
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 18

Rapid determination of three-dimensional

convex shapes by dispersion processing using

Java RMI
SatoshiKodama

#1
, ReiNakagawa

*2
, YukaOzeki

*3

#Researcher, Research institute for Science and Technology, Tokyo University of Science

2641 Yamazaki, Noda, ChibaPrefecture, Japan
*
Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science

2641 Yamazaki, Noda, Chiba Prefecture, Japan

Abstract

To quickly determine the interior and

exterior of a three-dimensional (3D) shape, one must

apply shape recognition and contact determination

algorithms. However, in general, a 3D figure largely
differs from a two-dimensional figure, and is

described by a large dataset. Consequently, the

determination process is time intensive. To alleviate

this problem, determination methods of 3D complex

shapes are often based on solid angles, but this

approach is inapplicable to many shapes unless the

computer is equipped with a graphics processing

unit. On the other hand, the use of embedded

personal computers such as 3D printers and portable

3D scanners is increasing in modern data

processing, and environments free of special devices

are also required.
In this paper, we show that high-speed

processing of convex object can be achieved by

parallel computing using a plurality of relatively

inexpensive Raspberry Pi3s.

Keywords — Parallel computing, Java RMI, 3D

Modeling, Inside/outside determination

I. INTRODUCTION

Interior-exterior determination of three-

dimensional (3D) shapes is an important technology

not only in 3Dmodeling and contact detection, but
also in shape recognition and region determination

[1-3]. However, 3D shapes largely differ from two-

dimension (2D) shapes, and are described by large

datasets that greatly lengthen the time of the

determination processing [4-6]. Therefore, the

processing is usually performed using a graphics

processing unit (GPU), but the algorithm must

conform to the GPU after adding a device [7-9]. For

this reason, methods for improving the overall

processing speed have focused on the parallel

connection of a plurality of relatively inexpensive
small personal computers (PCs) [10-12]. In this case,

a typical program must be supplemented by a

network program that performs the parallel

processing. Although the auxiliary program requires

optimization, a device-aware system does not need to

be constructed. In other words, the parallelism is easy

to implement, is not restricted by the development

environment, and can be programmed using ordinary

control flow [13,14].

In this paper, we show that interior-exterior
determination can be performed at high-speed by

parallel processing of multiple Raspberry Pi 3

devices, which are widely used and have shown

remarkable performance improvement with the

development of Internet of Things (IoT).

II. RELATED RESEARCH

An easy way to comply with the conference paper

formatting requirements is to use this document as a

template and simply type your text into it.

A. The shape determination method

The internal and external environments of a 3D

shape can be determined by extending the 2D

Crossing Number Algorithm or the Winding Number

Algorithm. This section explains the 2D algorithms

and their 3D extensions in detail.

a) Crossing Number Algorithm

The 2D Crossing Number Algorithm distinguishes
the internal and external points of a 2D shape by

counting the number of edge-crossings of a straight

line passing through the shape from each point (Fig.

1).

Although this method determines the internal and

external points at relatively high-speed, it can cause

an erroneous judgment (Fig. 2) [5,15-17].

Fig. 1. Exterior-interior determination by the ray method

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 19

In three dimensions, the Crossing Number

Algorithm extends a straight line in all directions and

counts the number of intersections with an object.

However, like its 2D equivalent, this approach can

misjudge the situation of ambiguous points [18,19].

Fig. 2. Example of erroneous detection by the ray method

b) Winding Number Algorithm

The 2D Winding Number Algorithm detects the

internal and external points of a shape using angles.

For example, as shown in Fig. 3 and 4, if one

sequentially moves from point V1 to point V5 in the

counterclockwise direction, the internal-external

determination is performed by adding the angles

subtended from the point of interest to successive

pairs of vertices (in clockwise direction, the angles

will be negative; see Fig. 5) [20]. If the angles sum to

2π or 0, the point is inside and outside the shape,
respectively. By this analysis, the point in Fig.3 is

discerned as internal, whereas that in Fig. 4 is

external.

Summarizing the above results, the n-squared

determination result is expressed as follows:

 𝜃𝑖

𝑛

𝑖=1

=
2𝜋, 𝑖𝑛𝑛𝑒𝑟
 0, 𝑜𝑢𝑡𝑒𝑟

Fig. 3. Inner point discerned by the Winding Number

Algorithm

Fig. 4. Outer point discerned by the Winding Number

Algorithm

Fig. 5. Positive–negative determination by rotation

direction

The 3D Winding Number Algorithm replaces the

angle by the solid angle. When based on the solid

angle, the determination algorithm must consider the
surface area of a sphere (Fig. 6) [21]. The

determination will cover the entire sphere of an

internal point (Fig. 7), but only part of the sphere for

an external point (Fig. 8) [20,21].

