [18].

IV. EXTRACTING STRUCTURAL

ELEMENTS

In this section, the procedure for modeling related

to structural section of service-oriented style, that is

style elements and communicative constraints will be

dealt with. Components for service-oriented style is

consist of: component, connector, port, interface and

operation. Component includes processes and system

information. Component processes which are capable

of be presented are accessible through interface.

Communication among components is provided

through connector. The internal structure of the

component is hidden and can be accessed into only

through its ports. Connector joins two interfaces to

each other. Figure 5 demonstrates formal presenting

of structural elements of service-oriented style and

shows their connections by means of a graph scheme.

In this graph, various nodes are equivalent for light

elements and different edges, along with multiplicity

of communication, display the topological constraints

and specify how nodes are located beside each other

in an architectural configuration. As an example, one

connector can connects only two ports.

description Writing form Subject

Display of sequencing behavior (α, r).P prefix

Collaboration of P and Q

components for α and β

activities

P <α, β> Q
collaborati

on

Parallel processing in P and Q

components
P + Q choice

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 5 Issue 7 – July 2018

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 24

Fig.5 Structural section of graph scheme [3]

Architectural model which is based on the above

style structures as an instance graph is located on

graph scheme. Figure 6, is a part of architecture

studied in this study.

Fig.6 A part of instance graph under study [3]

In Figure 6, component types of Figure 5 which

have depicted the general scheme of the study have

been cut and their relevant operation of the

description under study are extracted and connected

to interface.

V. EXTRACTING BEHAVIORAL

ELEMENTS

Style behavior can be regarded as all

communicative mechanisms, since architectural

components of service-oriented style in a constant

and specific configuration have communication only

through communicative mechanisms including

connector, query sending, receiving query results so

on.

In service-oriented style, complete list of

communicative mechanisms and their description is

as follows:

 Opening port: it is called in case of requirement

for communicating with a component so that

appropriate port is devoted to it.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 5 Issue 7 – July 2018

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 25

 Closing port: when communication is disrupted,

the port is released.

 Establishing communication: connecting

communicative channel between two

components.

 Communication disconnection: disconnection of

communicative channel between two

components.

 Call operation: sending call request related to one

operation on one component by the operation

requesting component.

 Receive call: receive call request for one

operation on one component by operation

providing component.

 Sending response: preparing and sending

appropriate response for a requested operation

from operation provider component to requestor

component.

 Receive response: receiving response of

operation request on one operation requesting

component.

 Send service publication: service provider of a

message sends the service publication to service

discovery.

 Receive service publication: the message of

service publication sent by service provider is

received by service discovery.

 Send service query: a service query message

is sent to service discovery on behalf of

service requester component.

 Receive service query: service discovery

receives the message of service query from

the service requester.
 Send query result: response message for

query result is send from service discovery to

service requester.

 Receive query result: service requester

receives the message which is result of the

query.

The collection of above behaviors, which are

termed as required behavioral mechanisms, cover all

existing behavior requests between components in

this style. Each of above behaviors is expressed

through a rule, for further study of it, can refer to [3].

In graph scheme of Figure 7, the nodes request,

response, service publication, query result and

service query show different messages, the common

property of those messages is in message node. A

message is sent through a sending port and received

through a connector.

Fig.7 Graph schema containing structural and behavioral components [3]

VI. TRANSFORMING THE PROPOSED

MODEL INTO A PERFORMANCE

MODEL

Main elements of PEPA language includes:

components and operations, in other words, other

activities and their combinations inside the system

for achieving a general system and its evaluation. Its

transforming algorithm includes the two following

phases:

 Identifying and extracting structural elements

of performance model.

 Extracting interactive behavior of

components and creating system

equation.
A. Identifying and extracting structural

components of performance model

 As we know, components forming PEPA

language include components are variety of

activities.

 These elements in graph scheme (i.e.

component and component type) are equal to the

concepts of component type in performance model

so, to identify them, searching must start from start

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 5 Issue 7 – July 2018

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 26

graph and for each component type, the amount of

name property in it is added to the list of PEPA

model component.

