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ABSTRACT 

Image Reconstruction Techniques (IRTs) has been conceded using various reconstruction algorithms. Compared to 

Analytical image reconstruction method, Statistical image reconstruction methods best suites to reconstruct a high 

quality image. However, time complexity is involved in it. To overcome the time complexity Maximum Likelihood 

Expectation Maximization (MLEM) algorithm is parallelized in a multi-core environment. This work concentrates 

on parallelizing MLEM to reconstruct an image on a shared memory environment in order to reduce the 

reconstructing time. An attempt is made to optimize the Iteration to reconstruct an image. The performance analyses 

are employed to know the timeliness, speedup and efficiency for both Sequential and Parallel MLEM. Phantom data 

set of various sizes under different number of projections is used in our present study. The research shows that the 

multi-core environment provides the source of high computational power leading to reconstruct an image promptly. 

Keywords: Image Processing, Image Reconstruction, Iterative Image Reconstruction, Maximum Likelihood 

Expectation Maximization, Parallel Processing, Open MP 

 

Introduction 
Converting an analog image into digital form 

by carrying out some operations with the image is 

known as Digital Image Processing (DIP). Mathematical 

process applied on a Projection data obtained by 

sweeping magnetic fields at different angles over an 

object producing an image is generally referred to as 

Image reconstruction. The image reconstruction is one of 

the significant applications of the projection technique 

which is mainly interrelated to the medical image 

processing technique [1]. DIP has a dynamic abode in 

the Medical field. Some of the known applications of 
DIP in the area of medicine are PET scan, Gamma-ray 

imaging, Radio Waves, Medical CT, X-ray imaging, and 

Ultra Violet (UV) imaging. 

The medical imaging methods are processed using some 

imaging modalities such as Magnetic Resonance 

Imaging (MRI), Computed Tomography (CT), Positron 

Emission Tomography (PET) and etc. It can be 

processed with the help of Computer Aided Diagnosis 

(CAD) in order to analyze the inner parts of the human 

body. Image reconstruction is central to these medical 

imaging applications. The reconstruction algorithm 
reduces the noise and reconstructs the images with high 

quality. Image reconstruction is a kind of mathematical 

representation in which it generates an image from 

projections and it collects the data from various angle 

around Region of Interest (ROI). ROI refers to the 

phantom or an organ of animal or human. The 

reconstruction has the basic concepts of image eminence 

and radiation problem. Improving the quality of the 

images is a main concept of the reconstruction 

processbecause the blurred image cannot produce the 

exact solution to the physician. 

 

Image reconstruction is  one type of method to arrange 

the pixel values in the exact position of the image 

without noise. Image reconstruction has been carried out 
using different types of reconstruction algorithms [2, 3]. 

Reconstruction methods utilize projection data as input 

and generate the estimate that resembles the internal 

structure as output [4, 5]. The projections are obtained 

using the detector ring around the object and are 

reconstructed using various reconstruction algorithm [2]. 

Data sets with 36 projections measured from 00to 1800 

around the phantom object were considered in the 

present study. The same dataset was used for testing the 

capability of the algorithms from a restricted number of 

projections, by skipping projections at uniform angular 

distribution. The research study presented here explores 
various reconstruction techniques using these types of 

projections. 

Image reconstruction algorithms can be classified into 

Analytical and Iterative methods. The Analytical 

image reconstruction methods uses noise free images. 
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Back Projection (BP) and Filtered Back Projection 

(FBP) reconstructs the image based on direct 

inversion of the radon transform derived using a 

continous line integral. FBP introduces streak artifacts 

due to limited number of photon emission. Regardless 

of this disadvantage, FBP is expansively used in 
nuclear medicine because of its fast reconstruction 

time [2]. FBP rconstructs the image based on direct 

inversion of the radon transform derived using a 

continous line integral. FBP introduces streak artifacts 

due to limited number of photon emission. Regardless 

of this disadvantage, FBP is expansively used in 

nuclear medicine because of its fast reconstruction 

time [6].  For noisy projection data as well as for a 

limited number of projections, the FBP method of 

image reconstruction shows very poor performance. 

Hence currently there is considerable interest to 

evaluate the use of other reconstruction methods for 
medical imaging techniques [5]. FBP algorithm 

produces high-quality images with excellent 

computational efficiency. However, FBP produces 

low Signal-to-Noise Ratio (SNR) images when a 

limited number of projections is used [7]. An Iterative 

method using a non-linear fit to the projection data 

has shown to give ripple free images [8]. Iterative 

Methods are based on optimization strategies 

incorporating specific constraints about the object and 

the reconstruction process. The iterative method can 

be classified into Algebraic and Statistical methods. 
Some of the accepted Algebraic iterative algorithms 

are Additive Algebraic Reconstruction Technique 

(AART) and Multiplicative Algebraic Techniques 

(MART) [7]. 

