
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 5 – May 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 10

P vs np is An Exponential Problem, So

Solution Can’t Be Proved In Polynomial

Time
Ravi Raja

#1
, Piyush sharma

*2
, Abhijeet singh

#3

1Scholar , 2professor , 3Scholar

computer science department Aiet,jaipur india

Abstract
p vs np is a problem that has been there for

centuries as a part of complexity theory. We are not
certain about if p is equal or not equal to np. P is a set

of problems that can be solved and verified in

polynomial time and NP is the set of problems that

can verified in polynomial time, but we are not certain

whether we will find there solution in polynomial time

using a deterministic algorithm or not, although we

can find the solution using a lucky algorithm . If p is

not equal to np then we can be in peace knowing that

all our decrypted data is safe. And if p is equal to np

then none of our encrypted data is safe because in

case of p is equal to np, anything that can be verified
in polynomial time, can be solved in polynomial time,

like password, encrypted data, account number,

access code etc. In this paper we will prove that

presently it is not possible to prove that p is equal to

np and nor it is possible to prove that p is not equal to

np, because p vs np is itself an exponential problem or

so called exp problem.

Keywords — complexity theory, Polynomial time

problem, non-deterministic polynomial time problem,

lucky algorithm, exponential time problem

I. INTRODUCTION

.

The P vs NP problem is one of the major unsolved

problems in today’s world and one of the most

important one too. As show in the figure let’s assume

there are only two sets of problems, excluding all

other types of problems. The two problems are

problem that can be solved in polynomial time known

as P problems and problems that are said to be solved

in non-deterministic time, the NP problems. Now the

question that we have been asking ourselves from

decades is that is P and NP are the same thing or P and
NP are different. P is set of problems that can be

solved as well as verified in polynomial time, whereas

NP is set of problems that can verified in polynomial

time, but we don’t have an efficient algorithm to solve

that problem in polynomial time

IF P IS EQUAL TO NP

If p is equal to np ,this question is very important to

us, because all our modern system, by all here I mean

most of the modern system that we use today uses

encryptions to keep there and user’s data safe which is
done using taking the fact in consideration that the

solution will take exponential time to be discovered.

And that means centuries, we know that if we know

the correct decryption key than we can verify it in

very less or polynomial time. And so if it’s proven

that something that can verified in polynomial time

can also be solved in polynomial time using

deterministic algorithm and we discover a way to do

that, then we will easily be able to decrypt data and

also find hack into any encrypted server easily, we

will also be able to find the password of someone

else’s account easily. In this way nothing will be save
and there will be no privacy left on internet and bit

coins will be affected. And we have to find a new way

to decrypt our data.

 If P is not equal to NP

If p=! Np then it’s a good and bad news, good news

in the sense all our data is safe as a problem that can

be verified in polynomial time doesn’t assures that it

will be solved in polynomial time using a

deterministic algorithm. So our password issafe, until

and unless we have a easy password which can be
guessed using combination of common words used by

us.Or if we use someone’s name as our password. In

other words one can guess our password but can’t use

a deterministic algorithm to solve it. Same with all

other encrypted data online, we one can use a lucky

guess or so called a lucky algorithm and try but can’t

solve it using a deterministic algorithm in polynomial

time.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 5 – May 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 11

In this diagram the longest arrow represent the

computational difficulty and first there the p problems

which are said to be easiest one and can be solved in

polynomial time, then there are np problem, so called

non-deterministic polynomial time problem. And after

that there is exponential time problems which need

exponential time to be solved , an example is chess

and then there is recursive problem, hardest of all.

And after recursive problem there

Computational difficulty

Exp. complete Np complete

Unsolvable problem

Recursive problems

Exponential problems

Np problems

P problems

 exist one more class of problem that are said to be

unsolvable in finite time, an example is halting

problem. And in NP class we have problems such as

Tetris, jigsaw puzzle which can be solved using lucky

guesses in polynomial time.