Fig.8 Start graph for the case under study [3]

Since, to achieve the general equation of PEPA,

knowing the number of participating components in

system is required, in investigating start graph for

model, one can, for each component type, consider

the number of node components of its type as the

number of its corresponding components.

As an example, in Figure 8 a part of model start

graph under study for three components (Travel

agency, Client, Airline) is displayed and for each of

these components, there is one sample of

participating components.

The set of activities related to component consists

of a set of defined operations on component type

which are equivalent to what can be achieved. After

achieving these collections, its segregate as a non-

repeated set, forms all activities related to a model.

B. Extracting interactive behavior of components

and creating system equation

In this section, first we extract interactive

behavior and after that, we create the system

equation by PEPA language. Based on information

extracted from graphs, interactive behavior of the

system is as follows:

Customer requests journey from travel agency

Customer = (requestjourney, r).Travel

Agency

Travel agency responds to the customer request

Travel Agency = (tsendresponsetoc, r).

Customer

Customer sends the booking journey request to

travel agency

Customer = (csendbookjourneytot, r).

Travel Agency

Travel agency requests for flying from airline

Travel Agency = (requestflight, r).Airline

Airline responds to travel agency’s request

Airline = (asendresponsetot, r). Travel

Agency

Travel agency sends book flight to airline

Travel Agency = (bookflight, r). Airline

Airline books the flight and sends the ticket to

travel agency

Airline = (sendticket, r). Travel Agency

Travel agency sends flight documents to the

customer

Travel Agency = (tsenddocumenttoc, r).

Customer

The system equation is as follow:

((Customer < requestjourney, tsendresponsetoc,

csendbookjourneytot, tsenddocumenttoc> Travel

Agency <requestflight, asendresponsetot, bookflight,

sendticket > Airline))

VII. PERFORMANCE EVALUATION

In this section, our proposed model for case study

of electronic travel agency will be evaluated. In

Figure 9, system throughput chart can be observed

for different actions, in which throughput for eight

main actions (other than required actions for

communication) is the same which is an indication

of balanced behavior of service-oriented style in

relation to its actions. The greatest amount of

throughput is related to opening and closing port

components of travel agency before and after

communication which makes it possible to have

quick communication with this component.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 5 Issue 7 – July 2018

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 27

Fig.9 System throughput for different actions

Figure 10 shows state utilization of customer

component in which the highest rate of utilization

belongs to the state of sending flight documents by

travel agency to customers.

Due to high rate of this state utilization, system

performance is very high in viewpoint of customers

and they are satisfied with the system.

Fig.10 States utilization of customer component

In Figure 11, state utilization of the travel agency

component can be observed in which the highest

level of utilization belongs to the state of sending

flight request response from airline to travel agency.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 5 Issue 7 – July 2018

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 28

Fig.11 States utilization of travel agency component

In Figure 12, state utilization of airline component

can be observed in which the highest rate of

utilization belongs to receiving flight request by

airline from travel agency.

Fig.12 States utilization of airline component

VIII. CONCLUSIONS AND SUGGESTIONS

FOR FURTHER RESEARCH

What we followed in this study was, presenting a

method for performance evaluation of service-

oriented architectural style which has been modeled

by graph transformation system by PEPA language.

First, modeling pattern for service-oriented

architectural style by graph transformation system

has been introduced. Next, and algorithm has been

introduced which can transfer the present model to

the one with which one can perform performance

analysis, this in fact transforms the architectural into

a performance one.

In this study graph transformation system was

used to describe architecture and PEPA was used for

performance modeling and the two methods are

formal and unambiguous.

Based on charts resulted from PEPA in this study,

one can conclude that in service-oriented style:

1. Main actions of this style (other than actions

used for communication) have the same

throughput and any system based on this style

has a balanced throughput.

2. Granting services to customers is followed

with good utilization; therefore customers are

satisfied with system performance.