Statistical image reconstruction plays a vital role in 

the medical field. Statistical methods for image 

reconstruction can provide spatial resolution and noise 

properties over conventional Filtered Back Projection 

(FBP) methods [5]. However such methods suffer 

from time complexity. The statistical method is 

considered as an iterative method in that it can be 

divided into weighted and likelihood [9]. As the 

repetition steps are high in the statistical method, it 

does not suit for all approaches. Iterative process 

includes the different methods for statistical 
reconstruction technique in the form of poisson 

process. The poisson statistical model supports the 

maximum posteriori work, maximum likelihood, 

context-based Bayesian framework. Expectation 

Maximization (EM) is one type of statistical method 

for image reconstruction process. EM Algorithm is an 

iterative algorithm that is often used for estimating 

parameters of Gaussian Mixture Model [10]. The 

statistical model supports the iterative process to 

identify maximum posteriori parameters. MLEM is a 

prevalent technique applied to reconstruct the 

emission intensity. The popularity of MLEM is due to 

the high degree of accuracy in the compensation of 

non-uniform attenuation. However, it occupies high 

computational time.  The core part is to improve the 

MLEM algorithm computation complexity by 

accomplishing a innovative technique to reconstruct 
the image with reduced time complexity attaining 

better efficiency in speed.  This is attained by three 

step process such as Optimising number of iterations, 

reconstrucing the image with limited number of 

projections both sequetial and parallel environment.In 

present study 

Methodologies 

For the reconstruction process the emitted and the 

detected photons  are assumed to be Poisson random 

variables. Hence,  in the statistical reconstruction 

algorithms, the emission data is modeled first and then 

an estimate of the source distribution is derived. 

Accordingly, the statistical principle is to govern the 

source distribution of the emission data by means of 

the Expectation-Maximization algorithm. 
Expectation conditional maximization (ECM) 

surrogates every M step with an arrangement of 

conditional maximization (CM) paces in which every 

single parameter 𝛉𝐢exhausts the possibilities 

exclusively, provisionally proceeding on the other 

parameters remaining fixed. 

In the ML-EM algorithm, the projection data collected 

plays an important role. In a SPECT scanner, the size 

of the projection data depends on both the quantity of 

detectors and the corresponding quantity of angles 

[11].  If the medical imaging modalities has b number 
of detectors and we measure at a angles, then the total 

number of counts is  the projection data is 𝑱 =  𝒂  ∗
 𝒃. For ease of calculations, this vector is generally 

epitomized by way of a column vector. In PET, there 

is a ring of detectors around the patient which 

measures the annihilation event. An event is recorded 

only if the two events occur within a time window. If 

the detector ring has N detectors, the number of 

counts in projection data is given by 𝑱 =  𝑵 (𝑵 −
𝟏)/ 𝟐. The image matrix could be accessed as a 

column vector 𝐼 with 𝐼 =  𝑛𝑥 ∗  𝑛𝑦 elements. 

Practitioner agreed that such emissions follow a 

Poisson model. Therefore, the unknown total number 

of emission events in the 𝒊𝒕𝒉 pixel, 𝒙 (𝒊)  represents a 

Poisson random variable, with mean𝒙 (𝒊). The system 

matrix characterizes the probability distribution of the 

projection data. Hence elements of the system matrix 

𝒑(𝒊, 𝒋) embodies the likelihood of emission i to be 
detected by detector j. The system matrix will be 

elucidated in detail in well ahead sections. It is 

conceivable to estimate the probable value of the 

projection data depending on the system matrix using 

the Eq. 1. 
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 𝑛  𝑗 = 𝐸 𝑛 𝑖  =   𝑥 𝑖 . 𝑝 𝑖, 𝑗 𝐼
𝑖=1                 (1) 

 

The probability of the entire projection dataset is the 

product of distinct counts, so the likelihood function is 

given in Eq. 2. 

𝐿 𝑥 = 𝑃  
𝑛

𝑥
 =  

𝑒−𝑛  𝑗 𝑛  𝑗 𝑛 𝑗 

𝑛 𝑗  !

𝑗
𝑗=1                (2) 

To simplify the beyond computation we take the log 

on both sides and its derivation is shown in Eq. 3, Eq. 
4 and Eq. 5. 

