
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 10 – Oct 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 23

A Study of Logistic Regression And Its

Optimization Techniques Using Octave
Annapoorani Anantharaman

CSE, Jeppiaar Engineering College, India

Abstract --- A classification problem produces a

binary output even when the input values are real

numbers. Linear regression cannot be used to solve

classification problems. Instead, logistic regression
is used. Logistic regression is a supervised learning

algorithm which estimates the probability of an

outcome for the input given. Logistic regression is

useful in many real world problems in many fields

and its performance can be improved by some

optimization techniques.

 This paper describes logistic regression and its

various optimization techniques along with the

performance metrics by using the study of graduate

school admissions.

Keywords - Logistic regression, optimisation

techniques, Newton Raphson method, BFGS, L-

BFGS, Gradient Descent, Conjugate Gradient

Descent

Literary survey:

I. INTRODUCTION

Logistic regression is a supervised learning
algorithm. In supervised learning, the inputs are

provided with their class labels and the output is

determined by using the suitable algorithm. Logistic

regression is a classification algorithm which

determines the probability of occurrence of an event

by using a model. The case study of admission

scores as field inputs x1 and x2 and the

corresponding result y which predicts if the student

is accepted or rejected is used to demonstrate logistic

regression. In this paper, let 1 represent success and

0 represent failure. The programming language used

is octave.

II. LOGISTIC REGRESSION

Logistic regression can be used to solve a

classification problem. The fundamental steps

involve structuring data, finding the model,
parameter fitting and interpretation of the output. It

ensures the generated number is always between 0

and 1.

A. Hypothesis function

Let us consider the binary classification, the ouput is

classified into two labels. The hypothesis function[1]

is used to predict the value of output y for the given
input fields x1,x2….xn where n is the number of

columns and m depicts the number of rows in the

input data.

 hΘ(x) = g(ΘTx) = 1/(1 + e-(ΘTx)) (1)

where hΘ(x) is the hypothesis function which gives

the predicted value of the given input x and x is a
matrix of all the input field values. This can also be

represented as

 hΘ(x) = g(z) = 1/(1+e-z) (2)

This is the sigmoid function or the logistic regression

function.

The range of the hypothesis function is 0≤h(X)≤1.

The probability that the output y is 1 given x

parameterised by Θ is given by

 hΘ(x) = P(y=1 | x; Θ) (3)

So probability y = 0 or y = 1 can be given by

 P(y=0|x; Θ) + P(y=1|x; Θ) = 1 (4)

Or P(y=0|x; Θ) = 1 – P(y=1|x; Θ)

This is written as P(y| x;θ)=hθ(x)y . (1−hθ(x))1-y

This is the maximum likelihood function.[3]

B. Decision boundary

The decision boundary
[1]

 is given by the sigmoid

curve which is a curve drawn based on the

hypothesis function with g(z) in the y axis and z

along the x axis. The curve intersects the y axis at

g(z) = 0.5 and z =0.

The function varies with the values of input

variables to produce an output value. The prediction

can be made as 1 or 0 based on the threshold value

used to classify the function.

Predict y = 1 if g(z) >= 0.5, then z>=0

Therefore, ΘTx>=0

Predict y =0 if g(z) < 0.5, then z<0

Therefore, ΘTx<0

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 10 – Oct 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 24

Fig.1 describes the sigmoid function as a function of

the hypothesis function in the x axis and the z values
in the y axis

C. Cost function

The cost function[7] should ideally be minimum. It is

the difference in values of predicted output and the

true output values. The cost function is represented

by J(Θ). A cost function should be chosen which is

convex and ideally has only one local optima, the

lowest point in the curve.

In logistic regression, cost function is denoted as

Cost(hΘ(x),y) = -log(hΘ(x)) if y=1

= -log(1-hΘ(x)) if y =0

It is seen that if hΘ(x) = 1 and y =1, cost = 0 but as

hΘ(x) tends to 0, cost tends to infinity. To avoid this

problem, a compressed form is used.