Fig. 6. Spherical trigonometry

Fig. 7. Projection of an internal point

Fig. 8. Projection of an outside point

In general, the 3D Winding Number Algorithm

performs the following calculation:

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 20

𝑆𝑗 = 𝜃𝑖

𝑛

𝑖=1

− 𝜋 (𝑗 ≥ 1)

𝑆𝑎𝑙𝑙 = 𝑆𝑗

𝑚

𝑗=1

=
4𝜋, 𝑜𝑢𝑡𝑒𝑟
 0, 𝑖𝑛𝑛𝑒𝑟

Here, Sall is the vertex size over all planes, m is the

number of polygons comprising the object surface,
and the sphere has unit radius [20-22].

Note that the solid angle determination is positive

when viewed from the outside and negative when

viewed from the inside, as shown in Fig. 9.This

determination based on the input order of the data is

also used in polygon-display algorithms, and is a

general data structure of 3D objects [23-25].

Fig. 9. Positive–negative determination by rotation direction in

the 3D Winding Number Algorithm

The winding number determination correctly

discerns the internal and external points even of
complex shapes, but the numerous circular functions

require a long processing time [16, 17].

B. GPU and parallel processing

Although it requires a special device, a method

based on general purpose GPUs returns the

determination results at high-speed by generating a

huge number of threads [26-28]. However, unlike

normal development methods, this approach needs a
host-side program and a device-side program, which

must usually be developed (Fig. 10) [26].

Furthermore, in the Single instruction, multiple

thread (SIMT) format of such a program, the control

flowis restricted for efficiency [26-29].

Fig. 10. Programming model and execution

C. Parallel processing via network

The authors of [12] achieved high-speed judgment
with no special device by connecting multiple PCs in

parallel via a network.When performing parallel

computing over a network, inputs and outputs are

commonly sequenced as bytes using a socket

programming. The communication begins by

specifying the IP address and the port number.

Therefore, despite its versatility, this method must

consider the data structures and network

environments of the other PCs in the network.

To overcome this difficulty, rather than processing

the transmission and reception as byte sequences, our

method performs parallel processing on an object-by-

object basis. The proposed method is demonstrated

on a Java Remote Method Invocation (RMI) in the

following example.
Java RMI is a middleware that enables distributed

computing. A Java RMI application automates the

processing between the server and the client, while

both parties are unaware of the above conversion.

Furthermore, as the object can be passed as an

argument and a return value when calling a method,

even complex data structures can be easily handled.

In addition, programs can be called by all computers

in the network, meaning that a program running on a

remote computer can be called and used like a

computer’s own function (Fig. 11) [30-32].

Fig. 11. How Java RMI works [32]

III. RESEARCH CONTENT

As the solid angle processing in the 3D

Winding Number Algorithm is time-intensive, our
internal-external determination method adopts a

vector formulation. We also clarify whether the

parallel distributed processing delivers high-speed

results on PCs with relatively low performance, such

as those used in IoT devices.

A. Internal-external determination by the vector-

based method

The algorithm in the proposed method uses a
vector rather than the solid angle.

First, all polygons are projected onto the plane as

shown in Fig. 12. Next, the target polygon is

specified by the determination processes shown in

Fig. 13 and 14. The splitting function[33, 34] is given

by

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 21

𝑓𝐴𝐵 𝑥1 , 𝑥2 = 𝑏2 − 𝑎2 𝑥1 − 𝑎1 +
 𝑎1 − 𝑏1 𝑥2 − 𝑎2 ⋯ (A) .

Fig. 12. Projection on the plane

Fig. 13. Splitting function[33, 34]

FIG FIG

Fig. 14. Internal determination method (positive/negative matches inside the polygon)

If (A) lies on a straight line, the inside-outside

determination is performed by changing the projection

direction from the XY plane to the YZ plane, as
shown in Fig. 15.

Based on the cross product and inner product, the

algorithm decides whether the target coordinates

belong to the upper part of the polygon. This judgment

is made in order from the upper part (Fig. 16). Finally,

the areas are merged to give the inside-outside

judgments along the axis.

Fig. 15 If function (A) is = 0

Fig. 16. Determining the sign of the area of each polygon

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 22

B. Determination processing by the server-client

method

The proposed method was implemented in a Java

RMI. In the server-client environment, the vector-

based inside-outside determination algorithm is

implemented in a plurality of servers, and each server

processes one area of the determination (see Fig. 17).