𝑙 𝑥 = log(𝐿 𝑥 )   (3) 

𝑙 𝑥 =  (𝑙𝑜𝑔 𝑒−𝑛  𝑗   + 𝑙𝑜𝑔 𝑛  𝑗 𝑛 𝑗   −
𝑗
𝑗=1

                                                                 𝑙𝑜𝑔 𝑛 𝑗 !            
(4) 

𝑙 𝑥 =  − 𝑛   𝑗 
𝑗
𝑗=1 + 𝑛 𝑗 𝑙𝑜𝑔 𝑛  𝑗  − 𝑙𝑜𝑔 𝑛 𝑗 !   

(5) 

Replacing Eq. 1 we work out at the log-likelihood 

function obtains Eq. 6. 

𝑙 𝑥 = −  𝑥 𝑖 𝑝 𝑖, 𝑗 

𝐼

𝑖=1

𝑗

𝑗=1

+  𝑛 𝑗 𝑙𝑜𝑔   𝑥 𝑖 𝑝 𝑖, 𝑗 

𝐼

𝑖=1

 

𝑗

𝑗=1

− log⁡(𝑛 𝑗 

𝑗

𝑗=1

!) 

(6) 

It can be shown using the first and second derivatives 

of the log-likelihood function resultant that the 

applied matrix of second derivatives is negative semi 

definite and that l(x) is concave. As a result, sufficient 

conditions for a vector 𝑥   to yield a maximum of l(x) 

are the Kuhn-Tucker conditions as specified in Eq. 7 

and Eq. 8. 

 𝑥 𝑖 
𝜕𝑙  𝑥 

𝜕𝑥  𝑖 
 =  −𝑥  𝑖 +  − 

𝑛(𝑗 )𝑥 𝑖 𝑝(𝑖,𝑗 ) 

 𝑥 𝐼
𝑗 ′=1

 𝑖 ′ 𝑝(𝑖 ′,𝑗 )

𝑗
𝑗=1          (7) 

And 

  𝑥 𝑖 
𝜕𝑙 𝑥 

𝜕𝑥  𝑖 
 
𝑥 
 =≤ 0…… . 𝑖𝑓 𝑥  𝑖 = 0 (8) 

The algorithm requires an initial estimate 𝑥0, and 
using the maximization condition iteratively improves 

the estimate. Eq. 9 is the main formula for ML-EM 

algorithm derived by solving the above maximization 

condition for 𝒙  𝒊  

𝑥𝑛+1 𝑖 = 𝑥𝑛 (𝑖) 
𝑛 𝑗  𝑝(𝑖,𝑗 )

𝑥𝑛  𝑥 ′ 𝑝(𝑖 ′,𝑗 )

𝑗
𝑗=1  (9) 

This can be written as 

     

𝑥𝑛+1 𝑖 = 𝑥𝑛 (𝑖)∆𝑥𝑛 (𝑖) 

          (10) 

Hence from the Eq. 10. the sum is really a 

multiplicative coefficient that corrects the image at 

every step. As per the amount of iterations increase, 

the  ∆𝑥𝑛  𝑖 term gets nearer and nearer to 1. 

The accuracy of image reconstruction depends on the 

reduction of errors, which lies on number of iterations.  

However, if the number of iterations is too high, due 

to the Poisson nature of the data, the image may look 

a little noisy. 

The system matrix is the most important part of the 
ML-EM algorithm. It contains the information of the 

geometry of the imaging system being used and the 

mapping from the image space to the data space. The 

accurate system matrix improve the quality of the 

reconstructed image. Errors are inevitable in the 

system matrix, it is important to understand their 

effect proceeding iterative image rebuilding towards 

determining the necessary correctness intended for 

system matrices. 

System matrix refers to the association among 

projection and image space. This association could 

exist such as the Eq. 11. 

𝒑𝒋 =   𝒂𝒊𝒋𝒊 𝒇𝒊            

(11) 

Where 𝒑𝒋 refers to the true value of the corresponding 

projection data in lieu of a line of response (LOR) 

obvious through the detector pair𝒋. 𝒇𝒊 Stands the 

importance of image by the side of voxel 𝒊. 𝒂𝒊𝒋 is the 

probability of noticing a concurrence incident  

instigating  commencing voxel 𝒊 at  detector  pair 𝒋. 
We  express A by means of  the matrix  of 𝒂𝒊𝒋. 

Therefore 𝑨 exemplifies system matrix that could be 

alienated keen on a number of factored matrices. It 
could be conveyed as in Eq. 12. 

