
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 1

Strangler Abstraction Transformation
Boddam Linga Reddy

Abstract:

The challenge to substitute the Device

Financing Eco-System is demanding. As systems age,

the development tools, hosting technology, and even

system architecture that the product was built on,

have become increasingly inextensible. Significant

time and money were vested without success to

upgrade the current COTS lending engine. As

necessity is the mother of invention, we have devised
a new modus operandi which successfully addressed

the long remonstrance list. The “Strangler

Abstraction Transformation (SAT)” methodology

employed Strangler, Saga and CQRS (Command

Query Responsibility Segregation) patterns to

enhance the routing of transactional data into two

different financial systems and updating

corresponding realm of ecosystems, making the

paradigm scalable and seamless.

Keywords: Saga, CQRS, Strangler, Cloud

INTRODUCTION

T-Mobile US [1] provides wireless voice,

messaging, and data services in the United

States, Puerto Rico, and the U.S. Virgin Islands under
the T-Mobile and Metro by T-Mobile brands. The

company operates as the third largest wireless

network in the U.S. market with over 83 million

customers and annual revenues of $34 billion. Its

nationwide network reaches 98 percent of

Americansthrough its EDGE 2G/HSPA 3G/HSPA+

4G/4G LTE networks, as well as, through roaming

agreements.

T-Mobile‟s very own idea, implementation

and launch of Device Financing Product in 2009 was

a revolution. Known in the telecom landscape as
“Equipment Installment Plan” (EIP) [2], it was the

predecessor of many other finance products and

programs such as Lease, JUMP (Just Upgrade My

Phone) and „Un-Carrier‟[3].The impacts of these

products were so huge, that the competition was

forced to adapt these products and programs to their

establishments.

The Equipment Installment Plan (EIP) is a

home-grown system which currently serves around

35 Million and counting „Active‟ Loans and Leases.
The system feeds largeamount of data to over

150+systems in the T-Mobile landscape, which

serves Customers, Accounting, Billing, Auditing,

Ordering and the Reporting verticals.

The Challenge

The current EIP system had evolved into a

very tightly coupled architectural system with

numerous interactions and validations. Many

functions, though not required by the system itself,

are forced to fit-in. As business and market needs

evolved, the system ended up having orchestrations

and dependencies on credit decisioning, billing,
business rule engine, government compliance rules,

3+ million lines of code, 250+ database tables with

more than 500 million transactional and historical

records, making it an extremely tightly coupled

system.

The major drawback of the current system is

that it is not „Payment – aware‟. Currently, the

system marks the payment as „Done‟ as soon as the

CIG (charge Injection) process is done and sent to the

billing system. However, the reconciliation between
the payment, billing and finance system is not in

sync; resulting in revenue leaks and finance auditing

discrepancies.

The monolithic nature of the system is also a

key driver that triggered need of a new finance

system. The functional and technical disadvantages

include,less scalability, as the system is not designed

to support new business products and ideas.This

includes, interest rate calculations, and flexible

finance options, High test and operation costs which
puts the ROI (Return onInvestment) factor at a

minimum. Fault tolerance and speed to market of the

code/product is also low.

When a New Finance system (COTS

product from Oracle; a.k.a OFSLL (Oracle Finance

System for Loans and Leases) [4] was determined to

be onboarded with the intention to replace the in-

house system, the task was daunting. De-coupling

systems and their corresponding functionality without

impacting real time transactions and front-line

applicationswas unachievable.

Lessons Learned:The finer level details during the
engagement of a monolithic system should be
given proper care, before its introduction into the
landscape, given the fast-changing business and
technical needs.

DISCUSSIONS

The method of “SAT (Strangler Abstraction

Transformation)” primarily forms a nucleus around

finance serving application and back office

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 2

ecosystems.This nucleus is made up of micro

components built using Spring Boot framework with

cloud-native Twelve-Factor App principles.This

offers a clean contract with the underlying operating

system and maximum portability between execution

environments. Employed the cloud computing [5]
PaaS cloud platform as infrastructure to build and

deploy and operationalize the transformation.

The components use a combination of Saga

[6], Strangler [7] microservice engagement along

with CQRS patterns [8]. Since the idea is to route

transactions into two mutually exclusive, yet

functionally similar, finance systems (EIP and

OFSLL); Saga microservice patterns represent a

high-level business process that consists of several

low-level requests that update data within a single

service. Each Request has a compensating

request that is executed when the request fails, or the

Saga is aborted.

Strangler microservice patterns ensure that

the incoming transactions are validated against the

legacy system setup, in addition to creating the same

record in the new finance system,If the legacy

finance system is incapable of consuming the

transaction.This ensure the Backoffice ecosystems

does not receive unwanted updates. For instance,

New Customers trying to “Activate” their device

through T-Mobile are routed to the New Finance

System and existing customers trying to “Add a line”
to their accounts are routed to the Legacy system.

This is achieved without technical contract changes

between the calling applications and the legacy

system but simultaneously routed the wanted

transactions to the new finance system.

The engagement of CQRS pattern on

RabbitMQ [9] framework supports multiple

denormalized views that are scalable. This provides

the benefit of improved separation of concerns, and

simpler command and query models. This paradigm

allows implementing a query that retrieves data from

multiple services in a microservice architecture.

The above rationale can be illustrated in the

following use case; When a Loan is created and

required to be recorded in the designated finance

system, Saga pattern coordinates with

multiplesystems (Credit, TOOP, Eligibility, Device

validation services etc.,) to Read/Write data.

Strangler patterns validate thefunctional variance of

the loan, meaning if it‟s a „Brand New Activation‟,

„Add a Line‟ or an „Upgrade‟ scenario, and routes the

record to the anticipated finance system.

