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Abstract --- A classification problem produces a 

binary output even when the input values are real 

numbers. Linear regression cannot be used to solve 

classification problems. Instead, logistic regression 
is used. Logistic regression is a supervised learning 

algorithm which estimates the probability of an 

outcome for the input given. Logistic regression is 

useful in many real world problems in many fields 

and its performance can be improved by some 

optimization techniques. 

 This paper describes logistic regression and its 

various optimization techniques along with the 

performance metrics by using the study of graduate 

school admissions.  
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I. INTRODUCTION 

Logistic regression is a supervised learning 
algorithm. In supervised learning, the inputs are 

provided with their class labels and the output is 

determined by using the suitable algorithm. Logistic 

regression is a classification algorithm which 

determines the probability of occurrence of an event 

by using a model. The case study of admission 

scores as field inputs x1 and x2 and the 

corresponding result y which predicts if the student 

is accepted or rejected is used to demonstrate logistic 

regression. In this paper, let 1 represent success and 

0 represent failure. The programming language used 

is octave.    

II. LOGISTIC REGRESSION 

Logistic regression can be used to solve a 

classification problem. The fundamental steps 

involve structuring data, finding the model, 
parameter fitting and interpretation of the output. It 

ensures the generated number is always between 0 

and 1.   

A. Hypothesis function  

Let us consider the binary classification, the ouput is 

classified into two labels. The hypothesis function[1]  

 

 

is used to predict the value of output y for the given 
input fields x1,x2….xn where n is the number of 

columns and m depicts the number of rows in the 

input data.   

 hΘ(x) = g(ΘTx) = 1/(1 + e-(ΘTx) )  (1)  

where hΘ(x) is the hypothesis function which gives 

the predicted value of the given input x and x is a 
matrix of all the input field values. This can also be 

represented as  

 hΘ(x) = g(z) = 1/(1+e-z )   (2)  

This is the sigmoid function or the logistic regression 

function.  

The range of the hypothesis function is 0≤h(X)≤1. 

The probability that the output y is 1 given x 

parameterised by Θ is given by  

 hΘ(x) = P(y=1 | x; Θ)   (3)  

So probability y = 0 or y = 1 can be given by  

 P(y=0|x; Θ) + P(y=1|x; Θ) = 1  (4)  

Or  P(y=0|x; Θ) = 1 – P(y=1|x; Θ)  

This is written as  P(y| x;θ)=hθ(x)y . (1−hθ(x))1-y 

This is the maximum likelihood function.[3]  

B. Decision boundary 

The decision boundary
[1]

 is given by the sigmoid 

curve which is a curve drawn based on the 

hypothesis function with g(z) in the y axis and z 

along the x axis. The curve intersects the y axis at 

g(z) = 0.5 and z =0.  

The function varies with the values of input 

variables to produce an output value. The prediction 

can be made as 1 or 0 based on the threshold value 

used to classify the function.  

Predict y = 1 if g(z) >= 0.5, then z>=0  

Therefore, ΘTx>=0  

Predict y =0 if g(z) < 0.5, then z<0  

Therefore, ΘTx<0  



SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 10 – Oct 2019 

 

ISSN: 2348 – 8387                      www.internationaljournalssrg.org                    Page 24 

 

Fig.1 describes the sigmoid function as a function of 

the hypothesis function in the x axis and the z values 
in the y axis  

C.  Cost function 

The cost function[7] should ideally be minimum. It is 

the difference in values of predicted output and the 

true output values. The cost function is represented 

by J(Θ). A cost function should be chosen which is 

convex and ideally has only one local optima, the 

lowest point in the curve.   

In logistic regression, cost function is denoted as  

Cost(hΘ(x),y)     =  -log(hΘ(x))            if y=1  

=  -log(1-hΘ(x))         if y =0  

 

It is seen that if hΘ(x) = 1 and y =1, cost = 0 but as 

hΘ(x) tends to 0, cost tends to infinity. To avoid this 

problem, a compressed form is used.  

