
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 1

A Real-Time Encryption Algorithm For User

Data Preservation In Mobile Computing
Okah C., Matthias D., Nwiabu N.

Department of Computer Science, Rivers State University, Nkpolu-Oroworukwo , Port Harcourt, Nigeria

ABSTRACT

More recently, many businesses are sending real-time

Application (RTA) on the Internet and are frequently
social networking applications. Therefore, the need to

protect data and user restrictions is greater vital than

ever. The encryption key is used to shield the security

required for the application. But on account that the

RTA has high-level data, the historical encryption

approach is unsuccessful, considering most RTAs serve

online, the encryption and violation protocols will take

a little greater time to obtain end-to-end encryption.

Generally. This research work developed a new

algorithm to enhance encryption time and keep

endpoint data to delay time and furnish a excessive
level of security in the RTA. The outcomes received

from the implementation of the algorithm exhibit that

our algorithms are faster and less intrusive and less

touchy to contemporary information in contrast to

existing algorithms.

Keywords – Mobile, confidentiality, cloud, privacy

I. Introduction

With recent evolution of Internet, the world ensures that

we are all connected at the touch of the button. Mobile
Computing is future of the technology as it allows us to

connect to the Internet and the data that demand

distribution. Mobile cloud computing techniques

legitimates diverse applications. Although mobile cloud

computing has several advantages but a little worry

about safeguard and confidentiality of data.

Privacy is the major concern in utilizing mobile cloud

computing regardless of many services. With increased

usage of mobile applications and social media

communications, there is huge concern on privacy of

user data. As privacy concerned transferring the plain
text over the network, mobile users are liable to

different kinds of attacks such as Denial of Service

attack, malware injection attack and monitoring which

results in the loss of data integrity. One of the data

security issues is as a result of unencrypted data being

passed due to the high volume of data. This situation

often results to privacy leakage issues since plaintexts

does not restrict or place any constraint for adversaries

to capture information in a variety of ways, such as

jamming, monitoring, and spoofing.

Many approaches emerged for privacy preserving data

in mobile cloud computing. The first approach involved

perturbing the input before searching. Though it has the

benefit of simplicity it does not provide a formal

framework for proving how much privacy is

guaranteed. Secure Computation technique (Alex, G.
and Ehud, G. 2006) has the advantage of providing a

well defined model for privacy using cryptographic

techniques and is also accurate. However it is a slower

method and also has the drawback of space complexity.

i.e., as all data are stored in the Cloud Database Server,

it leads to a large memory requirement.

A. Statement of Problem

Despite several existing and proposed encryption
algorithms to protect user’s data privacy during real

time applications in mobile computing, there still exist

lots of problems that have kept RTA in mobile

computing in difficult times:

B. Objective

The aim of this research is to create and develop an

application that will encrypt and protect mobile user’s

private data in real time applications with the following

objectives:

i. To design an algorithm with a higher conversion

times and faster than AES with higher security.

ii. To use an object oriented programming language to

implement an algorithm that is less complex with

less rounds of encryption process that will reduce
the packet delay time.

iii. To implement the algorithm using index table

generation encryption such that the encryption key

length cannot affects the speed of encryption or

data privacy.

II. RELATED WORKS

i. Digital Era Encryption

The computerized period of the 1970s featured the

significance of a key-based protection framework.

Present day PCs comprehend that to send messages
online without meeting the beneficiary in any case,

they will require frameworks that utilization an

alternate key for encryption than for encryption.

On the off chance that encryption is contrasted and

a PC, this framework will be contrasted with a lock

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 2

that has a lock key and another key to debilitate the

lock. Today, the Diffie-Hellman change is

considered. Diffie-Hellman key trade is a sort of

security strategy that permits two individuals to

make private keys that they don't have before they

know one another, which is regularly used to
encode them. Whitfield Diffie and Martin Hellman

previously adjusted the Diffie-Hellman adjustment

in 1976. Key route changes depend on valuable

devices and figurings quicker than logarithms. At

the point when utilized effectively, the Diffie-

Hellman key trade workshop key isn't transferable

without copying a key. The quality of this

calculation relies upon to what extent it takes to

figure the open key exchange calculation (Diffie,

H. 1976). Perceiving the failure of Diffie-Hellman

key trade to send private data, Ron Rivest, Adi

Shamir and Leonard Adleman built up a
framework like the Diffie-Hellman framework,

then again, actually the data could be encoded and

transmitted. The mystery of the RSA, which is

named after the names of the creators, depends on

the way that duplication and coding are quicker

than introductory appraisals. A total arrangement

of two principles is utilized.

ii. Data Encryption Standard and Advanced Data

encryption standard

As with the previous note, the key to compiling

data is to find the so-called Encryption Standard

(DES) data. Data entry is a documentary awarded

by the National Institute of Standards and

Technology (NIST). In any case, it is now covered

by another standard known as Advanced

Encryption Standard (AES). DES is a closed 64-bit

door that seems to extract 64 pieces of information.