The decision result of each server is finally merged

on the client side to obtain the result (Fig. 18). Note

that the number of servers depends on the number of

constructions.

Fig. 17. Server–client relationship in the parallel

implementation of the proposed method

Fig. 18. Program flow of client and server

IV. EXPERIMENT

 In the verification experiment, the
calculation rage was set to −50≤x<50, −50≤y<50,

−50≤z<50 (Integers), and the determination was

performed on Figs. 19-22. The numbers of vertices

and 2D polygons of the three-dimensional shape

constituting each figure are shown in Table 1.

Each Raspberry Pi 3 judged the interiors and

exteriors in regions comprising 5, 10, and 25 square

pixels x × y and 101 pixels along the z direction. In

addition, the number of Raspberry Pi 3 devices in the

parallel calculations was varied as 1, 4, 8 and 16. The

specifications of the devices are given in Tables 2-4.

The results are shown in Figs. 23-26, and the

processing times of obtaining the determination

results are listed in Table 5. Furthermore, Figs. 27-30

display the speed changes of processing each figure

the number of Raspberry Pi 3 devices increased from

1 to 16.

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 23

Fig. 19. Sample data 1

Fig. 20. Sample data 2

Fig. 21. Sample data 3

Fig. 22. Sample data 4

TABLE 1. Corresponding shape

Number of

vertices

Number of

polygons

Sample data 1
 (Fig. 19.)

 8 12

Sample data 2

(Fig. 20.)
 22 40

Sample data 3

 (Fig. 21.)
 80 160

Sample data 4

(Fig. 22.)
 212 420

TABLE 2. Main specifications of Raspberry Pi 3B

Specification

CPU
Broadcom BCM2837

1.2 GHz ARM Cortex-A53

RAM
1 GB

LPDDR2 (900 MHz)

Ethernet

RJ-45 x1:

100BASE-TX
10BASE-T

Storage MicroSD card slot

power supply
+5 V (2.5 A)

micro USB socket

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 24

TABLE 3. Main specifications of Client

Specification

CPU
Intel Core i7-7700HQ @
2.80GHz

RAM
32 GB

DDR4 (2400MHz)

Ethernet
RJ-45 x1:

1000 BASE-T

Storage SSD 240GB

TABLE 4. Experimental environment

Specification

Client

OS:

CentOS Linux release 7.4.1708
Java Development Kit:

javac 1.8.0_131

Server

OS:

CentOS Linux release 7.2.1511

Java Development Kit:

javac 1.8.0_191

Ethernet:

100 Mbps (as the theoretical value)

Fig. 23. Result (Sample data 1)

Fig. 24. Result (Sample data 2)

3
Fig. 25. Result (Sample data 3)

Fig. 26. Result (Sample data 4)

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 25

TABLE 5. Computation time (Sample data 1)

Number of

nodes

Time [ms]

4 square 5 square 10 square 20 square 25 square

1 53883.8 51023.6 47440 46469.4 46515.4

4 13683.8 13149.6 12840.6 15681.6 12469.0

8 7104.0 6803.4 7417.6 13925.8 11946.4

16 3807.0 3703.2 4126.2 13295.0 11599.8

TABLE 6. Computation time (Sample data 2)

Number of

nodes

Time [ms]

4 square 5 square 10 square 20 square 25 square

1 109494.0 106919.2 103369.8 102914.6 102612.8

4 27762.0 27103.2 26573.8 31268.0 27389.4

8 14257.2 13890.6 14334.2 19314.2 20430.0

16 7538.8 7484.8 7931.2 14192.0 20359.4

TABLE 7. Computation time (Sample data 3)

Number of

nodes

Time [ms]

4 square 5 square 10 square 20 square 25 square

1 183240.8 180364.4 177244.6 176471.0 176460.2

4 45918.6 45303.0 44574.6 45558.0 55384.4

8 23256.0 22952.2 23702.0 30737.8 33526.0

16 11907.8 11903.2 15395.4 29354.8 31992.6

TABLE 8. Computation time (Sample data 4)

Number of

nodes

Time [ms]

4 square 5 square 10 square 20 square 25 square

1 261480.2 257660.4 254542.0 254386.2 254348.0

4 65589.8 64859.6 64187.2 68765.0 67870.8

8 33094.2 32897.8 33994.2 36868.6 41042.0

16 17177.0 16863.0 18814.6 23316.6 27017.2

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 26

 Fig. 27. Computation time (Sample data 1) Fig. 28. Computation time (Sample data 2)

 Fig. 29. Computation time (Sample data 3) Fig. 30. Computation time(Sample data 4)

V. CONCLUSIONS

Determining the interior and exterior points of

shapes and objects is important not only in fields such

as 3D shape modeling and contact determination, but

also in region detection and shape recognition.