Cost(hΘ(x),y) = -[y.log(hΘ(x)) + (1-y).log(1-hΘ(x))]  

     (5)  

The cost function can be given by[1]  

J(Θ) = (1/m)* ∑ Cost(hΘ(x),y)   (6)  

Therefore, the cost function is,  

J(Θ) = -(1/m)* ∑ [ yi.log(hΘ(xi)) + (1-yi).  

log(1-hΘ(xi))]     (7)  

 

D.  Fitting function 

A fitting function[3] can be drawn by selecting the 
appropriate fitting parameter theta (Θ). The values 

of the output vary with the value of Θ. The theta 

values should be chosen such that optimization is 

achieved.  

There are many optimization techniques. Some are:  

• Gradient Descent  

• Newton Raphson Method  

• BFGS  

• L-BFGS  

• Conjugate Gradient 
Descent E.  Multiclass classification:  

Logistic regression can be used to classify 

the outputs into more than just two classes. It can be 

used to classify into multiple labels using multiclass 

classification algorithms. To do this, the one-vs-all 

classification[1] is used. This is also called one 

versus rest algorithm.  

hΘ
(i)(x)  = P(y=i | x; Θ)             

The hypothesis function is calculated by assuming 

there are only two classes at each stage. One class is 

treated as one input and all the other classes are 

assumed to be the other class. Now, binary 

classification is performed for each individual class. 

This also used in neural networks in multiclass 

classification using logistic regression.  

 

Fig 2.depicts one-vs-all classification algorithm in 

which each class is considered separately and the 

logistic regression is applied like binary 

classification  

III. GRADIENT DESCENT 

The most basic and vastly used optimisation 

technique to minimise the cost function is Gradient 

Descent.[4] It is an iterative optimisation algorithm 

to find the minimum of a function. To find the local 

minimum using gradient descent, steps proportional 

to the negative of the gradient of the function at the 

current  point  are  taken.  

 

Fig 3. The gradient descent is depicted by the graph 

where the point in the bottom is the local minima   
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Gradient descent is used to compute the local minima 

of the given model such that it converges at that 

point.  

The gradient descent is computed by choosing the 

appropriate values of theta , the fitting parameter.   

Algorithm: 

 Repeat {  

  Θj= Θj – α*𝜕𝐽(𝛩) (8)  

𝜕𝛩𝑗 

 }  until convergence  

 

Where           𝜕𝐽(𝛩) = (1/m)* ∑  (hΘ(xi) - yi)*xj
i 

𝜕𝛩𝑗 

 

The gradient descent algorithm[1] is best used in 
order to minimise the cost function by choosing 

appropriate theta values.  

The disadvantage of this algorithm lies in choosing 

alpha or the learning rate value.  

IV. NEWTON RAPHSON METHOD 

The maximum likelihood function[3] is given by  

P(y| x;θ)=hΘ(x)y . (1−hΘ(x))1-y  

We ideally need to maximise the right hand side in 

order to obtain the concave curve. The cumulative 

likelihood is found by multiplying all the likelihood 

values together.  

 L(θ)=∏i=1 np(yi|xi;θ)   (9)  

The product of all values produces a very small 

decimal number. To avoid this, the log likelihood[4] 

is taken.  

 ℓ(θ)=log L(θ)    (10)  

ℓ(θ)=∑i=1nyi log(hΘ(xi))+(1−yi)log(1−hΘ(xi))   

(11)  

 

Newton and Raphson[7] discovered an iterative 

method to find the roots of a polynomial.  

 

xn+1 = xn– [f(xn) / f ’(xn)]  (12) yn+1=f(xn+1)   

(13)  

 

If  yn+1− yn≈0 convergence is reached. 

Else update point (xn,yn) and repeat the above steps 

until converged.  

 

 

 

   

Fig 4. gives the log likelihood with theta1 and theta2 

in the x and y axes and the log likelihood value in z 

axis  

To maximize the log likelihood function, we need 

to find the partial derivatives of ℓ(θ), and set them 

equal to 0, and solve for θ1 and θ2 to find 

thecritical pointof the partials. This critical point 

will be the max of our log-likelihood. This is the 

concave point.  

