
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 10 – Oct 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 33

Digitalizing a Monolithic Application
Boddam Linga Reddy

Principal Engineer
4424 134th pl se, Bellevue, WA, USA-98006

Abstract

The challenge to Retail Services Platform

(RSP) which resides in a Java monolith software with

over 400 SOAP operations running on WebLogic is

demanding. As systems age, the development tools,

hosting technology, and even system architecture that

the product was built on, have become increasingly

inextensible. The application attracts over 70 million

transactions per day. Many cloud computing types

were evaluated, such as PaaS (Platform as a

Service), SaaS (Software as a Service) and IaaS

(Infrastructure as a Service). After thorough
research, PCF PaaS (Pivotal Cloud Foundry) was

chosen, as all ecosystems in T-Mobile are On-Prem.

Micro apps were built which retained compatibility

between existing SOAP web service WSDL contract

and calling clients. The combination of Hystrix and

cloud configuration server avoided network latency,

enabled resilience patterns, auto recovery and

changing of application properties on-demand. This

method; “Digitalizing a Monolithic Application”

(DMA) was later adopted by several other technical

groups in T-Mobile and was an inspiration to other

international companies

Keywords: Cloud, Monolithic

INTRODUCTION

T-Mobile US [1] provides wireless voice,

messaging, and data services in the United

States, Puerto Rico, and the U.S. Virgin Islands under

the T-Mobile and Metro by T-Mobile brands. The

company operates as the third largest wireless

network in the U.S. market with over 83 million

customers and annual revenues over $34 billion. Its

nationwide network reaches 98 percent of Americans
through its EDGE 2G/HSPA 3G/HSPA+ 4G/4G LTE

networks, as well as, through roaming agreements.

Client-Server technology [2] was employed in T-

Mobile until 2006. This pattern exposed many

disadvantages which are not limited to the need of a

specialist operating system, high maintenance

costs, additional manpower and disruption in
case of network failures. RSP was the solution to

address the issues.

Retail services layer is the strategic platform, and

the foundation for next generation of User Interfaces,

IHAPS (In House Application systems), Organic and
Inorganic stores (Apple, Wal-Mart, Best buy, Costco,

etc.), e-commerce shops Amazon, NewEgg, Venicom,

salesforce etc. Business functionality was published,

discovered, and consumed as part of a business

ecosystem of network-aware and reusable technical
services. Retail Services Platform is a robust solution

which will allow T-Mobile to meet existing and

future business needs in a rapid and effective manner.

THE CHALLENGE

The Retail Service Platform layer interacts with

over 40 different front end and over 30 backend

ecosystems and runs on a single code base. This layer

absorbs 79% of the total real time purchase path

transactions from shopping applications; Retail Web,

Care, Self-care and TFB (T-Mobile For Business)

channels. The layer also interacts with business-
critical eco-systems such as payment and finance.

RSP was formed with an intent to be light weight,

however, Ever-growing business needs and the time-

to-market requirements made this a very tightly

coupled ecosystem.

Technical teams at T-Mobile were at the

crossroads of either enhancing the layer, Or,

introducing inevitable customer and system pain

points. To release any new feature or functionality,

the system had to take a multi-hour outage and bring

down all customer-critical applications. The

universal pill of ‘recycling’ the application was also
taking hours, in the case of issues.

The system was built on SOA architecture

principles [3] and the current age is over 10 years.

Auto scaling is not possible and not entirely

compatible with ‘Dev-Ops’ strategy. Build and

deployment times are high as the entire code is

required to be built and shipped. System and

regression testing landscape ended up having more

than 10,000 test cases in its entirety.

Due to overgrown technical orchestrations

between the service layer and multiple backend
systems, Response time was increased, and

performance was decreased. Infrastructure cost rise

was a continuous trend with the need to apply

security patches over multiple servers. Telemetry (1)

and Logging mechanisms were a challenge.

Lessons Learned: The finer level details during the
engagement of a monolithic system should be
given proper care, before its introduction into the
landscape, given the fast-changing business and
technical needs.

(1) Telemetry is an automated communications
process by which measurements and other
data are collected at remote or inaccessible
points and transmitted to receiving systems

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 10 – Oct 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 34

(splunk or in-house logging systems) for
monitoring.

