
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 12 – Dec 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 1

Testing Web Applications
Hanan Qassim Jaleel

Baghdad College of Medical Sciences

Abstract

Web applications are meant to be viewed by

human user. While this implies that quality of web

application has importance in our daily life. Web

application quality is our prime concern. To ensure the
quality of web application, web testing is having a

dandy role in Software Testing as well as Web

Community. Web Applications are erring because of

features provided for rising of web application. In the

last years, various web testing problems have been

addressed by research work. Several tools, techniques

and methods have been determined to test web

application efficaciously. This paper will present the

testing types , testing approaches and methods that can

be used to achieve web testing

I. Introduction

Web application testing is a software testing technique

exclusively adopted to test the applications that are

hosted on web in which the application interfaces and

other functionalities are tested.

Web applications are the fastest growing

classes of software systems today. Web applications are

being used to support wide range of important

activities: business transaction, scientific activities like

information sharing, and medical systems such as

expert system-based diagnoses.

Some errors are the result of incorrect design

or improper coding(in HTML , client side scripting ,

server side programming), other errors due to the static

operating environment (the specific configuration in

which testing is conducted) , others due to dynamic

operating envirnments.

In fact, because Web-based systems and

applications reside on a network and interoperate with

many different operating systems, browsers [or other

interface devices such as mobile phones], hardware

platforms, communications protocols, the search for

errors represents a significant challenge for Web

engineers[1].

A. Web application can be considered as a distributed

system including the following main characteristics:

1) A wide number of users distributed all over the

world and accessing it concurrently.

2) Heterogeneous execution environments composed

of different hardware, network connections,

operating systems, Web servers and Web browsers.

3) An extremely heterogeneous nature that depends on

the large variety of software components that it

usually includes. These components can be

constructed of different technologies (i.e., different

programming languages and models).
4) The ability of generating software components at

run time according to user inputs and server

status[1,2].

II. Testing Types

There are several types of testing, these are:

A. Content Testing

Faults in WebApp content can be as trivial as minor

typographical errors or as significant as incorrect
information, improper organization, or violation of

intellectual property laws. Content testing attempts to

uncover these errors and many other problems before

the user encounters them.

Content testing has three important objectives:

a) To uncover syntactic errors (e.g., typos,

grammar mistakes) in text-based documents,

graphical representations, and other media.

b) To uncover semantic errors (i.e., errors in the

accuracy or completeness of information).
c) To find errors in the organization or structure of

content that is presented to the end user[1,3].

To accomplish the first objective, automated spelling

and grammar checkers may be used. However, many

syntactic errors evade detection by such tools and must

be discovered by a human reviewer (tester). Semantic

testing focuses on the information presented within

each content object.

 DataBase Testing

Modern WebApps do much more than present static

content objects. In many application domains,

WebApps interface with sophisticated database
management systems and build dynamic content objects

that are created in real time using the data acquired

from a database.

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 2

To accomplish this, the following steps are required:

 (1) a large database is queried,

 (2) relevant data are extracted from the database,

(3) the extracted data must be organized as a content

object, and

(4) this content object (representing customized

information requested by an enduser) is transmitted to

the client environment for display. Errors can and do

occur as a consequence of each of these steps.

The objective of database testing is to uncover these

errors. Testing should ensure that

(1) valid information is passed between the client and

server from the interface layer,

 (2) theWebApp processes scripts correctly and
properly extracts or formats user data,

 (3) user data are passed correctly to a server-side data

transformation function that formats appropriate queries

(e.g., SQL), and

(4) queries are passed to the data management layer 9

that communicates with database access routines

(potentially located on another machine)[1,4].

 Data transformation, data management, and the

database access layers shown in Figure 1

B. User Interface Testing

The overall Objectives for interface testing is to:

(1) uncover errors related to specifi c interface

mechanisms (e.g., errors in the proper execution of a

menu link or the way data are entered in a form), and

(2) uncover errors in the way the interface implements
the semantics of navigation, WebApp functionality, or

content display[1].

Interface Mechanisms

When a user interacts with a WebApp, the interaction
occurs through one or more interface mechanisms.