On substituting f(xn) with the gradient, ∇ℓ(θ), from 

the newton equation into the maximum log 

likelihood function. The Hessian is then calculated 

to obtain the denominator. It is a second order 

differential equation and is represented as a square 

matrix of order n.  

Thus, the equation becomes  

 Θn+1=θn+ Hl(Θ^)-1 .∇ℓ(θ)   (14)  

The Hessian Hl(Θ^) is given by a 2x2 matrix of 

values:[4]  

  

 
 

 

 

 

 

These are the values (0,0),(0,1),(1,0) and (1,1) in the 

hessian matrix.  

Thus optimization is achieved.  

 

 

https://en.wikipedia.org/wiki/Critical_point_(mathematics)#Application_to_optimization
https://en.wikipedia.org/wiki/Critical_point_(mathematics)#Application_to_optimization
https://en.wikipedia.org/wiki/Critical_point_(mathematics)#Application_to_optimization
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V. BFGS METHOD 

The BFGS[5] method is used in optimization and is a 

type of quasi-Newton method. In quasi newton 

method, the Hessian matrix need not be computed. 

The Hessian matrix may be expensive to compute 

everytime. Instead, it is a generalisation of the secant 

method. The Hessian is updated by analysing 

successive gradient vectors instead.  

The BFGS method is Broyden-Fletcher-

GoldfarbShannon method. It is an iterative method 

which is used for solving non-linear optimization 
problems. It is a hill-climbing algorithm which seeks 

a  

stationary point. The necessary condition is that the 

gradient should be zero.  

From an initial guess x0 and an approximate Hessian 
matrix, the following is repeated until it converges to 

the solution:  

1. Obtain a direction pk by solving Bkpk = delta 

f(xk) . 

2. Find αkin the direction found in the first 

step, so αk=argmin  f(xk + αpk).  

3. Set sk = αkpk and update xk+1 = xk + sk.  

4. Find yk= difference of differentiation in 

f(xk+1) and f(xk).  

5. Bk+1  = Bk + ykykT/ ykTsk - Bksk 

(Bksk)T/skTBksk 

Where fkdenotes the objective function to be 

minimized. The first step of the algorithm is carried 

out using the inverse of the matrix , which can be 

obtained efficiently by applying theSherman– 

Morrison formulato the step 5 of the algorithm, 

giving  

Bk+1-1  = (I - skykT/ ykTsk) Bk-1(I- ykskT 

/ykTsk) + skskT/ ykTsk 

This can be computed efficiently without temporary 

matrices, recognizing that is symmetric, and that 

and are scalars.  

The BFGS method is a more optimal method but is 

difficult to implement. Thus predefined libraries are 

available for its implementation.  

VI. L-BFGS METHOD 

LBFGS[5] is Limited BFGS method which 

approximates the BFGS method within limited 

memory. This is a parameter estimation technique 

in machine learning and is used to minimise f(x) 

value. L-BFGS uses an estimation to the 

inverseHessian matrixto steer its search through 

variable space, but where BFGS stores a dense n x 

n approximation to the inverse Hessian (n being the 

number of variables in the problem), L-BFGS 

stores only a few vectors that represent the 

approximation implicitly. Due to its resulting linear 

memory requirement, the LBFGS method is 

particularly well suited for optimization problems 

with a large number of variables. Instead of the 

inverse Hessian Hk, LBFGS maintains a history of 

the past m updates of the position x and gradient 
f(x), where generally the history size m can be 

small. These updates are used to implicitly do 

operations requiring the Hkvector product.  

The algorithm starts with an initial estimate of the 

optimal value xo , and proceeds iteratively to refine 

that estimate with a sequence of better estimates.   

 Sk= xk+1 – xk   (15)  

 Yk= gk+1 – gk   (16)  

Where gkis the gradient descent of f(xk).  

Let ρk = 1/yTsk 

Hk+1 = (I - ρkskykT )Hk(I - ρkykskT) + ρkskskT

 (17)  

The maximisation of the problem is determined by   

 z = z + si(αi– βi)    (18)  

Where z = Hkgk 

For minimisation problems, -z is taken.  