 P vs NP is an exponential problem

Let’s make an attempt to solve and prove that

p=!np using prove by contradiction in order to

understand why p vs np is un-provable in polynomial

time. Let’s assume first p=np Then, let say there is a

problem in np and let’s denote it by X. And let denote

polynomial time as P, verification of solution as V,

solution of problem as S.

 X→S [POLYNOMIAL TIME]

 S→V [POLYNOMIAL TIME]

 Now let’s study the procedure how we will

we be able to prove P is not equal to NP. Let’s say

there is a problem of NP and let’s denote it by X and

for now it can only be solved using a lucky algorithm
in polynomial time and there is no efficient algorithm

to solve it in polynomial time deterministically. So for

proving that a NP problem is in P and can be solved in

polynomial time , we have to first find out how many

ways are there to solve a problem and then check for

each method of solving a problem till we find a

method that solve it in polynomial time. Because if we

are making an attempt to prove that the P is equal to

NP then, then we have to show that there are possible

methods that can solve the NP problem in polynomial

time and for doing this we have to first find out how

many ways are there to solve a particular problem and
once we have calculate the exact number of methods

for solving a problem then we have to check each

method and find each methods time complexity and

see, if it solves the problem in polynomial time or not.

We have to do so till we find a methods that solve the

problem in polynomial time or till we have tried all

the methods. And if we try all the methods and didn’t

find any method that is efficient enough to solve the

problem in polynomial time then we can conclude that

for that P is not equal to NP.Not let’s assume that

there is such a model that can take a problem as input
and output all the possible ways of solving a problem.

And for the sake of simplicity let’s call this model as

PWTSP [possible ways to solve a problem].This

model is assumed hypothetical model to understand

how P vs NP is an exponential problem, as this model

plays a very important role in proving P=NP or P=!NP.

II. DEFINATION OF PWTSP

PWTSP is a hypothetical model with

exponential time complexity for solving a problem

because , PWTSP is in exponential class , as it’s

answer can nor found in polynomial time nor can be
verified in polynomial time. It’sanswer cannot verified

in polynomial time because we can’t be exactly sure

that there are only n number of ways for solving a

problem and it could not be found in polynomial time

because as we start from first methods and move

towards n number of methods the time complexity

keeps on increasing. And we cannot ever be sure if

there is only n number of ways for solving a problem,

so verifying PWTSP is not easy. PWTSP is assumed

because it plays a very important role in the proof of

P vs NP problem. But as given below that PWTSP
model has exponential time complexity for finding a

solution and then checking for the solutions by

applying it to the problem, so presently we can’t

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 5 – May 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 12

design a system that can run this model and give us an

output in polynomial time, but in future maybe with

enhancement in quantum computing we will be able to

run this model in polynomial time, along with other

exponential problems, as we will have very high speed

processing pf the power. PWTSP is a model that takes
a problem as input. Let say there is a problem Z, so

PWTSP will take that problem as input and output all

the possible ways of solving that problem. Let’s say

there is n number of ways for solving the problem. By

n it means that there are n different ways of solving

the problem and only n number of ways not more or

less than that. But for some problems the value of n

can be zero. n=0 The value of number of methods to

solve a problem, denoted by n will be zero when the

problem is unsolvable. And example can be halting

problem. The value of n can also be infinity when

there are infinite many ways to solve a problem.
Now let’s find the complexity of PWTSP system. Let

say for problem Z, Set A is all possible ways in which

it can be solved, with there are total n number of ways

 A= {A1, A2, A3, A4, A5 …An}

 Now as there is n number of ways, then if

we check for each ways as if it is the efficient way or

not that solve the problem in polynomial time then.

For each method , let say the complexity is k then the

total complexity for finding all the possible methods

and checking for them will be n to the power k (2^n).