3. Capacity utilizations of different components

are much similar to each other and it acts

normally from viewpoint of utilization.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 5 Issue 7 – July 2018

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 29

Future works in the area of graph transformation

systems can be such as modeling of other styles such

as layered styles, client/server, pipe and filter and

blackboard style by graph transformation system

could be focus of concern. In the field of

performance analysis, one can investigate the

perspective present in this study on other styles.

REFERENCES

[1] T. Kauppi, ”Performance analysis at the software

architectural level,” Technical report, ISSN: 14550849,

2003.

[2] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software

Architecture: Foundations, Theory, and Practice, New

York, NY, USA: John Wiley, 2008.

[3] S. Thöne, “Dynamic Software Architectures A Style-Based

Modeling and Refinement Technique with Graph

Transformations,” Ph.D thesis, University of Paderborn,

Paderborn, Germany, 2005.

[4] V. Rafe, “Senario-driven analysis of systems specified

through graph transformation,” Visual Language and

Computing, vol. 24, pp. 136-145, 2013.

[5] V. Rafe, and F. Mahdian, “Style-based modeling and

verification of fault tolerance service oriented

architectures,” Procedia Computer Science, vol. 3, pp. 972-

976, 2011.

[6] F. Aquilani, S. Balsamo, and P. Inverardi, “Performance

analysis at the software architectural design level,”

Performance Evaluation, vol. 45, pp. 147-178, 2001.

[7] L. Dai and K. Cooperb, “Modeling and performance

analysis for security aspects,” Science of Computer

Programming, vol. 61, pp. 58-71, 2006.

[8] L. Kloul, “Performance Analysis of a Software Retrieval

Service,” Electronic Notes in Theoretical Computer

Science, vol. 232, pp. 145-163, 2009.

[9] L. baresi, R. heckel, S. Thone, and D. Varro, “Modeling

and Validation of Service-Oriented Architectures,”

Application vs. Style. Proc.3th Int. Conf. ESEC/FSE. pp.

68-77, 2003.

[10] H. Zo, D. L. Nazareth, and H. K. Jain, “Security and

performance in service-oriented applications: Trading off

competing objectives,” Decision Support Systems, vol. 50,

pp. 336-346, 2010.

[11] A. Danilkina, P. Reinecke, and K. Wolter, “SFERA: A

Simulation Framework for the Performance Evaluation of

Restart Algorithms in Service-Oriented Systems,”

Electronic Notes in Theoretical Computer Science. Vol.

291, pp. 3-14, 2013.

[12] L. Gonczy, M. Kovacs, and D. Varro, “Modeling and

Verification of Reliable Messaging by Graph

Transformation Systems,” Electronic Notes in Theoretical

Computer Science, vol. 175, pp. 37-50, 2007.

[13] L. Baresi, V. Rafe, A. T. Rahmani, and P. Spoletini, “An

Efficient Solution for Model Checking Graph

Transformation Systems,” Electronic Notes in Theoretical

Computer Science, vol. 213, pp. 3-21, 2008.

[14] R. Heckel, G. Lajios, and S. Menge, “Graph

Transformation, ” Lecture Notes in Computer Science,; vol.

3256, pp. 210-255, 2004.

[15] R. Heckel, “Stochastic Analysis of Graph Transformation

Systems: A Case Study in P2P Networks,” Lecture Notes

in Computer Science, vol. 3722, pp. 53-69, 2005.

[16] O. Runge, C. Ermel, and G Taentzer, “AGG 2.0– New

Features for Specifying and Analyzing Algebraic Graph

Transformations,” LNCS, vol. 7233, pp. 81-88, 2012.

[17] J. Hillston, “ Tuning Systems :From Composition to

Performance,” The Computer Journal, vol. 48, pp. 385-400,

2005.

[18] J. Hillston, “A Compositional Approach to Performance

Modeling,” Ph.D thesis, University of Edinburgh,

Edinburgh, Scotland, 1994.

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=R.%20N.%20Taylor
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=N.%20Medvidovic
http://www.amazon.com/E.-M.-Dashofy/e/B0030B6ZAU/ref=ntt_athr_dp_pel_3