This contrasts with a sequence that is a bit slow at a
time (some small page sessions, for example, one

byte). DES was an inappropriate name in a

research expedition founded by International

Business Machines (IBM) in the late 1960s that

brought together a person named LUCIFER. In the

mid-1970s, he was chosen to promote LUCIFER

with major changes. IBM says it is not only related

to this progress that they are seeking specialized

intelligence from the National Security Agency

(NSA). The LUCIFER reform was adopted as a

recommendation for a new privacy management
standard proposed by the National Standards

Office, as quoted by Dray, J. (2010) in one of his

books entitled "Pain Management of Farmers in

Java AES." Subsequently, it was adopted and

adopted in 1977 as the Encryption Standard

(Daemen, et al. 2010).

III. A. METHODOLOGY

Methodology of research is the science of proper modes

and orders of procedure. Since this study attempts to

explore the history of encryption and the real time

application security in mobile computing systems and
devices, the historical method will be the most suitable

one for this study. Furthermore experimental research

allows cause and effect to be determined. Combining

these two research methods will help us to study the

past encryption and its challenges as we use the

experimental research to propose new system.

Therefore a Hybrid research approach was adopted by

combining the best features of historical research

method and experimental research method. And the

Index table generation encryption for Real-Time

Applications is used for our design methodology.

B. Proposed System

Our proposed system is a new cryptographic that will

eliminate encryption/decryption time delay that

normally occurs in AES. We design an encryption

process that will shorten the time it takes to

encrypt/decrypt even more better than AES with

improved security.

System is made up of two components:

(a) Index Generation Process

(b) Key Insertion Process

In our new system, the major requirement for this

encryption application is shared key. The key is key in

creating and ensuring better security; the key is 1024-

bit long, the key is randomly selected which makes it

difficult to hack.

(a) The Index Generation Process

Index generation component consists of:
i. Initial table

ii. Shared value

iii. Circular shifts

iv. Table of Indexes

v. The Extracted Indexes

i. Initiate Table; Consists of (16*16) horizontal and

vertical as seen fig. 3.2, with table value from 0-

F16. the this first table is not confidential and is

made public to the sender, receiver and the public.

 ii. Shared Value: Shared value is a very important

part that can be generated at random but kept and
exchanged secretly; Diffie- Hellman is proposed

for its exchange. Diffie Hellman is not an

encryption algorithm; rather, it is a key exchange

algorithm.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 3

 4 B 2 8 A 9 8 6 0 3

 Table 3.1 Shared Key

 iii. Circular Shifts: The shift and circular down permutation is performed using the shared key. The first

number in the shared key is for left shift followed by another number for the circular down shift until the

shared key is exhausted. This is as shown in Tables. 3.3, 3.4, 3.5 and 3.6 using the shared key in Table.3.1

Table. 3.2: Initial table

Our proposed system will first transfer the first set of data to the other communicating component. This packet is a

(16 * 16) rows and columns size table which its entries ranges from 0-F as shown in Table 3.2 and is randomly

generated using a mathematical formula. This has a scientific equation previously communicated and known, the

equation is used to initialize the same tables’ value both at the receiver and sending sides.

F. 4 6 E

.

D. C. E. 6 3 F 7 9 1 F, 9 F.

1 D, 1 E

.

D. C. 6 2 2 6 D 0 4 F, A, 7

2 7 8 9 C. 3 B. 9 2 E 3 4 E, C, 4 5

4 F

.

4 4 9 E. 5 F. 2 2 4 C, F 3 0 D,

8 3 F, 5 6 9 D. A. 5 0 7 B, 8 1 7 4

E. F

.

0 0 4 1 D. E. B. 5 5 7 B 3 2 F,

8 0 2 A 4 4 E. 1 5 E, 9 5 8 6 A, 4

6 3 E, 9 6 F, 7 8 4 7 A, A, 0 7 8 6

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 4

Table 3.3 First Circular Left Shifts
Table 3.3 shows the first circular left shifts of the Index Generation Table Shifting with the value 4. The sender

shifts the initial table columns circular right followed by a row circular down according to the shared values of table

3.1 between the sender and the receiver.

