
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 5 – May 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 16

An Improved Particle Swarm Optimization

Algorithm For A Variant of TSP

Dr. Nitesh M Sureja
1
, Dr. Sanjay P Patel

2

1
Director, OM Engineering College, Junagadh, Junagadh Dist, Gujarat, India

2
Assistant Professor, Government Engineering College, Patan, Patan Dist, Gujarat, India

Abstract — Particle swarm optimization algorithm is

one of the nature inspired algorithms based on the

flocking behaviour of a swarm of the birds. The

standard Particle swarm optimization algorithm has

been successfully used to solve many engineering

problems. Each and every algorithm has its own

merits and demerits like stagnation and fall in

premature convergence in searching space. It is

always necessary to handle the issues of exploitation

and exploration of the search space. Excessive

exploitation leads to premature convergence, while

excessive exploration slows down the convergence. In

this paper, an improved particle swarm optimization

algorithm is proposed to solve the Random Traveling

Salesman Problem. Random TSP is a type of the TSP

where the TSP problems are defined randomly. The

results obtained from this algorithm are compared

with the results obtained with other optimization

algorithms like GA, MA and ACO. Results shows that

the Particle swarm optimization (PSO) algorithm

performs very well to solve most of TSP problems, but

it can be trapped into local optimum solutions for

some of the problems.

Keywords — Particle Swarm Optimization, Nature

Inspired Algorithms, Random Traveling Salesman,

Optimization Introduction

I. INTRODUCTION

In a Traveling salesman problem (TSP), a salesman

has to travel all the cities in a tour exactly once [1][2].

He has to reach back to the starting city to complete

the tour. Starting and ending city is same here. The

salesman has to complete the tour with the minimum

time and cost. So, he has to find the shortest path of a

tour to minimize cost and time. The problem becomes

a problem of finding the shortest distance path

problem. TSP falls in to the category of the

combinatorial optimization problem. TSP is very easy

to understand but very difficult to solve. It is very

difficult to find exact solution for a TSP. The

complexity of the problem increases with the increase

in the number of cities. Many exact and approximation

methods have been proposed to address the traveling

salesman problem. Exact methods starts to fail with

the increase in the number of cities. So, approximation

methods, known as optimization methods are used to

solve the TSP.

 G. Dantzig et al [3] presented a cutting plane

method to solve TSP in 1954. G. laporte [4] presented

a branch and bound method for solving TSP in 1992.

A simulated Annealing algorithm [5] for TSP is

proposed by David Bookstaber in 1997. The

algorithms based on neural networks to solve TSP are

presented by [6][7]. This problem is also solved by

[8][9][10] using the concept of biological evolution

(Genetic Algorithms). Memetic algorithm is

developed by [11] [12] to solve the TSP. The foraging

searching behavior of ant is modeled by [13][14] to

address the TSP problem. Bee colony approaches are

presented by [15][16][17] for the same. A monkey

search algorithm to solve TSP is presented by [18]. A

discrete cuckoo search algorithm is proposed by Jati

GK et al for TSP in 2012[19]. Algorithms based on

the flashing behavior of firefly are presented by

[20][21]. A Bat algorithm is proposed by [22] for

solving TSP. Artificial immune algorithms to solve

TSP are proposed by [23][24[25]. Algorithms based

on the flocking behaviors of birds for solving traveling

salesman problem are proposed by [26][27][28].

Particle Swarm Optimization (PSO) algorithm is

developed by Kennedy and Eberhart in 1995[29]. This

is a stochastic optimization algorithm which simulates

the foraging behaviors of a swarm of birds. In this

algorithm, every solution is considered as a particle,

and the combination of particles makes the entire

swarm. The concepts of velocity and position are used

by the PSO to find the optimal point(s) in the search

space.

Mainly PSO algorithm is characterized in two steps

namely initialization step and cycle step. The cycle

step is divided into four steps :(1) fitness evaluation (2)

finding p
best

 and g
best

 ,(3) new value generation of

velocity and position and (4) inertia weight Updating.

In this paper, an algorithm to solve Random

Traveling Salesman Problem (RTSP) using Particle

Swarm Optimization is proposed. The paper is

organized as follows.