However, unlike 2D shapes, 3D shapes are described

by huge amounts of data that seriously slow the

determination process.

To reduce the processing time, shape data can often

be processed in parallel. The present paper confirmed

that parallel operations deliver high-speed result even
on relatively low-performance devices such as

Raspberry Pi 3 devices, which are used in the IoT field

and are expected to be popularized in future.

If an algorithm solid angles is executed on the GPU,

a large number of threads will guarantee high-speed

results, but requires the creation of a program on the

device side.

This study proposed that parallel processing can be

implemented without the client being conscious of the

network, and that the method implemented in each

server can be called easily from the client side. In
other words, various devices can be easily used

without knowledge of the device side.

In future work, the allocation must consider the

machine power of each server to boost the processing

speed.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI

Grant Number 19K14599.

REFERENCES

[1] Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan,

Xuelin Chen, Yann Savoye, Changhe Tu, Daniel Cohen-Or,

Baoquan Chen, “Build-to-last: strength to weight 3D printed

objects,” ACM Transactions on Graphics,

DOI:10.1145/2601097.2601168, Vol. 33, No. 4, 2014.

[2] Munir Eragubi, “Slicing 3D CAD Model in STL Format and

Laser Path Generation,” International Journal of Innovation,

Management and Technology, Volume. 4, No. 4, 2013.

[3] Andrew Gleadall, Ian Ashcroft, JoelSegal, “VOLCO: A

predictive model for 3D printed microarchitecture,” Additive

Manufacturing, Volume 21, 2018.

[4] Abhijit Kundu, Yin Li, James M. Rehg, “3D-RCNN:

Instance-Level 3D Object Reconstruction via Render-and-

Compare,” The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 3559-3568, 2018.

[5] S. Kodama, “Effectiveness of inside/outside determination in

relation to 3D non-convex shapes using CUDA,” The

Imaging Science Journal,

DOI:10.1080/13682199.2018.1497251 Volume 66, Issue 7,

2018.

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 27

[6] Qian-Yi Zhou, Jaesik Park, Vladlen Koltun, “Open3D: A

Modern Library for 3D Data Processing,” arXiv:1801.09847,

2018.

[7] John Cheng, Max Grossman, Ty McKercher, Professional

CUDA C Programming, Wrox Press Ltd., 9781118739327,

2014.

[8] Xun Gong, Rafael Ubal, David Kaeli, “Multi2Sim Kepler: A

detailed architectural GPU simulator,” 2017 IEEE

International Symposium on Performance Analysis of

Systems and Software (ISPASS), DOI:

10.1109/ISPASS.2017.7975298,pp. 269-278, 2017.

[9] Ilya V. Afanasyev, Vadim V. Voevodin, Vladimir V.

Voevodin, Kazuhiko Komatsu, Hiroaki Kobayashi, “Analysis

of Relationship Between SIMD-Processing Features Used in

NVIDIA GPUs and NEC SX-Aurora TSUBASA Vector

Processors,” Parallel Computing Technologies, pp. 125-139,

978-3-030-25636-4, 2019.

[10] Scalable clusters make HPC R&D easy as Raspberry Pi,

https://www.bitscope.com/cluster/bitscope-cluster-module-

press-release-ZWLJ6PZ3.pdf.

[11] Dejan Vujičić, Dragana Mitrović, Siniša Ranđić, “Image

Processing on Raspberry Pi Cluster,” International Journal of

Electrical Engineering and Computing, Vol.2, No 2, 2018.

[12] Vincent A. Cicirello, “Design, Configuration,

Implementation, and Performance of a Simple 32 Core

Raspberry Pi Cluster," arXiv:1708.05264, 2017.

[13] Dana A. Jacobsen, Julien C. Thibault, Inanc Senocak, “An

MPI-CUDA Implementation for Massively Parallel

Incompressible Flow Computations on Multi-GPU Clusters,”

AIAA Aerospace Sciences Meeting Including the New

Horizons Forum and Aerospace Exposition,

DOI:10.2514/6.2010-522, 2010.

[14] J. Christy Jackson, V. Vijayakumar, Md. Abdul Quadir,

C.Bharathi, “Survey on Programming Models and

Environments for Cluster, Cloud, and Grid Computing that

Defends Big Data,” Procedia Computer Science, Volume 50,

pp 517-523, 2015.