9 3 E. 4 1 C 6 E. 2 0 9 1 1 B . 9 B .

3 6 B . C. 7 C E. 9 4 E. D. C 6 7 7 D.

3 2 D. 8 3 B. B . 6 F . 3 A. D. 9 8 5 F

D. 4 B . C. 6 5 5 B . 3 D 9 A. C. B . E. 2

0 A. 0 E. 0 8 6 D. 2 9 2 6 E . D. 9 C .

D. F 4 2 4 0 6 0 B 4 0 7 2 B 1 2

6 2 1 D. 1 B. F . A. 0 A. 9 2 9 2 D. 9

C . 0 E. 5 9 5 9 0 2 A. 9 C . 3 F . 7 6

F . 4 6 E. D. C. E. 6 3 F . 7 9 1 F . 9 F .

1 D 1 E. D C 6 2 2 6 D 0 4 F A 7

2 7 8 9 C . 3 B . 9 2 E. 3 4 E . C . 4 5

4 F . 4 4 9 E. 5 F . 2 2 4 C . F 3 0 D

8 3 F . 5 6 9 D. A 5 0 7 B . 8 1 7 4

E. F . 0 0 4 1 D. E B. 5 5 7 B. 3 2 F .

8 0 2 A. 4 4 E. 1 5 E. 9 5 8 6 A. 4

6 3 E. 9 6 F 7 8 4 7 A. A. 0 7 8 6

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 5

Table 3.4 First Circular down shift

Table 3.4 shows the resulting table from the first
circular left shifts of the Index Generator Table Shifting

with the value 4 and the row to shift circular down with

value of Baccording to the shared values of table 3.1.

iv. Table of Indexes: The table of indexes is the

result after all rounds of permutations of the

initial table using the shared value with a two

digits length extracted out from the shared value,

then modulo operation is used to perform the

shift operations(Shifted rows/columns = Shared

value Mod 16).

 v. The Extracted Indexes: Another table called

table of extracted indexes is derived from the

Table of Indexes, we select the first octet as
the first index and the second octet as the

second index and so on, in this case we will

have 128 indexes

 (b) The Key Insertion Process

 The key insertion component consists of:

1. The Plain Text Data

2. The Key Generation:

3. XoR (Encryption) Process:

4. The Key Insertion:

1. The Plain Text Data: This is the data

being transmitted; which could be of any

data type. This does not have restriction of

size but it is better fit on one packet size

1 C 6 E. 2 0 9 1 1 B. 9 B . 9 3 E. 4

7 C. E. 9 4 E. D. C. 6 7 7 D. 3 6 B . C .

3 B. B. 6 F . 3 A. D. 9 8 5 F . 3 2 D. 8

6 5 5 B . 3 D. 9 A. C. B . E. 2 D. 4 B.. C .

0 8 6 D. 2 9 2 6 E . D. 9 C 0 A. 0 E.

4 0 6 0 B 4 0 7 2 B 1 2 D F 4 2

1 B F A 0 A 9 2 9 2 D 9 6 2 1 D

9 5 9 0 2 A 9 C 3 F 7 6 C 0 E 5

D C E 6 3 F 7 9 1 F 9 F F 4 6 E

D C 6 2 2 6 D 0 4 F A 7 1 D 1 E

C 3 B 9 2 E 3 4 E C 4 5 2 7 8 9

9 E 5 F 2 2 4 C F 3 0 D 4 F 4 4

6 9 D A 5 0 7 B 8 1 7 4 8 3 F 5

4 1 D E B 5 5 7 B 3 2 F E F 0 0

4 4 E 1 5 E 9 5 8 6 A 4 8 0 2 A

6 F 7 8 4 7 A A 0 7 8 6 6 3 E 9

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 6

minus the key size of the Maximum

Transfer Unit (MTU); (Plain-Text-Size =

(MTU)-(Keysize)).

2. The Key Generation: The key is chosen

generated randomly by the user. This
research, we proposed a key length of

1024 bits though it can be varied over

time. Users could change key during the

communication session which won’t

affect the speed of the techniques.

3. XoR (Encryption) Process:The level text

data is mainly associated with XoRed, the

first 1024 bits of data are XoRed and the

key, the second 1024 bits of data is

XoRed with the same key and continue

until there is no other clear text available.
Data found.