1. Section I: Introduction

2. Section II: Random Traveling

Salesman(RTSP)

3. Section III:PSO Algorithm Introduction

4. Section IV: Proposed PSO-RTSP Algorithm

5. Section V: Implementation and Results of

 Proposed PSO-RTSP

6. Section VI: Conclusion

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 5 – May 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 17

 Finally, paper ends with the references.

II. RANDOM TRAVELING SALESMAN

PROBLEM

There are many types of traveling salesman

problem (TSP) described in the literature based on

their characteristics. To list a few:

1. Symmetric TSP

2. Asymmetric TSP

3. Dynamic TSP

4. Random TSP.

5. Spherical TSP

and many more.

Symmetric TSP is a tsp where distance between the

cities is same from the either side. Asymmetric TSP is

a TSP where distance between the cities from the

either side is not same. Dynamic TSP is a TSP where

the problem changes itself at run time. In a spherical

TSP all cities lie on a sphere. Random TSP is a TSP

where all the city problems are defined randomly

before starting to find its solution. This is done to

remove the problem of local optima during the

solution finding. A random instance generator is used

to generate the city problems randomly. This paper

presents an algorithm to solve Random TSP. Particle

Swarm Optimization algorithm is used here to solve

the Random TSP. all city problems are generated in

the range of 10 to 100.

III. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is an intelligent

optimization algorithm based on the Swarm

Intelligence. It is based on a simple mathematical

model, developed by Kennedy and Eberhart in 1995,

to describe the social behavior of birds and fish [29].

The model relies mostly on the basic principles of

self-organization which is used to describe the

dynamics of complex systems. Subsequently PSO was

applied to solve many continuous and discrete

optimization problems by various authors. PSO is

swarm intelligence based meta-heuristic which is

inspired by the group behavior of bird flocking or fish

schooling. Similarly to genetic algorithms (GAs), it is

a population-based method, that is, it represents the

state of the algorithm by a population, which is

iteratively modified until a termination criterion is

satisfied. In PSO algorithms, the population of the

feasible solutions is often called a swarm. The feasible

solutions are called particles. The PSO method views

the set of feasible solutions as a “space” where the

particles “move”.

Unlike GAs, PSOs do not change the population

from generation to generation, but keep the same

population, iteratively updating the positions of the

members of the population (i.e., particles). PSOs have

no operators of “mutation”, “recombination”, and no

notion of the “survival of the fittest”. On the other

hand, similarly to GAs, an important element of PSOs

is that the members of the population “interact” or

“influence” each other.

Each particle i has its neighbourhood Ni (a subset

of P). The structure of the neighbourhoods is called

the swarm topology, which can be represented by a

graph.

A. Characteristics of particle i at iteration t

 xi
(t)

 … the position (a d-dimensional vector)

 pi
(t)

 … the “historically” best position

 li
(t)

 … the historically best position of the

neighbouring particles; for the fully

connected topology it is the historically best

known position of the entire swarm

 vi
(t)

 … the speed; it is the step size between

xi
(t)

 and xi
(t+1)

 At the beginning of the algorithm, the

particle positions are randomly initialized,

and the velocities are set to 0, or to small

random values.

B. Algorithm Parameters

 w
(t)

 … inertia weight; a damping factor,

usually decreasing from around 0.9 to around

0.4 during the computation

 φ1, φ2 … acceleration coefficients; usually

between 0 and 4.

C. Update Velocity and positions of the particles

Particle Velocity update takes place using equation

1.

vi
(t+1)

 = w
(t)

 vi
(t)

+ φ1u1(pi
(t)

 - xi
(t)

)+ φ2u2(li
(t)

 - xi
(t)

)

(1)

The symbols u1 and u2 represent random variables

with the U(0,1) distribution. The first part of the

velocity formula is called “inertia”, the second one

“the cognitive (personal) component”, the third one is

“the social (neighborhood) component”. Position of

particle i changes according to equation 2.

xi
(t+1)

 = xi
(t)

 +vi
(t+1)

 (2)

The goal of the algorithm is to have all the particles

locate the optima in a multi-dimensional hyper-

volume. This is achieved by assigning initially random

positions to all particles in the space and small initial

random velocities. The algorithm is executed like a

simulation, advancing the position of each particle in

turn based on its velocity, the best known global

position in the problem space and the best position

known to a particle. The objective function is sampled

after each position update. Over time, through a

combination of exploration and exploitation of known

good positions in the search space, the particles cluster

or converge together around optima, or several optima.