THE STACK

The high-level architecture including the
technology stack used to achieve “Strangler

Abstraction Transformation (SAT)” is given below

Figure 1 and Figure 2

Figure 1

Figure 2

The high-level architecture Figure 3

including the technology stack used to achieve

“Abstraction for Back Office Batch Processing” is

given below;

 Figure 3

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 3

We have employed Spring[10] Batch

framework to build abstract layer between existing

and new finance systems for small sized data

depending on business use cases. This gives the

advantage to decouple layers, in addition to,
implementing a generic business logic through out

the application. The framework also enables

separation between infrastructure and application at

the executable JAR level, resulting in easy and

scalable deployment.

Apache Spark framework [11] used to

process large files and data sets generated by both

finance systems. We utilized power of Spark to data

load and migration of existing data in EIP to new

system OFSLL. The advantage we got migration of

over 90 million records in 15 hours, so that no

customer experience impact and customer payments
impact during course of migration records old system

EIP to new system OFSLL.

CONCLUSIONS

The idea to not impact existing customer

facing applications was attractive. The legacy
applications can continue to call the same services

and still achieve the business and enterprise goal of

moving to a New Finance system. Historically, this

type oflarge move typically creates unrest among

multiple ecosystems. However, Due to the digital

nature of „Abstraction‟, the labor process was natural

and painless. The testing effort is de-centralized, and

the transition was smooth.

From a funding and operational perspective,

significant savings were achieved. A critical system
„replacement‟ usually warrants tedious planning

sessions along with budget and resource allocations.

In this case, the budget and workforce savings were

at a record high in comparison to traditional

replacement efforts, this could be directly attributed

to the technicaldecoupling and rerouting paradigms

followed in „Abstraction‟.

The design pattern of „SAT‟is leveraged by

many applications and systems across the enterprise

who are introducing new systems in their
corresponding landscape. This includes verticals such

as Billing, Customers, Credit, Audit and Orders.

Many accolades were received from multiple

domains. The launch of new business products has

become very achievable without high costand

resources. Time-to-Market of business products is

reduced with improved customer experience and

servicing.

The benefits after introduction of SAT can

be understood in the examples below. (Statistics from

Pilot Production Launch)

Figure 4

Transaction Count: Figure 4 shows parityin

count across EIP and OFSLL (Two Finance

Systems). The Transaction Count graph denotes the #

of transactions flowing into each finance system in
parallel for the same functionality.

Figure 5

Average Response Times: Figure 5 As
shown in the graph above, the introduction of SAT

proved that the average response time into OFSLL is

actually less that the response time of the legacy

system. The benefits of digital transformation are

transparent.

ACKNOWLEDGEMENTS

It takes a team to build a village, and the

team was nothing but exceptional. Special Thanks to

Anu Mahanty and Ram Sadasivam for allowingthe

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 4

team to experiment an innovative idea and making it

work!

Thanks to invaluable feedback and support

from our Enterprise Leadership; Cody Sanford,

Robert Gary, Kevin Nelson, Darron Webb, Chuck

Knostman and Kris Wilson.
Thanks to our Business Leaders; Peter

Oswaldik, Kellie Berndt and Christopher Hooppaw.

ABBREVIATIONS

SAT Strangler Abstraction Transformation

EIP Equipment Installment Plan

CIG Charge Injection

COTS Commercial Of-the shelf

TOOP Tailored Out of Pocket

CQRS Command Query Responsibility

Segregation

OFSLL Oracle Finance System for Loan and

Lease

JAR Java Archive

REFERENCES

[1] T-Mobile USA INC. (2019). About T-Mobile.

Retrieved fromhttps://www.t-mobile.com/about-us

[2] T-Mobile USA INC. (2019).Buy T-Mobile Device.

Retrieved fromhttps://support.t-mobile.com/docs/DOC-

1674

[3] T-Mobile USA INC. (2019). Un-Carrier History.

Retrieved fromhttps://www.t-mobile.com/our-story/un-

carrier-history

[4] Oracle Inc. (2017). Oracle Financial Services Lending

and Leasing. Retrieved from

https://docs.oracle.com/cd/E89525_01/index.htm

[5] Gorelik, E. PhD thesis, Massachusetts Institute of

Technology. Cloud computing models (2013)

[6] Mell, P., Grance, T. The NIST definition of cloud

computing, et al. (2011).

[7] Anderson Chris. (2019). Pattern Saga. Retrieved from

https://microservices.io/patterns/data/saga.html

[8] Martin Fowler. (2004). StranglerFigApplication.

Retrieved from

https://martinfowler.com/bliki/StranglerFigApplication.

html

[9] Marin Fowler. (2011). CQRS. Retrieved from

https://martinfowler.com/bliki/CQRS.html

[10] Pivotal Software Inc. (2017). RabbitMQ. Retrieved

from https://www.rabbitmq.com/

[11] Pivotal Software Inc. (2019). Spring Batch. Retrieved

from https://spring.io/projects/spring-batch

[12] The Apache Software Foundation. (2018). Apache

Spark. Retrieved fromhttps://spark.apache.org/

https://www.t-mobile.com/about-us
https://support.t-mobile.com/docs/DOC-1674
https://support.t-mobile.com/docs/DOC-1674
https://www.t-mobile.com/our-story/un-carrier-history
https://www.t-mobile.com/our-story/un-carrier-history
https://docs.oracle.com/cd/E89525_01/index.htm
https://microservices.io/patterns/data/saga.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/CQRS.html
https://www.rabbitmq.com/
https://spring.io/projects/spring-batch
https://spark.apache.org/