These mechanisms include :

Testing of Interface Mechanisms

 Links. Each navigation link is tested to ensure

that the proper content object or function is reached.

You can build a list of all links associated with the

interface layout (e.g., menu bars, index items) and then

execute each individually. In addition, links within each

content object must be exercised to uncover bad URLs

or links to improper content objects or functions.

Finally, links to external WebApps should be tested for
accuracy and also evaluated to determine the risk that

they will become invalid over time[5].

 Forms

(1) labels correctly identify fields within the form and

that mandatory fields are identified visually for
the user,

(2) the server receives all information contained within

the form and that no data are lost in the

transmission between client and server,

(3) appropriate defaults are used when the user does not

select from a pull-down menu or set of buttons,

(4) browser functions (e.g., the back arrow) do not

corrupt data entered in a form,

(5) scripts that perform error checking on entered data

work properly and provide meaningful error

messages

(6) form fields have the proper width and data types,

(7) the form establishes appropriate safeguards that

preclude the user from entering text strings longer

than some predefined maximum,

(8) all appropriate options for pull-down menus are

specified and ordered in a way that is meaningful

to the end user,

(9) browser “auto-fill” features do not lead to data input

errors,

Figure(1) layers of interaction

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 3

(10) the tab key (or some other key) initiates

proper movement between form

fields[1,5].

 Client-side scripting.tests are conducted to

uncover any errors in processing as the script is

executed. These tests are often coupled with forms

testing, because script input is often derived from data

provided as part of forms processing.

 Dynamic HTML. Each Web page that

contains dynamic HTML is executed to ensure that the

dynamic display is correct.

 Pop-up windows. A series of tests ensure that:

(1) the pop-up is properly sized and positioned,
(2) the pop-up does not cover the original WebApp

window,

(3) the aesthetic design of the pop-up is consistent

with the aesthetic design of the interface, and

(4) scroll bars and other control mechanisms

appended to the pop-up are properly located

and function as required

 Server-side scripts. tests are conducted with an

emphasis on data integrity (as data are passed to

the Server-side script) and script processing once
validated data have been received.

 Streaming content. Tests should demonstrate that

streaming data are up to date, properly displayed,

can be suspended without error, and can be

restarted without difficulty

 Cookies. Both server-side and client-side testing

are required. On the server side, tests should ensure

that a cookie is properly constructed (contains

correct data) and properly transmitted to the client

side when specific content or functionality is
requested.. On the client side, tests determine

whether the WebApp properly attaches existing

cookies to a specific request (sent to the server).

Interface semantics testing “evaluates how well

the design takes care of users, offers clear

direction, delivers feedback, and maintains

consistency of language and approach”[1,2,5].

C. Usability Testing

Usability testing is similar to interface semantics
testing , it also evaluates the degree to which users

can interact effectively with the WebApp and the

degree to which the WebApp guides users‟ actions,

provides meaningful feedback, and enforces a

consistent interaction approach.

Usability testing can occur at a variety of

different levels of abstraction:

(1) the usability of a specific interface mechanism
(e.g., a form) can be assessed,

(2) the usability of a complete Web page

(encompassing interface mechanisms, data

objects, and related functions) can be

evaluated,

(3) the usability of the complete WebApp can be

considered.

The following test categories and objectives

illustrate this approach:

Interactivity. The interaction mechanisms (e.g.,

pull-down menus, buttons, pointers) should be easy

to understand and use

Layout. The navigation mechanisms, content, and

functions should be placed in a manner that allows

the user to find them quickly

Readability. The text should be well written and

understandable , and the graphic representations

should be intuitive and easy to understand

Aesthetics. the layout, color, typeface, and related

characteristics should lead to ease of use , and

users are “feel comfortable” with the look and feel

of the WebApp
Display characteristics. theWebAppshould make

the optimal use of screen size and resolution

Time sensitivity.the important features, functions,

and content should be used or acquired in a timely

manner

Personalization. theWebApp appropriately tailor

itself to the specific needs of different user

categories or individual users

Accessibility.theWebApp should be accessible to

people with disabilities

the following interface features should be reviewed

and tested for usability: animation, buttons, color,

control, dialogue, fields, forms, frames, graphics,

labels, links, menus, messages, navigation, pages,
selectors, text, and tool bars[1,6]

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 4

D. Compatibilty Testing

 WebApps must operate within environments

that differ from one another. Different

computers, display devices, operating systems,

browsers, and network connection speeds can

have a significant influence on WebApp
operation.