The algorithm is terminated after a given number of

iterations, or once the fitness values of the particles (or

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 5 – May 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 18

the particles themselves) are close enough in some

sense.

There is a plethora of different versions of PSOs,

which usually modify the formula for the change of

velocity (e.g., instead of u1 and u2 they use diagonal

matrices U1 and U2, in other variants they use no

inertia, but enforce an upper limit on the particle speed,

there is the so-called “fully informed” PSO, and there

is also a popular modification using a “constriction

coefficient”.

There exist versions of the PSO for constrained

optimization, for discrete optimization, and for multi-

objective optimization.Pseudo code of the Particle

Swarm Optimization algorithm is given below.

For each particle

 Initialize particle

End

Do

 For each particle

 Calculate fitness value

 If the fitness value is better than the best

 fitness value(p
best

) in history

 Set current value as the new P
best

 End

 Choose the particle with the best fitness value

 of all the particles as the g
best

 For each particle

 Calculate velocity according equation (1)

 Update particle position according equation

 (2)

 End

While maximum iterations or minimum error criteria

is not attained

Fig. 1 Pseudocode of Particle Swarm Optimization

IV. PROPOSED PSO-RTSP MODEL

Now, basic PSO can’t be applied directly to the

TSP as TSP is a discrete optimization problem. The

equation 1 and 2 are slightly modified here. We

introduce the concept of probability here. In the TSP,

next city will be chosen based on the probability (X)

and a random number (R) defined. The value of

random number is kept in between 0 and 1. During

each updation, if R <= X then the corresponding edge

is selected for further operation.

A new Parameter u3 is also used here to avoid the

local optima or to explore the search space very

efficiently. So, the formula 2 is converted into formula

4 here and the new updated equation looks like as

follows,

Fig. 2 Flowchart of the Proposed

 PSO-RTSP Model

 (1)

Initialize Particles

Calculate the

Fitness values of

each Particle

Is current Fitness

value better than

pbest

Assign current

fitness as new

p
best

Keep previous

p
best

Calculate velocity for each

particle

Assign best particle’s p
best

value

to g
best

Use each particle’s velocity

value to

Update its data value

Target or

Maximun

Iterations?
End

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 5 – May 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 19

vi
(t+1)

 = w
(t)

 vi
(t)

+ φ1u1(pi
(t)

 - xi
(t)

) +

 φ2u2(li
(t)

 - xi
(t)

)

xi
(t+1)

 = vi
(t+1)

 φ3u3 * xi
(t)

 (2)

Fitness function is the only standard of judging

whether an individual is “good” or not. We take the

reciprocal of the length of each path as the fitness

function. Length the shorter, fitness value the better.

Flowchart of the proposed PSO-RTSP model is given

in the Figure 2.

V. IMPLEMENTATION AND RESULTS

Proposed PSO-RTSP model is implemented in

Matlab -12. Program developed is run on a dual core

machine with four GB RAM. As mentioned, all tsp

problems are generated randomly in the range of 10 to

100. Algorithm runs itself based on the termination

criteria. Termination criteria used here is number of

iterations. Table 1 shows the results obtained by the

algorithm. Results are also shown graphically in the

figure 3 to 12.

TABLE I. RESULTS OBTAINED FROM PROPOSED

PSO-RTSP MODEL

City

Proble

m

PSO-RTSP

Length Time Iterations

10 281.6978 16.9741

200

(Termination

Criteria)

20 406.4415 19.0053

30 452.2936 22.0370

40 505.4753 25.8914

50 609.8611 30.9500

60 720.5503 38.9281

70 785.1615 43.9166

80 902.1146 51.5915

90 943.2347 60.2499

100 980.1618 68.5272

Fig. 3 10 City Problem Results

Fig. 4 20 City Problem Results

Fig. 5 30 City Problem Results

Fig. 6 40 City Problem Results

Fig. 7 50 City Problem Results

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 5 – May 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 20

Fig. 8 60 City Problem Results

Fig. 9 70 City Problem Results

Fig. 10 80 City Problem Results

VI. CONCLUSION

A PSO algorithm based on the flocking behaviors

of the birds has been introduced to solve the TSP. The

model has been tested on a set of randomly generated

TSP problems. As this is the initial implementation of

PSO on Random TSP, we hope to improve the model

further to achieve optimal values for the list of

randomly generated TSP problems. This algorithm

generates very good results in terms of time as well as

distance for the small to average size of the TSP

problems. The algorithm starts to detoriate in terms of

quality as the size of the problem increases. It is

observed that with the some parameter settings the

quality can be improved for the big size problems also.