𝑨 = 𝑨𝒔𝒆𝒏𝒔𝑨𝒂𝒕𝒕𝒆𝒏𝑨𝒃𝒍𝒖𝒓𝑨𝒈𝒆𝒐𝒎𝑨𝒑𝒐𝒔𝒊𝒕𝒓𝒐𝒏(12) 

𝑨𝒑𝒐𝒔𝒊𝒕𝒓𝒐𝒏 that means of positron range factor is 

moderately lesser and could be unnoticed for F. 

𝑨𝒂𝒕𝒕𝒆𝒏stands for attenuation factor  could be fetched 

through additional CT scan and the detector 

sensitivity factor. 𝑨𝒔𝒆𝒏𝒔 could be attained by way of 

evaluating a identical cylindrical source. The  residual  

factors  are  geometrical  factor 𝑨𝒈𝒆𝒐𝒎 and  the  

blurring  factor 𝑨𝒃𝒍𝒖𝒓. Through analytical methods the 

𝑨𝒈𝒆𝒐𝒎 and 𝑨𝒃𝒍𝒖𝒓 can be calculated. But calculating 

𝑨𝒃𝒍𝒖𝒓 is a complex task that influence much deviation 

in image reconstruction. The physical  impacts like 

crystal  penetration  and  photon  non-colinearity 

increase the blurring issue.  

The concept of image rebuilding as of projections 

could be deliberated by means of system of linear 

equations Eq. 13 of the procedure: 

𝑨𝒙 ≈ 𝑩 (13) 
The elements of matrix A is subjected to the number 

of projection and the denoted projection angle. The 

intensity of the image is characterized by the column 

matrix x and projections is referred by the column 

matrix b.  

For a certain angle, we take up that the number of 

projections ranges from 1 to m. For 𝒌 different angles, 
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b has 𝑴 =  𝒎𝒙𝒌 elements, 𝒙 has 𝑵 elements, and 𝑨 

is an 𝑴𝒙𝑵 rectangular matrix. 

 

A= 

𝑎11 𝑎12 … 𝑎1𝑁

𝑎21 𝑎22 … 𝑎2𝑁

… … … … .
𝑎𝑀1 𝑎𝑀2 … 𝑎𝑀𝑁

 , 𝑏 = 𝑏1 𝑏2 … 𝑏𝑀 
𝑇, 

𝑥=  𝑥1 𝑥2 … 𝑥𝑁 𝑇, 
Fig. 1 illustrates the data acquirement process during 

scanning. The entire image is signified in each row 

and the entire projection data is represented by one 

column of the system matrix. Thus, a fixed row in the 

system matrix corresponds to a particular detector at a 
particular angle.  

 
Fig. 4.1: The data acquirement process during 

scanning. 

 

Since this matrix contains the probability of an 

emission at an exact point showing up at an exact 

detector at an exact angle, many elements within this 
matrix are zeros. Very few pixels in this matrix will 

have non-zero terms. This makes the system matrix 

very sparse.  

When applying iterative Maximum Likelihood 

approaches to restoration or reconstruction of blurred 

and noisy images. Ideally, one would carry on 

repeating till the Kuhn-Tucker conditions are 

satisfied. Furthermost of such kind of iterative 

procedures primarily converge rapidly nevertheless 

making very gentle convergence in the far ahead 

repetitions. In emission tomography, there might be 

need for more than a hundred ML repetitions may 
possibly be necessary intended for the Kuhn-Tucker 

Conditions to be gratified near a number of digits. The 

image reconstruction will be worsening even after 

some iteration of image reconstructions because of 

excessive non-smooth advent. From simulations, we 

can learn that the squared error between the estimate 

and true image instigates to prolife in this certain 

point. The supreme striking and accurate 

refurbishments and reconstructions are succeeded by 

halting the ML algorithm reasonably early in the 

optimization process. 

A rationalization for implementing a stopping 
criterion needs some further insight. When a stopping 

criterion is employed, the initial estimate acts a 

noteworthy part in the reconstruction. To evaluate this 

role, we proceeds a handier expression at the iterative 

reconstruction process. Iterative reconstruction 

algorithms are typically primed by way of a uniform, 

constant estimate. An algorithm then iterates towards 

the solution in steps of varying size and direction. 

Given the data and the initial estimate, the path is 

specified by the particular choice of optimization 

algorithm.  

Such a process for a MLEM algorithm is represented 
in Fig. 2 where the dotted contours represent contours 

of constant likelihood. In halting the algorithm 

prematurely, one accepts some estimate along the 

optimization path, as at the point marked as colored in 

Fig. 2. 

Starting from a constant initial estimate, the 

reconstruction of a source from mechanically 

collimated data retains some of the smoothness of that 

initial estimate for a number of iterations of a MLEM 

algorithm. After some 30 iterations of the MLEM 

algorithm the reconstruction becomes excessively non 
smooth. 