DISCUSSIONS

PCF [4] PaaS was elected to build micro-apps to

overcome existing challenges in the monolithic
application. The apps are built using 12 factor cloud-

native principles [5]. Strangler pattern [6] was

employed in DMA. The most important reason to

consider a strangler application over a cut-over

rewrite is reduced risk. Strangler pattern gives value

steadily and the frequent releases allows better

monitoring controls.

Apache CXF [7] and Spring Boot frameworks [8]

were used to retain the existing SOAP WSDL [9]

contracts. Simplified queuing mechanisms were built

using RabbitMQ [10] and Kafka [11]. Several

RabbitMQ server nodes on a local network
are clustered together, forming a single logical broker.

Queues are mirrored across several machines in a

cluster, ensuring that even in the event of hardware
failure, messages are safe. Kafka handles high-

velocity and high-volume data. Also, enabled

message throughput of thousands of messages per

second. Kafka handles these messages with the very

low latency of the range of milliseconds, demanded

by most of the new use cases. Fault tolerance is

an inherent capability in Kafka, to be resistant to

node/machine failure within a cluster. Engagement of
these frameworks and message queues yielded

tremendous results.

To enable stronger resilience patterns and auto app

recovery, Hystrix open source framework [12] from

Netflix, was used. Hystrix is a latency and fault

tolerance library designed to isolate points of access

to remote systems, services and 3rd party libraries,

stop cascading failure and enable resilience in

complex distributed systems where failure is
inevitable.

MongoDB NoSQL [13] was used to house

‘catalog data’(2) which feeds Device, Plan and
default financial data into multiple front end systems.

The retrieval mechanism was highly efficient and

proved a game-changer in purchase paths across

retail and non-retail channels.

Continuous Integration and Continuous

Development, CI/CD [14] pipeline was achieved

using Jenkins and integrated into Bitbucket [15].

Newman Automation tool [16] was used for Unit and

Integration testing. This empowered quality

engineering team to run continuous test cycles.

Splunk tool [17] was used for logging and
troubleshooting. Telemetry was achieved using

AppDynamics [18].

(2) Catalog Data is a menu which contains all

Devices (Phones, Accessories), Rate Plans,
Pricing Information, Finance options, Product
specific promotions and offers. This forms

the core of shopping experience in any
customer or representative facing channels
in T-Mobile.

THE VISUAL

The high-level visual Figure 1, including the

technology stack, used to achieve ‘Digitalization of a

Monolithic Application’ is given below;

Figure 1

Retail Services Platform application was divided

into micro-apps based on hey business functionality.

The primary apps being; Customer, Order, Catalog,

Offers, Credit Check, Activation, and Usage. The

decimation of these functionalities empowered

scalability and ease of operation across the enterprise.
Figure 2 The journey started in March 2017 (Blue

line) which denotes traffic ramp down from Monolith

and in parallel traffic was ramped up (Red line) using

strangler pattern. No risks were identified during the

transition and existing business flows and processes

were not impacted.

Figure 2

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 10 – Oct 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 35

CONCLUSION

The idea to not impact existing customer facing

applications was attractive. The legacy applications

can continue to call the same services and still

achieve the business and enterprise goal of moving to

a new digitalized service platform. The software’s

embedded in monolithic application dismantled with

small manageable components. The CXF framework

and spring boot works together spans the transaction

thread and process it. RabbitMQ and Kafka message

models decouples the JMS embedded in the

WebLogic with greater through put. Hystrix enabled
system resilience to relieve system or platform back

pressure propagation. NOSQL Mongo Db made

system high availability data inserts and retrieval.

Automation on deployment process improved by

leveraging cloud foundry blue, green, canary

deployments without manual intervention.

Operational excellency achieved by utilizing cloud

foundry autoscaling, telemetry, pro-active alerts, real

time AppDynamics displays.

RESULTS

Better response times Figure 3 (43% benefit) 400
milliseconds to 220 milliseconds. This was a huge

win for our customers and IHAPS (In House

Applications).

Figure 3

2. Zero downtime and daytime deployments: What

used to be outage dependent system to launch

business projects, had become ‘Outage Free’ as a

result of deployment mechanism used in this

transformation.