 The most common problem arising from

compatibility issues is poor usability. This can

arise from the following: download speeds

may become unacceptable, lack of a required

plug-in may make content unavailable,

browser differences can change page layout

dramatically, font styles may be altered and

become illegible, or forms may be improperly

organized. Compatibility testing strives to

uncover these problems before the WebApp

goes online[2,7]

 E. Component Level Testing

Component-level testing, also called function

testing, focuses on a set of tests that attempt to
uncover errors in WebApp functions. Each

WebApp function is a software module

(implemented in one of a variety of

programming or scripting languages) and can be

tested using different techniques. Component-

level test casesare often driven by forms-level

input. Once forms data are defined, the user

selects a button or othercontrol mechanism to

initiate execution. The following test case

design methods are typical:

 Equivalence partitioning. The input domain
of the function is divided into input

categories or classes from which test cases

are derived. Test cases for each class of input

are derived and executed, while other classes

of input are held constant.

For example, an e-commerce application may

implement a function that computes shipping

charges. Among a variety of shipping

information provided via a form is the user‟s

postal code. Test cases are designed in an
attempt to uncover errors in postal code

processing by specifying postal code values

that might uncover different classes of errors

(e.g., an incomplete postal code, a correct

postal code, a nonexistent postal code, an

erroneous postal code format).errors (e.g., an

incomplete postal code, a correct postal code,

a nonexistent postal code, an erroneous postal

code format)[2,8].

 Boundary value analysis. Forms data are tested at

their boundaries. For example, a shipping

calculation function requests the maximum number

of days required for product delivery. A minimum

of 2 days and a maximum of 14 are noted on the

form. However, boundary value tests might input
values of 0, 1, 2, 13, 14, and 15 to determine how

the function (and associated error processing) reacts

to data at and outside the boundaries of valid input.

F. Navigation Testing

A user travels through a WebApp in much the

same way as a visitor walks through a store or

museum. There are many pathways that can be taken,

many stops that can be made, many things to learn and

look at, activities to initiate, and decisions to make.

This navigation process is predictable in the sense that

visitors have a set of objectives when they arrive. At
the same time, the navigation process can be

unpredictable because visitors, influenced by

something they see or learn, may choose a path or

initiate an action that is not typical for the original

objective.

Each of the following navigation mechanisms should

be tested

 Navigation links. These mechanisms include

internal links within the WebApp, external links

to other WebApps, and anchors within a specif c

Web page. Each link should be tested to ensure

that proper content or functionality is reached

when the link is chosen

 Redirects. These links come into play when a

user requests a nonexistent URL or selects a link
whose destination has been removed or whose

name has changed. A message is displayed for

the user, and navigation is redirected to another

page (e.g., the home page).

 Site maps. A site map provides a complete table

of contents for all Web pages. Each site map

entry should be tested to ensure that the link

takes the user to the proper content or

functionality.

 Internal search engines. Complex WebApps

often contain hundreds or even thousands of
content objects. An internal (local) search engine

allows the user to perform a key word search

within the WebApp to find needed content.

Search engine testing validates the accuracy and

completeness of the search, the error-handling

properties of the search engine, and advanced

search features (e.g., the use of Boolean

operators in the search field)[1,3,9].

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 5

G. Configuration Testing

Configuration variability and instability are important
factors that make Web engineering a challenge.

Hardware, operating system(s), browsers, storage

capacity, network communication speeds, and a variety

of other client-side factors are difficult to predict for

each user. In addition, the configuration for a given user

can change [e.g., operating system (OS) updates, new

Internet service provider (ISP), and connection speeds]

on a regular basis. The result can be a client-side

environment that is prone to errors that are both subtle

and significant. One user‟s impression of the WebApp

and the manner in which that user interacts with it can

differ significantly from another user‟s experience, if
both users are not working within the same client-side

configuration.