Cost(hΘ(x),y) = -[y.log(hΘ(x)) + (1-y).log(1-hΘ(x))]

 (5)

The cost function can be given by[1]

J(Θ) = (1/m)* ∑ Cost(hΘ(x),y) (6)

Therefore, the cost function is,

J(Θ) = -(1/m)* ∑ [yi.log(hΘ(xi)) + (1-yi).

log(1-hΘ(xi))] (7)

D. Fitting function

A fitting function[3] can be drawn by selecting the
appropriate fitting parameter theta (Θ). The values

of the output vary with the value of Θ. The theta

values should be chosen such that optimization is

achieved.

There are many optimization techniques. Some are:

• Gradient Descent

• Newton Raphson Method

• BFGS

• L-BFGS

• Conjugate Gradient
Descent E. Multiclass classification:

Logistic regression can be used to classify

the outputs into more than just two classes. It can be

used to classify into multiple labels using multiclass

classification algorithms. To do this, the one-vs-all

classification[1] is used. This is also called one

versus rest algorithm.

hΘ
(i)(x) = P(y=i | x; Θ)

The hypothesis function is calculated by assuming

there are only two classes at each stage. One class is

treated as one input and all the other classes are

assumed to be the other class. Now, binary

classification is performed for each individual class.

This also used in neural networks in multiclass

classification using logistic regression.

Fig 2.depicts one-vs-all classification algorithm in

which each class is considered separately and the

logistic regression is applied like binary

classification

III. GRADIENT DESCENT

The most basic and vastly used optimisation

technique to minimise the cost function is Gradient

Descent.[4] It is an iterative optimisation algorithm

to find the minimum of a function. To find the local

minimum using gradient descent, steps proportional

to the negative of the gradient of the function at the

current point are taken.

Fig 3. The gradient descent is depicted by the graph

where the point in the bottom is the local minima

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 10 – Oct 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 25

Gradient descent is used to compute the local minima

of the given model such that it converges at that

point.

The gradient descent is computed by choosing the

appropriate values of theta , the fitting parameter.

Algorithm:

 Repeat {

 Θj= Θj – α*𝜕𝐽(𝛩) (8)

𝜕𝛩𝑗

 } until convergence

Where 𝜕𝐽(𝛩) = (1/m)* ∑ (hΘ(xi) - yi)*xj
i

𝜕𝛩𝑗

The gradient descent algorithm[1] is best used in
order to minimise the cost function by choosing

appropriate theta values.

The disadvantage of this algorithm lies in choosing

alpha or the learning rate value.

IV. NEWTON RAPHSON METHOD

The maximum likelihood function[3] is given by

P(y| x;θ)=hΘ(x)y . (1−hΘ(x))1-y

We ideally need to maximise the right hand side in

order to obtain the concave curve. The cumulative

likelihood is found by multiplying all the likelihood

values together.

 L(θ)=∏i=1 np(yi|xi;θ) (9)

The product of all values produces a very small

decimal number. To avoid this, the log likelihood[4]

is taken.

 ℓ(θ)=log L(θ) (10)

ℓ(θ)=∑i=1nyi log(hΘ(xi))+(1−yi)log(1−hΘ(xi))

(11)

Newton and Raphson[7] discovered an iterative

method to find the roots of a polynomial.

xn+1 = xn– [f(xn) / f ’(xn)] (12) yn+1=f(xn+1)

(13)

If yn+1− yn≈0 convergence is reached.

Else update point (xn,yn) and repeat the above steps

until converged.

Fig 4. gives the log likelihood with theta1 and theta2

in the x and y axes and the log likelihood value in z

axis

To maximize the log likelihood function, we need

to find the partial derivatives of ℓ(θ), and set them

equal to 0, and solve for θ1 and θ2 to find

thecritical pointof the partials. This critical point

will be the max of our log-likelihood. This is the

concave point.

On substituting f(xn) with the gradient, ∇ℓ(θ), from

the newton equation into the maximum log

likelihood function. The Hessian is then calculated

to obtain the denominator. It is a second order

differential equation and is represented as a square

matrix of order n.