 
Fig. 2: An Iterative optimization Process 

Starting from a constant initial estimate 𝜆𝑐 , it is 

apparent that an iterative MLEM reconstruction 
retains some of the smoothness of that initial estimate 

during the initial iterations. The effect of the constant 

initial estimate has been to anchor the free end of the 

optimization path (the initial point) such that the path 

passes through smoother estimates than those 
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traversed when the procedure is primed by means of a 

pseudo-random estimation. One would therefore like 

some strategy of effecting a trade-off between the 

smoothness of the constant initial estimate 𝜆𝑐  and the 

asymptotic consistency and efficiency of the ML 

estimate 𝜆𝑀𝐿 , such an approach provides a 

justification and the method for applying smoothed 

versions of iterative algorithms. 

A trade-off between 𝜆𝑐  and 𝜆𝑀𝐿  is mostly aptly 

defined by a confidence region. The determination of 

a stopping point can be posed as a hypothesis test. 

Statistics for which this test performs well for sources 

within a wide range of complexity are sought. The 

performances of these statistics are compared. 

In using a hypothesis test as a stopping criteria, the 
null hypothesis is that the data y are Poisson with 

vector of parameters  𝑝𝜆 𝑘  where 𝜆 𝑘 is the estimate at 

the 𝐾𝑡𝑕  iteration. A test statistics 𝑠𝑡  having a known 
density function under a correct null hypothesis is 

formulated. A critical region, consisting of all values 

outside some confidence interval [ 𝑎, 𝑏], and a 

significance level 𝛼 are choosen such that if the null 

hypothesis is correct 𝑝 𝑎 < 𝑆𝑖 < 𝑏 = 1 − 𝛼. The 

hypothesis is tested by computing the statistic𝑠𝑖 , a 

function of 𝜆𝑘 and y. If 𝑠𝑡 < 𝑎 or 𝑠𝑡 > 𝑏 the null 

hypothesis is rejected at the 𝛼 importance glassy and 

an alternate estimate of 𝜆 is sought. Otherwise, the 

estimate 𝜆 𝑘 is accepted and the algorithm terminated. 

ML-EM may require from 10-100 iterations 

depending on the stopping rule used. Several methods 

have been suggested to decrease the calculation time 

in the ML-EM algorithm. The most common tactic 

exist is OS-EM method proposed by Hudson and 

Larkin in 1994. In this method, forecast statistics is 
separated keen on subsets and uses solitary one subset 

for each iteration. OS-EM has evidenced en route for 

the rebuilding maximized time on behalf of the 

reconstruction by a factor of 6. 

 

System Design and Implementation 

Data Set 

To implement MLEM Shepp-Logan phantom image 

of various sizes such as 64 x 64, 128 x 128 and 256 x 

256 is taken for study to reconstruct an image. The 

radon function present in Matlab is utilised to retrieve 
projection data of the sampled image rotated on a 

specified angles. This system uses five different 

angles, such as 60, 90, 120, 150, 180 obtaining 30, 20, 

15, 12, 10 numbers of projections respectively The 

projection of a two dimensional function 𝑓(𝑥, 𝑦) is a 

set of line integrals. The 𝑓(𝑥, 𝑦) is transferred to a 

column vector. The photons emitted pi passed at a 

specified angle collects data by calculating the weight 

matrix. Using these data as input MLEM algorithm 

reconstruct an image both sequentially and in parallel 

version. 

 

Sequential version 

MLEM implemented in the single core is depicted as 

sequential version. With the projection data obtained 
and the Initial guess of the estimate MLEM algorithm 

is passed as input to reconstruct an image. MLEM is 

an iterative reconstruction method based on statistical 

data, the required iteration has been optimized based 

on the PSNR value. This is followed by calling a 

MEX function consisting of MLEM algorithm in a 

single core. The time taken to reconstruct an image is 

noted for each size at different angles of projections. 

 
Fig. 3 (a): Flowchart of MLEM to reconstruct an 

image in sequential mode 

Fig. 3 (a) gives the pictorial representation for the 

steps involved in reconstructing an image using 

MLEM. As described in the methodology first 

forward projection followed by comparison, Back 

projections, normalization and value updating for all 

numbers of projection data. 

 

Parallel Version 
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The iterative statistical pMLEM algorithm is 

implemented under the multi-core is considered as 

parallel version. Similar steps exist as in sequential 

version. Optimizing the iterations are carried out in 

Matlab and image reconstruction algorithm MLEM 

for calculating the each pixel value for each projection 
is done in parallel by calling the MEX function. In the 

MEX function the number of cores are set to 2, 4 or 8 

using the OMP_SET_NUM_THREAD(num_thread) 

function. Initially the program starts with single core. 