3. Fewer incidents (18 in 2016 versus 3 in 2017)
and faster resolution of incidents (112 mins instead of

343 mins). A pure Dev-Ops strategy was achieved

due to micro apps.

4. Scalability was a huge win as our Operations

team did not have to spend tedious hours to add VM's

and deploy applications.

5.Low cost in comparison to legacy system

creation.

6.Improved Telemetry and Monitoring mechanism

ensured alerts were triggered in real-time, thereby

decreasing risk to business
7. Digital Death Star is pretty. Figure 4 Many apps
were digitalized and monitored. The application flow

map shown below, indicates the digital nature of the

entire application.

Figure 4

ACKNOWLEDGMENT

It takes a team to build a village, and the team was

nothing but exceptional. Special Thanks to Darron

Webb and Kris Wilson for allowing the team

experiment an ideology and making it work!

Thanks to invaluable support from our leadership

team; Cody Sanford, Chuck Knostman and Warren

McNeel.

ABBREVIATIONS

PCF Pivotal Cloud Foundry

RSP Retail Service Platform

CI/CD Continuous Integration/Continuous
Delivery

PaaS Platform as a Service

DAM Digitalizing A Monolithic

Application

LTM Local Traffic Manager

SQL Structured Query Language

SOAP Simple Object Protocol

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 10 – Oct 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 36

REFERENCES

[1] T-Mobile USA, INC. (2019). About T-Mobile. Retrieved

from https://www.t-mobile.com/about-us

[2] CLIENT SERVER TECHNOLOGY SET TO ENHANCE

ARMY TACTICAL C2 SYSTEMS. (1996). Inside the

Army, 8(45), 4-4. Retrieved from

http://www.jstor.org/stable/43979602

[3] The open Group. (2016). SOA architecture principles.

Retrieved from: http://www.opengroup.org/soa/source-

book/soa_refarch/p3.htm

[4] Pivotal Software Inc. (2019). PCF Pivotal Cloud Foundry.

Retrieved from https://pivotal.io/platform

[5] Adam Wiggs. (2012). The Twelve-Factor App. Retrieved

from https://github.com/heroku/12factor.

[6] Martin Fowler. (2014). StranglerApplication.

https://martinfowler.com/bliki/StranglerFigApplication.ht

ml

[7] Microsoft Inc. (2019). Strangler Pattern. Retrieved from

https://docs.microsoft.com/en-

us/azure/architecture/patterns/strangler

[8] Apache CXF. (2019). Apache CX: Retrieved from

http://cxf.apache.org/index.html

[9] Pivotal Software Inc. (2019). Sprint Boot: Retrieved

https://spring.io/projects/spring-boot

[10] w3schools.com. (2019) WSDL: Retrieved from

https://www.w3schools.com/xml/xml_wsdl.asp

[11] Pivotal Software Inc. (2019). RabbitMQ: Retrieved from

https://www.rabbitmq.com/

[12] Apache Software Foundation. (2017). Kafka. Retrieved
from https://kafka.apache.org/

[13] GitHub Inc. (2019). Hystrix: Retrieved from

https://github.com/Netflix/Hystrix

[14] MongoDB Inc. (2019). MongoDB: Retrieved from

https://www.mongodb.com/nosql-inline

[15] Marko Anastasov. 2019. CI/CD: Retrieved from:

https://semaphoreci.com/blog/cicd-pipeline

[16] Atlassian. (2019). Bitbucket. Retrieved from

https://bitbucket.org/product/features

[17] GitHub Inc. (2019). Newman: Retrieved from

https://github.com/postmanlabs/newman

[18] Splunk Inc. (2019). Splunk: Retrieved from

https://www.splunk.com/

[19] AppDynamics. (2019). AppDynamics:

https://www.appdynamics.com/

https://www.t-mobile.com/about-us
http://www.jstor.org/stable/43979602
http://www.opengroup.org/soa/source-book/soa_refarch/p3.htm
http://www.opengroup.org/soa/source-book/soa_refarch/p3.htm
https://pivotal.io/platform
https://github.com/heroku/12factor
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://spring.io/projects/spring-boot
https://bitbucket.org/product/features
https://www.splunk.com/