Thus, the equation becomes

 Θn+1=θn+ Hl(Θ^)-1 .∇ℓ(θ) (14)

The Hessian Hl(Θ^) is given by a 2x2 matrix of

values:[4]

These are the values (0,0),(0,1),(1,0) and (1,1) in the

hessian matrix.

Thus optimization is achieved.

https://en.wikipedia.org/wiki/Critical_point_(mathematics)#Application_to_optimization
https://en.wikipedia.org/wiki/Critical_point_(mathematics)#Application_to_optimization
https://en.wikipedia.org/wiki/Critical_point_(mathematics)#Application_to_optimization

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 10 – Oct 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 26

V. BFGS METHOD

The BFGS[5] method is used in optimization and is a

type of quasi-Newton method. In quasi newton

method, the Hessian matrix need not be computed.

The Hessian matrix may be expensive to compute

everytime. Instead, it is a generalisation of the secant

method. The Hessian is updated by analysing

successive gradient vectors instead.

The BFGS method is Broyden-Fletcher-

GoldfarbShannon method. It is an iterative method

which is used for solving non-linear optimization
problems. It is a hill-climbing algorithm which seeks

a

stationary point. The necessary condition is that the

gradient should be zero.

From an initial guess x0 and an approximate Hessian
matrix, the following is repeated until it converges to

the solution:

1. Obtain a direction pk by solving Bkpk = delta

f(xk) .

2. Find αkin the direction found in the first

step, so αk=argmin f(xk + αpk).

3. Set sk = αkpk and update xk+1 = xk + sk.

4. Find yk= difference of differentiation in

f(xk+1) and f(xk).

5. Bk+1 = Bk + ykykT/ ykTsk - Bksk

(Bksk)T/skTBksk

Where fkdenotes the objective function to be

minimized. The first step of the algorithm is carried

out using the inverse of the matrix , which can be

obtained efficiently by applying theSherman–

Morrison formulato the step 5 of the algorithm,

giving

Bk+1-1 = (I - skykT/ ykTsk) Bk-1(I- ykskT

/ykTsk) + skskT/ ykTsk

This can be computed efficiently without temporary

matrices, recognizing that is symmetric, and that

and are scalars.

The BFGS method is a more optimal method but is

difficult to implement. Thus predefined libraries are

available for its implementation.

VI. L-BFGS METHOD

LBFGS[5] is Limited BFGS method which

approximates the BFGS method within limited

memory. This is a parameter estimation technique

in machine learning and is used to minimise f(x)

value. L-BFGS uses an estimation to the

inverseHessian matrixto steer its search through

variable space, but where BFGS stores a dense n x

n approximation to the inverse Hessian (n being the

number of variables in the problem), L-BFGS

stores only a few vectors that represent the

approximation implicitly. Due to its resulting linear

memory requirement, the LBFGS method is

particularly well suited for optimization problems

with a large number of variables. Instead of the

inverse Hessian Hk, LBFGS maintains a history of

the past m updates of the position x and gradient
f(x), where generally the history size m can be

small. These updates are used to implicitly do

operations requiring the Hkvector product.

The algorithm starts with an initial estimate of the

optimal value xo , and proceeds iteratively to refine

that estimate with a sequence of better estimates.

 Sk= xk+1 – xk (15)

 Yk= gk+1 – gk (16)

Where gkis the gradient descent of f(xk).

Let ρk = 1/yTsk

Hk+1 = (I - ρkskykT)Hk(I - ρkykskT) + ρkskskT

 (17)

The maximisation of the problem is determined by

 z = z + si(αi– βi) (18)

Where z = Hkgk

For minimisation problems, -z is taken.

The L-BFGS method is more complex and thus

optimisation libraries are available for its

implementation. [7]

VII. CONJUGATE GRADIENT

DESCENT

This is one of the most optimal methods for solving

linear equations in an iterative manner[6]. It is useful

for sparse equations to solve equations of the form

 Ax = b (19)

Where x is unknown vector, b is a known vector and

A is a sparse positive definite matrix. If it is dense, it

is made sparse by back substitution.