[15] Paul Heckbert, “Graphics Gems IV, Morgan Kaufmann,”

ISBN 978-0123361554, 1994.

[16] Kai Hormann, Alexander Agathos, “The point in polygon

problem for arbitrary polygons,” Computational Geometry,

Volume 20, Issue 3, pp. 131-144, 2001.

[17] Dan Sunday, “Inclusion of a Point in a Polygon,”

http://geomalgorithms.com/a03-inclusion.html.

[18] Michael K. Reed, “Solid Model Acquisition from Range

Imagery,” Columbia University,

http://crlab.cs.columbia.edu/files/solid-model-acquisition-

from-range-imagery.pdf, 1998.

[19] Arsalan Malik, Benjamin Loriot, Youssef Bokhabrine,

Patrick Gorria, Ralph Seulin, “A Simulation of Automatic 3D

Acquisition and Post-processing Pipeline,” Image Processing:

Machine Vision Applications II, DOI: 10.1117/12.806148,

Vol. 7251, 2009.

[20] Satoshi Kodama, Yuka Ozeki, Rei Nakagawa, “Internal and

External Analysis Considering the Layers of Three-

dimensional Shapes Using CUDA,” International Journal of

Computer Trends and Technology, Volume 67, Issue 6, DOI:

0.14445/22312803/IJCTT-V67I6P101, 2019.

[21] Atsushi Nakayama, Daisuke Kawakatsu, Ken-Ichi Kobori,

Toshirou Kutsuwa, “A checking method for a point inside a

polyhedron in grasping an object of VR,” Information

Processing Society of Japan, 48, pp. 297-298, 1994.

[22] Daisuke Kawakatsu, Atsushi Nakayama, Ken-Ichi Kobori,

Toshirou Kutsuwa, “A Method of Selecting an Object in

Virtual Reality,” IPSJ SIG on CGVI, 110, 66-4, pp. 25-32,

1993.

[23] Adrian Kaehler, Gary Bradski, Learning OpenCV 3:

Computer Vision in C++ with the OpenCV Library, O'Reilly

Media, 978-1491937990, 2017.

[24] Samuel D. Jaffee, Laura Marie Leventhal, Jordan Ringenberg,

G. Michael Poor, “Interactive 3D Objects, Projections, and

Touchscreens,” Proceedings of the Technology, Mind, and

Society, DOI: 10.1145/3183654.3183669, Article No. 18,

2018.

[25] Andrew Davison, “Pro Java 6 3D Game Development: Java

3D, JOGL, JInput and JOAL APIs,” Apress, 978-

1430211860, 2014.

[26] John Cheng, Max Grossman, Ty McKercher, “Professional

CUDA C Programming,” Wrox Press Ltd., 9781118739327,

2014.

[27] David B. Kirk, Wen-mei W. Hwu, “Programming Massively

Parallel Processors,” A Hands-on Approach 3rd Edition,

Morgan Kaufmann, 9780128119860, 2016.

[28] Jason Sanders, Edward Kandrot, “CUDA by Example: An

Introduction to General-Purpose GPU Programming,”

Addison-Wesley Professional, 978-0131387683, 2010.

[29] John Nickolls, GPU parallel computing architecture and

CUDA programming model, IEEE Hot Chips 19 Symposium,

DOI: 10.1109/HOTCHIPS.2007.7482491, 2007.

[30] Badr Benmammar, “Concurrent, Real-Time and Distributed

Programming in Java: Threads, RTSJ and RMI,” ISBN 978-

1786302588, 2018.

[31] Paweł T. Wojciechowski, Konrad Siek, “Atomic RMI 2:

distributed transactions for Java,” Proceedings of the 6th

International Workshop on Programming Based on Actors,

Agents, and Decentralized Control, DOI:

10.1145/3001886.3001893, pp 61-69, 2016.

[32] University of Notre dame, “Java RMI”,https://en.ppt-

online.org/37724.

[33] Yutaro Hara, Satoshi Kodama, “A proposal for revising AR

marker with infrared light,” IEICE Tech. Rep., vol. 113, no.

299, pp. 53-56, 2013.

[34] Yuka Ozeki, Shinya Kameyama, Satoshi Kodama, Shigeo

Akashi, A Proposal for the User Interface by Using Laser

Devices Arranged in a Three Dimensional Space, The

Institute of Electronics, Information and Communication

Engineers and Information Processing Society of Japan,

Volume 3, pp 385-388, 2016.

www.internationaljournalssrg.org