The job of configuration testing is not to exercise

every possible client-side configuration. Rather, it is to

test a set of probable client-side and server-side

configurations to ensure that the user experience will be

the same on all of them and to isolate errors that may be
specific to a particular configuration.

On the server side, configuration test cases are

designed to verify that the projected server

configuration [i.e., WebApp server, database server,

operating system(s), firewall software, concurrent

applications] can support the WebApp without error. In

essence, the WebApp is installed within the server-side

environment and tested to uncover errors as it
operates[4,7].

On the client side, configuration tests focus more

heavily on WebApp compatibility with configurations

that contain one or more permutations of the following

components :

• Hardware. CPU, memory, storage, and printing

devices

 • Operating systems. Linux, Macintosh OS, Microsoft

Windows, a

mobilebased OS

• Browser software.FireFox, Internet Explorer, Safari,

Mozilla/Netscape, Opera,

and others

• User interface components. Active X, Java applets,

and others

• Plug-ins. QuickTime, RealPlayer, and many others

 •Connectivity. Cable, DSL, regular modem, industry-

grade connectivity (e.g., T1

lines)[10]

H. Security Testing

Security testing focuses on unauthorized access to

WebApp content and functionality along with other

systems that cooperate with the WebApp on the server

side.

Security tests are designed to probe vulnerabilities of

the client-side environment, the network

communications that occur as data are passed from

client to server and back again, and the server-side

environment. Each of these domains can be attacked,

and it is the job of the security tester to uncover

weaknesses that can be exploited by those with the

intent to do so.

On the client side, vulnerabilities can often be traced to

preexisting bugs in browsers, e-mail programs, or

communication software. There are typicalsecurity

holes:

 Buffer Overflow

 Unauthorized access to cookies placed within

the browser

On the server side, vulnerabilities include denial-of-

service attacks and malicious scripts that can be passed

along to the client side or used to disable server

operations. In addition, server-side databases can be

accessed without authorization (data theft)[1,10].

To protect against these (and many other)

vulnerabilities, one or more of the following security

elements is implemented

• Firewalls

 A filtering mechanism that is a combination of

hardware and software that examines each incoming

packet of information to ensure that it is coming from a

legitimate source, blocking any data that are suspect.

• Authentication. A verification mechanism that
validates the identity of all clients and servers, allowing

communication to occur only when both sides are

verified.

• Encryption. An encoding mechanism that protects

sensitive data by modifying it in a way that makes it

impossible to read by those with malicious intent.

Encryption is strengthened by using digital certificates
that allow the client to verify the destination to which

the data are transmitted.

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 6

• Authorization. A filtering mechanism that allows

access to the client or server environment only by those

individuals with appropriate authorization codes (e.g.,

user ID and password)[2].

I. Peformance Testing

Performance testing is used to uncover performance

problems that can result from

- lack of server-side resources

- inappropriate network bandwidth

- inadequate database capabilities

- faulty or weak operating system capabilities

- poorly designed WebApp functionality,

- other hardware or software issues that can lead

to degraded client-server performance.

The intent of performance testing are

 To understand how the system responds as

loading increases(i.e. the number of users ,

number of transactions , overall data volume)

 To collect metrics that will lead to design

modifications to improve performance[11]

Two Different performance tests are conducted:

a) Load testing - It is the simplest form of testing

conducted to understand the behavior of the

system under a specific load.

b) Stress testing - It is performed to find the upper
limit capacity of the system and also to

determine how the system performs if the

current load goes well above the expected

maximum[11].

Load Testing

The intent of load testing is to determine how the

WebApp and its server-side environment will respond

to various loading conditions. As testing proceeds,

permutations to the following variables define a set of

test conditions:

N, the number of concurrent users

T, the number of online transactions per unit of time

D, the data load processed by the server per transaction

Overall throughput P is computed in the following

manner:

P = N * T * D

 As an example, consider a popular sports news site.