The L-BFGS method is more complex and thus 

optimisation libraries are available for its 

implementation. [7]  

VII. CONJUGATE GRADIENT 

DESCENT  

This is one of the most optimal methods for solving 

linear equations in an iterative manner[6]. It is useful 

for sparse equations to solve equations of the form  

 Ax = b     (19)  

Where x is unknown vector, b is a known vector and 

A is a sparse positive definite matrix. If it is dense, it 

is made sparse by back substitution.  

Let the sub span space be Di  composed of {r1,r2……ri- 

1}  

 ri
(T)rj= 0     (20)  

where r is the residual. Each residual is a previous 

combination of the residuals.   

βi =riTri/ ri-1Tri-1   (21) let d0 = r0  = b- Ax 

 αi = riTri/ diTAdi   (22)  

Then,  

https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://en.wikipedia.org/wiki/Hessian_matrix
https://en.wikipedia.org/wiki/Hessian_matrix
https://en.wikipedia.org/wiki/Hessian_matrix
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xi+1 = xi + αidi(23) ri+1 = ri- αiAdi   

(24) βi+1  = ri+1Tri+1/ riTri(25) di+1 = 

ri+1 + βi+1 di    (26)  

The above steps are repeated over and over 

iteratively until a minima is obtained. This is one of 

the best optimisation methods but it is complex. It 

uses the principle of steepest hill descent.  

 

Fig 5. Gives the conjugate gradient descent  

VIII. STUDY: ADMISSIONS OF GRADUATES 

 BASED ON EXAM-SCORE  USING 

OCTAVE 

A dataset[1]with the input fields as the marks of the 

entrance exam scores and the UG scores are given 

represented by X1 and X2 respectively and the 

output or y feature is a set of known admitted or not 

admitted values represented by 1 or 0. A sample of 

the data set is given below:  

 

  TABLE 1                                                       

Dataset for UG admission   

    X1              X2          y  

   34.62366   78.02469    0.00000    

   30.28671   43.89500    0.00000  

   35.84741   72.90220    0.00000  

  60.18260   86.30855    1.00000  

   79.03274   75.34438    1.00000  

   45.08328   56.31637    0.00000  

   61.10666   96.51143    1.00000  

   75.02475   46.55401    1.00000  

   76.09879   87.42057    1.00000  

  The programming language used is Octave and the 

editor is Ocave GNU CLI. It can also be implemented 

in matlab.   

The dataset can be plotted as a graph to obtain the 

following:  

 

 

Fig 6. Shows the distribution of the data set points X 

and y where the black points represent y=1 and 

yellow are y=0 in octave GNU  

Where the + denotes admitted or y=1 and the yellow 

dots represent not admitted or y=0.  

The cost function can be calculated in Octave GNU 

by the below code   

J=(1/(2*m))* sum((theta(1)*X(:,1)+ theta(2)*X(:,2)  

- y).^2)      (27)  

The theta values can be updated by gradient descent 
or by the other optimisation methods. The other 

methods are implemented as a library in Octave as 

fminunc.[2] % Set options for fminunc  options = 

optimset('GradObj', 'on', 'MaxIter', 400); % This 

function will return theta and the cost   

[theta, cost] = ... fminunc(@(t)(costFunction(t, X, 

y)), initial theta, options)  

It is seen that the libraries are easier and compute the 

theta values 0.68 seconds faster than gradient 

descent.  

 

Fig 7. Gives the plot of the values after logistic 

regression is performed in Octave GNU  
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IX. CONCLUSION 

Thus, Logistic regression is a very useful technique 

to predict the values of a given input and classify it 

as binary values. The accuracy of prediction is an 

important factor. It depends on the actual values and 

the predicted values. The parameter values can be 

determined by various techniques and optimization 

methods which help in increasing the parameters. 

The efficiency of logistic regression and optimisation 
techniques can be seen from our example above. 

Logistic regression is used in many real world 

problems and is a quintessential machine learning 

technique for solving classification problems.   
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