#pragma omp parallel directive is used to create a 

master and a worker thread. The Master thread co-

distributes the measured and the calculated projection 

data to the worker thread. After updating the value 

each worker updates its value and the master thread 

update the final value in the vector. Fig. 3 (b) is the 

flow chart representing the parallel version of MLEM. 

 

Implementation 

Sequential version 

The pseudo code of MLEM algorithm executed using 

single core is given in Table 4.1. The steps described 

in the design section have been implemented in this 

algorithm. The calculation part of Forward projection, 

back projection, normalization and value updating is 

done using single core. To select a single core 

OMP_NUM_THREADS(num_thread) is passed with 

value 1. 

 
Table 4.1: ML-EM Algorithm 

mlem(){ 

     if not reached all projections()   { 

          for all elements in the projection { 

               Calculate forward projection; 

               Compare the measured and calculated data; 

               Calculate the back projection and perform 

normalization; 

               Update the value; 

         } 

    }  

} 

 

 
 

Fig. 3 (b): Flowchart of MLEM to reconstruct an 

image in parallel mode 
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Parallel version 

Table 4.2 tabulate the pseudo code of the proposed 

pMLEM algorithm to reconstruct the Shepp-Logan 

Phantom in 2, 4 and 8 cores in order to decrease the 

time complexity the MLEM algorithm suffers. The 

time complexity reduction is proved in the results and 
discussion section. 

 

Table 4.2 Proposed pMLEM algorithm 

pmlem(){ 

     If not reached all projections(){ 

omp_set_num_threads(number_of_threads); 

            #pragma omp parallel for shared(elements) 

private(index) schedule   

                                                                                       

(dynamic, num_elements) 

          For all elements in the projection{ 

               

omp_set_num_threads(number_of_threads); 
              #pragma omp parallel for shared(elements) 

private(index)  

                           schedule(dynamic, num_elements) 

reduction(+:calculated value) 

               Calculate forward projection; 

               Compare the measured and calculated 

data; 

               Calculate the back projection and perform 

normalization; 

               Update the value; 

         } 
    }  

    Recursively call pmlem function for remaining 

projections 

} 

 

Results and Discussion 

 

Statistical Image reconstruction algorithm MLEM is 

evaluated. MLEM is also an iterative based algorithm. 

It is compared with standard algorithms like FBP, 

SIRT, SART and ART which motivated to parallelize 

MLEM algorithm in a multicore environment. 
 

 

The performance exploration of this technique on 

behalf of image reconstruction is analysed in this 

chapter.  

 

SIRT, SART, ART and MLEM algorithms are input 

with projection matrix, weighted matrix and number 

of iterations. The projections matrix and the weight 

matrix sizes are already discussed in chapter 3 results 

and discussion section.SIRT, SART and MLEM uses 

the iteration optimised using MLEM algorithm and 
for ART the iteration optimised in chapter 3 is used. 

The optimized iteration is shown in the Table 4.3. 

 

The parameters used to reconstruct the image are 

projections matrix, Weight matrix and iterative 

algorithms such as SIRT, SART, ART, MLEM and 

pMLEM in preferred angle such as 18
0
 producing 10 

numbers of projections, 150 yielding 12 numbers of 
projections, 120 producing 15 numbers of projections, 

90 producing 20 numbers of projections and 60 

producing 30 number of projection is considered for 

study. To reconstruct 128 x 128 image size various 

parameters of projection matrix at angles as 

mentioned in chapter 3 and the weight vector as a 

sparse matrix in size 16384 x 1 and number of 

optimised iteration required are the elementary input 

passed in the specified algorithm.SIRT, SART, 

MLEM and pMLEM is measured for the optimised 

number of iterations using MLEM algorithm. The 

FBP algorithm is a non-iterative algorithm. It does not 
hold the number of iterations. The FBP measured in 

Chapter 3 for various angle is considered throughout 

the study. 

With the projections matrix with 367 x number of 

projections and 65536 x 1 vector a 256 x 256 image 

reconstructed using FBP, SIRT, SART, MLEM and 

pMLEM is shown in Fig. 4.12. The number of 

iterations required to acquire a free artifact images is 

tabulated in Table 4.9.PSNR value obtained for 

reconstructing 256 x 256 image is tabulated in Table 

4.10 and graphed in Fig. 4.13. Similarly time taken to 
reconstruct the same image withthe same number of 

iterations as listed above is given in Table 4.11 and 

Fig. 4.14. pictures the relevant data. 