4. The Key Insertion: The keys are inserted into

the XoRed table that is derived from step

3 above, the input string is made

according to the Index method, the first

byte of the key is inserted into the XoRed

table using our object as the first index

value in the second column. an octet will

be placed based on the value of the second

index and so on until the end of the key,
where the index is set at the appropriate

position as shown in the text entry.

C. System Design

System design is the process of defining the

architecture, modules, interfaces and data for a system

to satisfy specified requirement. It includes the different

sub-systems that made up the encryption and their

components.

D. Design Method
We shall be using a hybrid approach in our design
methodology. This approach will incorporate the best

features of model-driven methodology (especially

object-oriented analysis) and Rapid Application

Development (RAD) methodology.

The Structured Systems Analysis and Design

Methodology (SSADM), was once a very popular

methodology but it has lost favour as a methodology.
As Whitten (2004) had rightly pointed out, “the practice

of structured analysis for software design has greatly

diminished in favour of object-oriented methods”.

While model- driven methodology emphasizes the
drawing of pictorial system models that represent either

a current reality or a target vision of the system, rapid

application development emphasizes extensive user

involvement in the rapid and evolutionary construction

of a working prototype of a system to accelerate the

system development process.

E. Architectural Design

The architectural design of our system is shown in

figure 3.1 which shows the detailed encryption process.

This architecture is easy but very difficult to guess. The

design consists of a combination index generation and

key insertion:

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 7

Plain text data

(Variable size)

Key 1024 bit
(random

variable size)

Initial table
(16*16)

Hex

Shared value (Use
key exchange
scheme- Diffie

Hellman

XoR

Circula

r Shift

XoRed Table

Table of

indexes

Extracted

indexes (128

indexes)

Key

Inserti

on

Ciphered data
(XoRed data

and the
inserted key)

Key Insertion Process Index Generation process

Fig 3.1: Architectural Design of the Propose system

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 8

 Fig. 4.0(a). 16 x 16 Matrix for Index generation

Fig 3.1 represents the entire systems architecture of our

proposed system. It is made up of two components joined

together to achieve the system. The two components are

Index generation component and Key insertion component.

The index generation is the component that is responsible for
the circular shift and table of index generation which guides

the key insertion component on where to insert keys. The key

insertion component normally XORed the message to send

and the 1024 key selected by the sender which also the

receiver knows and the XORed table is generated. The 1024

key is also inserted into the generated XORed table going by

the rules generated by the component generating the index as

well as inserts the key, the cipher text is sent.

The key insertion component uses the extracted indexes

value to decide the location to insert the key in the XORed

table.

F. Algorithm Design

The proposed Algorithm for the sender side and

receiver side of our system can be summarized as

follows:

At the sender side:

1. Generate 16 * 16 matrix table using mathematical

formula whose entries ranges from 0-F

2. Choose randomly key of 1024-bit long as shared

value.

3. Use the shared value to do column right and row
down shifting

4. Generate index table and extract indexes from the

new table formed

5. Encrypt message XoRed with key.

6. Insert key in the XoRed data using the extracted

indexes in 4

7. Send the packet.

At Receiver side

1. Extract all keys contained in the packet, using

the value in the shifted generated table

2. Decrypt the encrypted data by XoRing with
the key

IV. Results

We tested our work with two different plain text data on

1024bits encryption key with ten (10) digits shared

value on 16 x 16 matrix. The matrix and the shared

value entered are shown in fig 4.0(a) and fig 4.0 (b)

The result of the encryption performed on the two

different plain text data and 1024 bits encryption key is

shown in fig 4.1 (a) and 4.1(b)

Fig 4.0 (b) Shared Value for Column Shifting

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 9

We compared our result to the previous work done by
authors in terms of time complexity on different plain

text data input sizes and also on how better secured the

encryption of the plain text data is. Table 4.3 shows

the comparative analysis table on the different

encryption methods.

Fig 4.1 (b) Result of the encryption on second

plain text data

Fig 4.1 (a) Result of the encryption on first plain
text data

Fig 4.2Result of decryption on second plain text data

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 10

Table 4.1: Comparative analysis of encryption

Time on different nput data sizes to different

encryption methods

A comparative analysis of our proposed system with

AES-Rijndael as shown in Table 4.2. With the

following information:

Data Size/block =1024-byte, and Encryption Key=256-
byte.

From the table, it is noted that our proposed techniques

achieves the best result, where it is 15 times faster than

AES encryption and 6 times faster than AES

decryption.