ACKNOWLEDGMENT

The authors would like to thank OM Engineering

college-Junagadh, Government Engineering college-

Patan and all those who have supported directly or

indirectly to carry out this research.

REFERENCES

[1] M. M. Flood, ―The Traveling Salesman Problem,

Operations Research, 1956
[2] Gerhard Reinelt. “The Traveling Salesman: Computational

Solutions for TSP Applications.”, Springer-Verlag,

(1994),Berlin, Heidelberg .
[3] G. Dantzig, R. Fulkerson, S. Johnson, Solution of a Large-

Scale Traveling Salesman Problem, J. Oper. Res. Soc. 2

(1954) 393–410.
[4] G. Laporte, The vehicle routing problem: an overview of

exact and approximate algorithms, Eur. J. Oper. Res. 59

(1992) 345–358.
[5] D. Bookstaber, “Simulated Annealing for Traveling Salesman

Problem”, Spring, 1997.

[6] S. M. Abdel-Moetty, “Traveling salesman problem using
neural network techniques”, IEEE The 7th International

Conference on Informatics and Systems (INFOS), 2010,

Cairo, Egypt.
[7] Budinich, M.: A Self-Organizing Neural Network for the

Traveling Salesman Problem That Is Competitive with
Simulated Annealing. Neural Computing 8, 416–424 (1996).

[8] Abid Hussain, Yousaf Shad Muhammad, M. Nauman Sajid,

Ijaz Hussain, Alaa Mohamd Shoukry, and Showkat Gani,
“Genetic Algorithm for Traveling Salesman Problem with

Modified Cycle Crossover Operator,” Computational

Intelligence and Neuroscience, vol. 2017, Article ID 7430125,
7 pages.

[9] Yong Deng, Yang Liu, and Deyun Zhou, “An Improved

Genetic Algorithm with Initial Population Strategy for
Symmetric TSP,” Mathematical Problems in Engineering, vol.

2015, Article ID 212794, 6 pages, 2015.

[10] Adewole, Philip & Taofiki, Akinwale & Otunbanowo,
Kehinde. (2011). A Genetic Algorithm for Solving Travelling

Salesman Problem. International Journal of Advanced

Computer Sciences and Applications. 2.
10.14569/IJACSA.2011.020104.

[11] Gutin, G., & Karapetyan, D. (2009). A memetic algorithm for

the generalized traveling salesman problem. Natural
Computing, 9(1), 47–60.

[12] Arango Serna, M. D., & Serna Uran, C. A. (2015). A

Memetic Algorithm for the Traveling Salesman Problem.
IEEE Latin America Transactions, 13(8), 2674–2679.

[13] M. Dorigo, T. Stutzle, “Ant Colony optimization”, A

Bradford book, MIT Press Cambridge, Massachucetts,london,
England (2004) .

[14] M. Dorigo, L. Gambardella, “Ant colonies for the Traveling

salesman problem.” Biosystems, 43 (1997): (73-81).

[15] Jiang, H., “Solving Traveling Salesman Problem Using

Artificial Bee Colony Algorithm.”, Computer Science and

Technology. (2016) : (989-995)
[16] Li, L., Cheng, Y., Tan, L., & Niu, B. (2012). A Discrete

Artificial Bee Colony Algorithm for TSP Problem. Lecture

Notes in Computer Science, 566–573
[17] Wong, L.-P., Low, M. Y. H., & Chong, C. S. (2008). A Bee

Colony Optimization Algorithm for Traveling Salesman

Problem. 2008 Second Asia International Conference on
Modelling & Simulation (AMS). doi:10.1109/ams.2008.27

[18] Ayon, S. I., Akhand, M. A. H., Shahriyar, S. A., & Siddique,

N. (2019). “Spider Monkey Optimization to Solve Traveling
Salesman Problem.”, 2019 International Conference on

Electrical, Computer and Communication Engineering

(ECCE).

www.internationaljournalssrg.org