 

Number of iterations 

Table 4.11 shows the number of iterations optimized 

to reconstruct the Shepp-Logan phantom images using 

MLEM for various sizes such as 64 x 64, 128 x 128 

and 256 x 256 at different projection angles 30, 20, 

15, 12, 10 is tabulated and their responses are plotted 

in Fig. 4.15. 

 
The tabulation shows the number of iterations 

increases only on the size of images not on the basis 

of  number of projections as ART algorithm 

performed. 
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Table 4.9. Optimized iteration to reconstruct 256 x 256 images with high perceptual fidelity using SIRT, SART, 

ASRT, MLEM and pMLEM 

Algorithms 
Number of projections 

10 12 15 20 30 

SIRT, SART, MLEM and pMLEM 59 40 51 40 69 

ART 158 142 124 46 24 

 

 

 

Fig. 4.15. Graph showing the optimised number of iterations required to reconstruct the images. 

Peak Signal-to-Noise Ratio 

Table 4.12 shows the analysis of PSNR value for 

reconstructing the images in single core and multi core 

environment. In this table, the PSNR value can be 

analysed for different image sizes with various number 

of projections. It is observed that the PSNR for 

different size of images using various angles is above 

60 db which shows the tremendous perceptual fidelity. 

 

The PSNR values that are obtained for various image 

sizes at different angles are plotted in Fig. 4.15.  It is 

necessary to highlight that the PSNR values obtained 

for the reconstructed image sequentially and parallel 

has the same value. This depicts that the parallel 

programming maintains the image quality as it is. 

 

 

Fig. 4.15. Plotted the PSNR value obtained while reconstructing Shepp Logan Phantom Images on 64x64, 128x128 

and 256x256 sizes using 30, 20, 15, 12 and 10 numbers of projections in sequential and parallel version
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Fig. 4.12. 256 x 256 Shepp Logan phantom reconstructed using FBP, SIRT, SART, ART, MLEM and pMLEM 

using (a) 10, (b) 12, (c) 15, (d) 20, (e) 30 numbers of projections obtained at 180, 150, 120, 90 and 60. 

 

Table 4.10. Tabulated the PSNR value measured for the 256 x 256 image reconstructed with projection data 

obtained at 180 degree with 10 number of projections, 150 degree with 12 number of projections, 120 degree with 

15 number of projections, 90 degree with 20 number of projections and 60 degree with 30 number of projections. 

 

 
10 12 15 20 30 

FBP 58.0899 59.0863 60.4143 62.0325 64.4252 

SIRT 65.3219 65.6799 66.364 67.1133 68.583 

SART 65.3502 65.7131 66.4068 67.2005 68.648 

ART 69.3787 69.5936 70.676 70.3131 71.0605 

MLEM 69.5807 69.7042 70.5335 70.4742 71.0236 

pMLEM 69.5807 69.7042 70.5335 70.4742 71.0236 
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(a)     (b) 

       

(c)     (d) 

 

(e) 
 

Fig. 4.13. A Graph showing the time consumed to reconstruct 256 x 256 image using FBP, SIRT, SART, ART, 

MLEM and pMLEM with (a) 10, (b) 12, (c) 15, (d) 20, (e) 30 number of projections. 

 

Table 4.11. Time taken by FBP,SIRT, SART, ART, MLEM and  pMLEM to reconstruct 256 x 256 image using 

various number of projections. 

 
10 12 15 20 30 

FBP 0.008455 0.007704 0.00781 0.015839 0.021083 
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SIRT 81.4186 73.2486 117.1321 83.1238 214.6706 

SART 65.1944 58.721 79.3762 65.7881 198.9407 

ART 1609.1 1699.73 1889.8 918.3131 723.983 

MMLEM 522.894 462.973 750.215 709.861 2134.4 

2Core 508.943 341.971 743.438 766.535 1987.55 

4Core 375.436 266.157 435.619 550.758 1304.25 

8Core 200.919 179.447 264.467 485.687 797.848 

       

(a)     (b) 

       

(c)     (d) 

 

(e) 

Fig. 4.14. Time achieved to reconstruct 256 x 256 image with projections data obtained at (a) 180, (b) 150, (c) 120, 
(d) 90, (e) 60 using FBP, SIRT, SART, ART, MLEM and pMLEM using 2, 4 and 8 cores. 

During the study using above diagrammed data the 

image quality throughout the various size considered 

for study shows more or less same or slightly 

improved quality. But the quality of the image has not 

gone through in reverse. Image size 128 x 128 time 

taken to reconstruct strategy shows a prominent 

difference between ART and MLEM even for 

minimum number of projections data. This stimulates 
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the entire study to implement the algorithm in shared 

memory environment to reduce the time further. 