As 2^n is the time complexity for PWTSP model. As
power k (2^n) is exponential time then finding all the

possible outcomes and checking them will take

exponential time, and so does proving p=np. Hence,

we can conclude that as solving the np problem and

proving that there exist deterministic algorithms that

can solve the problem in deterministic time will take

exponential time. Therefore p=np itself can’t prove in

polynomial time will take exponential time. And same

as P= NP, if we want to prove p is not equal to np (p=!

np) then also we have to use the model to first find

our all possible ways and then we have to check for all

possible methods which will take exponential time.
 Important: As PWTSP is a hypothetical

model, so when we design it in real world then instead

of polynomial time, it can have higher time

complexity. In that case the time complexity for

solving P vs NP also may increase. But in any case , it

is at least polynomial time and even with polynomial

time model, it will take exponential time to prove P

vs NP problem.

 IF P=NP then proof will be faster as

compared to when P=!NP

 As for proving P=NP we have to first use the
model to find out all the possible ways for finding the

solutions, then let say for using model against a

problem Z, we get n number of methods to solve Z.

Case 1:P=NP

 When proving P=NP, we have to start the

iteration from initial from first methods and then move

to the nth. If we find in-between 1 to n any methods

that solve the problem in polynomial time we can

break the iteration and we can prove that P=NP using

that method, we don’t have to check all methods till n.

Case 2:P=!NP

 When proving P=!NP, we have to start the

iteration from initial from first method and then move

to the nth. As we will not find any methods that solve
Z in polynomial time, so we have to keep looking for

an efficient algorithm till n and at the end when after

reaching n, still we don’t find one. We can conclude

that there is so efficient algorithm for solving Z in

polynomial time so, p=!np.

III. CONCLUSION

P vs NP is a problem that is one of the most important

problems in today’s world, and many attempts are

made to solve this problem. But in order to solve this

problem we have to make a model like PWTSP so that

we can solve real world NP problems and prove that
either they are in P or not. But as we have seen

PWTSP requires exponential time to check all . So

one possible way can be a system that can solve

exponential time problems in polynomial time, maybe

we can use fast quantum computers in future for doing

this. But one thing is clear, that proving p vs np is not

possible in polynomial time for all problems on np,

But even if we prove p vs np problem for a problem of

np then we can use reduction techniques to prove it for

others , but this can be correctly done using the model

which will take exponential time to verify all the
possible methods.

 REFERENCE

[1] M. Agrawal, N. Kayal, and N. Saxena, Primes is in P, Ann.

Math. 160 (2004), 781–793.

[2] N. Alon and R.B. Boppana, The monotone circuit

complexity of boolean functions, Combinatorica (1987), 1–

22.

[3] T. Baker, J. Gill, and R. Solovay, Relativizations of the P =?

NP question, SICOMP: SIAM Journal on Computing, 1975.

[4] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity

and Real Computation, Springer- 19 Verlag, New York,

1998.

[5] M. Blum and R. Impagliazzo, Generic oracles and oracle

classes, in Proceedings of the 28th Annual Symposium on

Foundations of Computer Science, A.K. Chandra, ed., IEEE

Computer Society Press, Los Angeles, 1987, 118–126.

THE P VERSUS NP PROBLEM

[6] R.B. Boppana and M. Sipser, The complexity of finite

functions, Handbook of Theoretical Computer Science,

Volume A: Algorithms and Complexity, J. Van Leeuwen,

ed., Elsevier and The MIT Press, Cambridge, MA, 1990,

759–804.

[7] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,

Introduction to Algorithms, 2nd edition, 28 McGraw Hill,

New York, 2001.

[8] A. Cobham, The intrinsic computational difficulty of

functions, in Proceedings of the 1964 International

Congress for Logic, Methodology, and Philosophy of

Science, Y. Bar-Hille, ed., Elsevier/North-Holland,

Amsterdam, 1964, 24–30.

[9] S. Cook, The complexity of theorem-proving procedures, in

Conference Record of Third Annual 33 ACM Symposium

on Theory of Computing, ACM, New York, 1971, 151–158.

[10] S. Cook, Computational complexity of higher type

functions, in Proceedings of the International Congress of

Mathematicians, Kyoto, Japan, Springer-Verlag, Berlin,

1991, 55–69.