Let the sub span space be Di composed of {r1,r2……ri-

1}

 ri
(T)rj= 0 (20)

where r is the residual. Each residual is a previous

combination of the residuals.

βi =riTri/ ri-1Tri-1 (21) let d0 = r0 = b- Ax

 αi = riTri/ diTAdi (22)

Then,

https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://en.wikipedia.org/wiki/Hessian_matrix
https://en.wikipedia.org/wiki/Hessian_matrix
https://en.wikipedia.org/wiki/Hessian_matrix

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 10 – Oct 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 27

xi+1 = xi + αidi(23) ri+1 = ri- αiAdi

(24) βi+1 = ri+1Tri+1/ riTri(25) di+1 =

ri+1 + βi+1 di (26)

The above steps are repeated over and over

iteratively until a minima is obtained. This is one of

the best optimisation methods but it is complex. It

uses the principle of steepest hill descent.

Fig 5. Gives the conjugate gradient descent

VIII. STUDY: ADMISSIONS OF GRADUATES

 BASED ON EXAM-SCORE USING

OCTAVE

A dataset[1]with the input fields as the marks of the

entrance exam scores and the UG scores are given

represented by X1 and X2 respectively and the

output or y feature is a set of known admitted or not

admitted values represented by 1 or 0. A sample of

the data set is given below:

 TABLE 1

Dataset for UG admission

 X1 X2 y

 34.62366 78.02469 0.00000

 30.28671 43.89500 0.00000

 35.84741 72.90220 0.00000

 60.18260 86.30855 1.00000

 79.03274 75.34438 1.00000

 45.08328 56.31637 0.00000

 61.10666 96.51143 1.00000

 75.02475 46.55401 1.00000

 76.09879 87.42057 1.00000

 The programming language used is Octave and the

editor is Ocave GNU CLI. It can also be implemented

in matlab.

The dataset can be plotted as a graph to obtain the

following:

Fig 6. Shows the distribution of the data set points X

and y where the black points represent y=1 and

yellow are y=0 in octave GNU

Where the + denotes admitted or y=1 and the yellow

dots represent not admitted or y=0.

The cost function can be calculated in Octave GNU

by the below code

J=(1/(2*m))* sum((theta(1)*X(:,1)+ theta(2)*X(:,2)

- y).^2) (27)

The theta values can be updated by gradient descent
or by the other optimisation methods. The other

methods are implemented as a library in Octave as

fminunc.[2] % Set options for fminunc options =

optimset('GradObj', 'on', 'MaxIter', 400); % This

function will return theta and the cost

[theta, cost] = ... fminunc(@(t)(costFunction(t, X,

y)), initial theta, options)

It is seen that the libraries are easier and compute the

theta values 0.68 seconds faster than gradient

descent.

Fig 7. Gives the plot of the values after logistic

regression is performed in Octave GNU

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 10 – Oct 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 28

IX. CONCLUSION

Thus, Logistic regression is a very useful technique

to predict the values of a given input and classify it

as binary values. The accuracy of prediction is an

important factor. It depends on the actual values and

the predicted values. The parameter values can be

determined by various techniques and optimization

methods which help in increasing the parameters.

The efficiency of logistic regression and optimisation
techniques can be seen from our example above.

Logistic regression is used in many real world

problems and is a quintessential machine learning

technique for solving classification problems.

REFERENCE

[1] Machine Learning course – Andrew Ng

[2] Revisit of Logistic Regression: Efficient Optimization and

Kernel Extension- Takumi Kobayashi, Nobuyuki Otsu,

Kenji Watanabe

[3] Logistic Regression — Gradient Descent Optimization –

Abhinav Mazumdar

[4] A study of Classification Problems using Logistic

Regression – Arka Mukherjee

[5] Wikipedia – BFGS

[6] An Introduction to the Conjugate Gradient Method Without

the Agonizing Pain Edition by Jonathan Richard Shewchuk

[7] PadhAi Labs – Deep Learning Course