Performance measures 

The metric used to validate the reconstructed image 

are PSNR value of an image, time taken to reconstruct 

an image and the speed up using Amdhal’s law to 
analyse the system’s performance.  

Time complexity 

Time complexity is measured using the tic and 

toc command in MATLAB. The time taken to 

reconstruct an image using MLEM and pMLEM in 

sequential using 1 core and parallel using 2, 4 and 8 

cores in AMD processor respectively is charted in Table 

4.13, 4.14 and 4.15 for 64 x 64, 128 x 128 and 256 x 

256 image size respectively. 

The time complexity indicates the degree of 

user utility. As a result, for limited number of 

projections it takes high time complexity in single core 

execution. But, for each number of projections for all 

sizes of images the time complexity has been reduced. 

Fig. 4.18, Fig. 4.19, Fig. 4.20 shows the performance of 

the parallel system. The reduction in time complexity 

indicates the high degree of user utility. This proves that 
parallel programming can be used as tool to reduce the 

time of execution. 

Speed up 

The analysis of speedup calculation for MLEM is 

obtained by applying the Amdahl’s law for the serial 

and parallel time. Table 4.16, 4.17 and 4.18 shows the 

speedup calculation for the image of sizes 64 x 64, 128 

x 128 and 256 x 256 respectively. Also this speedup 

calculation is plotted against the different reconstructed 

image sizes at various projection angles and different 

number cores 1, 2, 4 and 8. 

 

Table 4.15. Time complexity for 256 x 256 phantom reconstructed image size 

Cores 

Number of projections 

10 12 15 20 30 

1 522.894 462.973 750.215 709.861 2134.4 

2 508.943 341.971 743.438 766.535 1987.553 

4 375.436 266.157 435.619 550.758 1304.245 

8 200.919 179.447 264.467 485.687 797.848 

 

 

Fig. 4.18 A graph showing the Time Complexity of reconstructing Phantom image of size 256 x 256 sequentially, 

parallel in 2, 4 and 8 core with respect to projections. 

      The performance analysis of MLEM for 

reconstructed image size of 64 x 64, 128 x 128 and 256 

x 256 with varying projection angles is tabulated in 

table 4.16, 4.17 and 4.18 respectively. The graph plotted 

in Fig. 4.19 shows that the performance gradually 

increasing as the number of cores increases. The 

evaluation results depicts that the MLEM architecture 
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for 64 x 64 image size performs faster under different number of cores.

 

Similarly for 128 x 128 and 256 x 256 image size speed up is plotted in Fig. 4.20 and Fig. 4.21. Both The 

graph shows that the performance gradually increases with increase in the number of cores. 

Table 4.18. Speedup calculation for 256 x 256 size reconstructed phantom image 

 

cores 

Number of projections 

10 12 15 20 30 

 1 1 1 1 1 1 

 2 1.207948 1.739887 1.704303 1.636929 1.617992 

 4 1.218398 2.386777 2.260526 2.168257 2.176752 

 8 1.245951 3.143542 3.084992 3.154823 2.893623 

 

 

Fig. 4.21: A graph showing the Performance Analysis of the multi-core environment for the image reconstructed for 

256 x 256 at varying number of projections under 1, 2, 4 and 8 cores 

                       From the Results so for discussed 

proves that the size and the number of projection does 

not affects the parallel programming. The higher the 

data size yields the better performance while using 

parallel programming. 

Summary 

Medical Image process affords a non-invasive practice 
to learn at the basic and purposeful statistics of 

internal organs and structures. Measuring the 

radioactive distribution all the way through the patient 

offers the physiological and patho-physiological 

evidence related to the patient. The most widely used 

mathematical technique to reconstruct this image, 

using the data assimilated, is recognized as Filtered 

Back Projection (FBP).  The foremost perseverance of 

this research work is to substantiate whether or not we 

can rebuild artefact free images with limited dataset 

instantaneously. 

An attempt is made using ML-EM, by enhancing the 

probability matrix (system matrix) with simple 

substitutions. Diagonal elements related to the system 

matrix are given through the corresponding projection 

data elements. Therefore, to remove the detectors from 

the reconstruction procedure, we can replace the value 

by the average assessment of the diagonal matrix. The 
Enhanced ML-EM algorithm is a good alternative to 

the filtered back projection algorithm and can be used 

successfully to reconstruct artefact free images with 

limited dataset. All the reconstruction done in our 

study was done using Matlab. The results have shown 

reconstructing an image quickly as number of cores 

increases. It also proven that parallel programming has 

high efficiency using Amdhal’s law. 
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