At any given time, 4000 concurrent users submit a

request (a transaction T) once every 30 seconds on

average. Each transaction requires the WebApp to

download a news article that averages 12 kbytes in

length. Therefore,

N = 4000 users

T = 0.033 transactions per second per user

D = 12 kbyte per transaction

And throughput can be calculated as

P = 4000 * 0.033 * 12 ≈ 1600 kbyte/s

 The network connection for the server would

therefore have to support this average data rate and

should be tested to ensure that it does[1,11].

Stress testing

Stress testing is a continuation of load testing, but in

this instance the variables, N, T, and D are forced to

meet and then exceed operational limits. The intent of

these tests is to answer each of the following questions:

Does the system degrade “gently” or does the server
shut down as capacity is exceeded?

• Does server software generate “server not available”

messages? More generally, are users aware that they

cannot reach the server?

• Does the server queue requests for resources and

empty the queue once capacity demands diminish? •

Are transactions lost as capacity is exceeded?

• Is data integrity affected as capacity is exceeded?

 • What values of N, T, and D force the server

environment to fail? How does failure manifest itself?

Are automated notifications sent to technical support

staff at the server site?

 • If the system does fail, how long will it take to come

back online?

 • Are certain WebApp functions (e.g., compute

intensive functionality, data streaming capabilities)

discontinued as capacity reaches the 80 or 90

percentpercent level?

III. Functional Testing

 Testing the functionality of a Web application has to

rely on the following basic aspects:

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 7

1) Test models: representing the relationships between

elements of a representation or an implementation

of a software component. Examples are UML, finite

state machine; relational management data model

(RMDM), and object oriented hypermedia (OOH).

2) Test strategies: define heuristics or algorithms to

create test cases from software representation

models, implementation models or test models.

Examples are white-box testing, black-box testing,

and gray-box testing.

3) Testing levels: specifying the different scopes of the

tests to be run, i.e., the collections of components to

be tested.

4) Testing processes: define the flow of testing

activities, and other decisions regarding when

testing should be started, who should perform

testing, how much effort should be used and similar
issues[2,12].

IV. Testing Approaches

Approaches to Testing

• Black Box ,White Box and Grey Box

• Alpha and Beta

 White Box testing

White box testing is testing where using the information

is available from the code of the component to generate

tests. This info is usually used to achieve coverage in

one way or another – e.g.

• Code coverage • Path coverage • Decision coverage

Debugging will always be white-box testing ,The need

of White Box Testing?

To discover the following types of bugs:

- Logical error tend to creep into our work when

we design and implement functions, conditions

or controls that are out of the program

- The design errors due to difference between

logical flow of the program and the actual

implementation

- Typographical errors and syntax checking[2]

 Black Box testing

Black box testing is also called functional testing. Main

focus in black box testing is on functionality of the

system as a whole. The term „behavioral testing‟ is

also used for black box testing and white box testing is

also sometimes called „structural testing‟Themain

ideas are simple:

1. Define initial component state, input and

expectedoutput for the test.

2. Set the component in the required state.

3. Give the defined input

4. Observe the output and compare to the

expectedoutput[2,3].

Gray box testing

is a software testing method which is a combination

of Black Box Testing method and White Box
Testing method. In Black Box Testing, the internal

structure of the item being tested is unknown to the

tester and in White Box Testing the internal structure is

known. In Gray Box Testing, the internal structure is

partially known. This involves having access to internal

data structures and algorithms for purposes of designing

the test cases, but testing at the user, or black-box level.

Gray Box Testing is named so because the software

program, in the eyes of the tester is like a gray/semi-

transparent box; inside which one can partially see[4,5].

Example
when the codes for two units/modules are studied

(White Box Testing method) for designing test cases

and actual tests are conducted using the exposed

interfaces (Black Box Testing method).

Levels Applicable To

www.internationaljournalssrg.org
http://softwaretestingfundamentals.com/software-testing-methods/
http://softwaretestingfundamentals.com/black-box-testing/
http://softwaretestingfundamentals.com/white-box-testing/
http://softwaretestingfundamentals.com/white-box-testing/
http://softwaretestingfundamentals.com/white-box-testing/

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 8

Though Gray Box Testing method may be used in other

levels of testing, it is primarily used in Integration

Testing1,2].

Alpha testing and Beta testing (Product Use Testing

Product use under normal operating conditions[1,2,10].