The proposed process is resistant against brute force

attacks, where the key is mixed and shuffled strongly

inside the XoRed data; it will be very difficult to guess

the key.

Table 4. 2 Comparison between AES-Rijindael &

Our proposed system

Security

Algorithm

AES-Rijindael Our Proposed

system

Encryption(Ms) 10.884 0.71575

Decryption(Ms) 10.718 1.958125

A. Conclusion

Greater number of the existing encryption/decryption

techniques is not perfect for RTA over the Internet

since they were initially built for text data, and due to

their extensive computations which result to imposition

of certain constraint and delay in processing time.

Our Project attempts to develop a new

encryption/decryption approach which adds a minimum

delay time that makes it appropriate for RTA. In

addition, it provides high level of security by choosing

a key length of 1024-bit long, another interesting
property of the proposed system is its ability of using a

new different key for each packet.

The distribution of the encryption keys is usually

carried out through a trusted agency; this results in a

significant delay before the real-time application starts.

Furthermore, this work attempts to provide a new

method of key exchange without an intermediate party.

REFERENCES

[1] Atul, M. et al (2011). “FPGA Implementation of AES

Algorithm”, International Conference on Electronics

Computer Technology (ICECT), pp. 401-405.

[2] Bassil, C. et al (2005). “Critical voice network security

analysis and new approach for securing Voice over IP

Communications”, SETIT 2005, 3rd International

Conference: Sciences of Electronic, Technologies of

information and Telecommunications, Tunisia.

[3] Chalermwat, T. et al (2011). "FPGA Implementation of FOE-

Portable hard disk System”, "The Int. Conf on Information

and Communication Technology for Embedded Systems,

Pattaya, Thailand.

[4] Cole, E. et al (2005).Network Security Bible, Wiley

Publishing Inc, 2005.

[5] Computer Security Objects Register (CSOR):

http://csrc.nist.gov/csor/.

[6] Daemen, J. and Rijmen, V. (2009).AES Proposal: Rijndael,

AES Algorithm Submission, available at

http://www.nist.gov/CryptoToolkit

[7] Daemen, J. and Rijmen, V. (2010).The block cipher Rijndael,

Smart Card research and Applications, LNCS 1820,

Springer-Verlag, pp. 288-296.

[8] Gladman’s, B. (2012) AES related home page

http://fp.gladman.plus.com/cryptography_technology/.

[9] Hoang, T. and Nguyen, V. (2012). An efficient FPGA

implementation of the Advanced Encryption Standard

Algorithm IEEE 978-1-4673-0309-5/12.

[10] Lee, A. (2009). NIST Special Publication 800-21, Guideline

for Implementing Cryptography in the Federal Government,

National Institute of Standards and Technology.

[11] Manvi goyal, Jatin Sharma, “Performance Analysis of mRSA

for Varying Key Sizes and Data Modulus”, SSRG

International Journal of Mobile Computing & Application,

Volume 2 Issue 2 May to Aug 2015

[12] Menezes, A. et al (2014). Handbook of Applied

Cryptography, CRC Press, New York, Pp. 81-83.

[13] Nakahara, J. et al (2012).Square Attack on Extended Rijndael

Block Copher, COSIC Technology Report.

Input Size

(bytes)

DES AES 10 x

10

matrix

16 x 16

matrix

Proposed

approach

20,527 2 4 2 2

36,002 4 6 3 3

45,911 5 8 5 4

59,852 7 11 7 6

69,545 9 13 8 7

137,325 17 26 16 14

158,959 20 30 18 16

166,364 21 31 19 17

191,383 24 36 22 19

232,398 30 44 28 24

Average

Time

14 21 13 11

Average

Bytes/sec

7,988 5,320 10,167

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 11

[14] Nechvatal, J. et. al. (2013), Report on the Development of the

Advanced Encryption Standard (AES).

[15] Kirti Sapra, Swati Kapoor “Modified Image Encryption

Technique”, SSRG International Journal of Electronics and

Communication Engineering volume1 issue6 August 2014

[16] Omari, A.H. et al (2008). A New Cryptographic Algorithm

for the Real-Time Applications, in Proceedings of the 7th

International Conference on Information Security and

Privacy - (ISP’08), Cairo, Egypt.

[17] Wang W., Chen J. and XU F. (2012). An Implementation of

AES Algorithm Based on FPGA, IEEE 978-1-4673-0024-

7/10.

[18] Yang, J. et al (2010). FPGA based design and

implementation of reduced AES algorithm, IEEE 978-0-

7695-3972-0/10.