– Alpha testing: done in-house.

– Beta testing: done at the customer site.

Typical goals of beta testing: to determine if the

product worksand is free of “bugs.”

Alpha Testing

Beta Testing (Field Testing)

It is always performed by the developers at the

software development site.

. It is always performed by the customers at their own

site.

Sometimes it is also performed by Independent

Testing Team.

It is not performed by Independent Testing Team.

Alpha Testing is not open to the market and public Beta Testing is always open to the market and public.

It is conducted for the software application and

project.

It is usually conducted for software product.

It is always performed in Virtual Environment. It is performed in Real Time Environment.

It is always performed within the organization. It is always performed outside the rganization.

It is the form of Acceptance Testing. It is also the form of Acceptance Testing.

Alpha Testing is definitely performed and carried out at

the developing organizations location with the

involvement of developers.

Beta Testing (field testing) is performed and carried out

by users or you can say people at their own locations and

site using customer data.

It comes under the category of both White Box Testing

and Black Box Testing.

 It is only a kind of Black Box Testing.

. Alpha Testing is always performed at the time of

Acceptance Testing when developers test the product

and project to check whether it meets the user

requirements or not.

. Beta Testing is always performed at the time when

software product and project are marketed.

It is always performed at the developer‟s premises in the

absence of the users.

It is always performed at the user‟s premises in the

absence of the development team.

Alpha Testing is not known by any other different name.

Beta Testing is also known by the name Field

Testing means it is also known as field testing.

It is considered as the User Acceptance Testing (UAT)
which is done at developer‟s area.

It is also considered as the User Acceptance Testing
(UAT) which is done at customers or users area.

References
[1] Roger S. Pressman & David Lowe ,“Web Engineering a

Practitioner‟s Approach”, McGraw-Hill higher education ,

2009.

[2] Arora A. & Sinha M ,“Web Application Testing: A Review

on Techniques, Tools and State of Art”, International

Journal of Scientific & Engineering Research, Volume 3,

Issue 2, February-2012

[3] Roopa Singh & Imran Akhtar Khan ,“AN APPROACH

FOR INTEGRATION TESTING IN ONLINE RETAIL

APPLICATIONS “,International Journal of Computer

Science & Information Technology (IJCSIT) Vol 4, No 3,

June 2012

[4] Glenn A. Stout ,” Testing a Website: Best Practices “,Senior

Functional Specialist The Revere Group , August, 2001

[5] FilippoRicca and Paolo Tonella,” Analysis and Testing of

Web Applications”, Italy , IEEE , 2001

[6] Iulia Ștefan and Ioan Ivan ,” WEB TESTING

APPLICATION WITH PHP AUTOMATED TOOL”,

Department of Automation, Technical University, Cluj-

Napoca, Romania , 2014

[7] Shay Artzi , Julian Dolby , Simon Holm Jensen, Anders

Møller , Frank Tip , “A Framework for Automated Testing

www.internationaljournalssrg.org
http://softwaretestingfundamentals.com/integration-testing/
http://softwaretestingfundamentals.com/integration-testing/
http://softwaretestingfundamentals.com/integration-testing/

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 9

of JavaScript Web Applications” , Honolulu, Hawaii, USA ,

2011

[8] Franck Lebeau , Bruno Legeard , Fabien Peureux , and

Alexandre Vernotte ,” Model-Based Vulnerability Testing

for Web Applications”, France , http://www.dvwa.co.uk/

[9] Regina Ranstrom ,“Automated Web Software Testing With

Selenium”, Department of Computer Science and

Engineering University of Notre Dame, Notre Dame.

[10] Giuseppe A. Di Lucca a & Anna Rita Fasolino,” Testing

Web-based applications: The state of the art and future

trends”, August 2006

[11] Krishen Kota, PMP ,” Testing Your Web Application A

Quick 10-Step Guide “,white paper.

[12] G. Cassone, G. Elia, D. Gotta, F. Molaand A. Pinnola,”

Web Performance Testing and Measurement: a complete
approach” , Italy.

www.internationaljournalssrg.org
http://www.dvwa.co.uk/

