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Abstract — Particle swarm optimization algorithm is 

one of the nature inspired algorithms based on the 

flocking behaviour of a swarm of the birds. The 

standard Particle swarm optimization algorithm has 

been successfully used to solve many engineering 

problems. Each and every algorithm has its own 

merits and demerits like stagnation and fall in 

premature convergence in searching space. It is 

always necessary to handle the issues of exploitation 

and exploration of the search space. Excessive 

exploitation leads to premature convergence, while 

excessive exploration slows down the convergence. In 

this paper, an improved particle swarm optimization 

algorithm is proposed to solve the Random Traveling 

Salesman Problem. Random TSP is a type of the TSP 

where the TSP problems are defined randomly.  The 

results obtained from this algorithm are compared 

with the results obtained with other optimization 

algorithms like GA, MA and ACO. Results shows that 

the Particle swarm optimization (PSO) algorithm 

performs very well to solve most of TSP problems, but 

it can be trapped into local optimum solutions for 

some of the problems. 
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I. INTRODUCTION 

In a Traveling salesman problem (TSP), a salesman 

has to travel all the cities in a tour exactly once [1][2]. 

He has to reach back to the starting city to complete 

the tour. Starting and ending city is same here. The 

salesman has to complete the tour with the minimum 

time and cost. So, he has to find the shortest path of a 

tour to minimize cost and time. The problem becomes 

a problem of finding the shortest distance path 

problem. TSP falls in to the category of the 

combinatorial optimization problem. TSP is very easy 

to understand but very difficult to solve. It is very 

difficult to find exact solution for a TSP. The 

complexity of the problem increases with the increase 

in the number of cities. Many exact and approximation 

methods have been proposed to address the traveling 

salesman problem. Exact methods starts to fail with 

the increase in the number of cities. So, approximation 

methods, known as optimization methods are used to 

solve the TSP.  

 G. Dantzig et al [3] presented a cutting plane 

method to solve TSP in 1954. G. laporte [4] presented 

a branch and bound method for solving TSP in 1992. 

A simulated Annealing algorithm [5] for TSP is 

proposed by David Bookstaber in 1997. The 

algorithms based on neural networks to solve TSP are 

presented by [6][7]. This problem is also solved by 

[8][9][10] using the concept of biological evolution 

(Genetic Algorithms). Memetic algorithm is 

developed by [11] [12] to solve the TSP. The foraging 

searching behavior of ant is modeled by [13][14] to 

address the TSP problem. Bee colony approaches are 

presented by [15][16][17] for the same. A monkey 

search algorithm to solve TSP is presented by [18]. A 

discrete cuckoo search algorithm is proposed by Jati 

GK et al for TSP in 2012[19]. Algorithms based on 

the flashing behavior of firefly are presented by 

[20][21]. A Bat algorithm is proposed by [22] for 

solving TSP. Artificial immune algorithms to solve 

TSP are proposed by [23][24[25]. Algorithms based 

on the flocking behaviors of birds for solving traveling 

salesman problem are proposed by [26][27][28]. 

Particle Swarm Optimization (PSO) algorithm is 

developed by Kennedy and Eberhart in 1995[29]. This 

is a stochastic optimization algorithm which simulates 

the foraging behaviors of a swarm of birds. In this 

algorithm, every solution is considered as a particle, 

and the combination of particles makes the entire 

swarm. The concepts of velocity and position are used 

by the PSO to find the optimal point(s) in the search 

space.  

Mainly PSO algorithm is characterized in two steps 

namely initialization step and cycle step. The cycle 

step is divided into four steps :(1) fitness evaluation (2) 

finding p
best

 and g
best

 ,(3) new value generation of 

velocity and  position and (4) inertia weight Updating. 

In this paper, an algorithm to solve Random 

Traveling Salesman Problem (RTSP) using Particle 

Swarm Optimization is proposed. The paper is 

organized as follows. 

 

1. Section I: Introduction 

2. Section II: Random Traveling 

Salesman(RTSP) 

3. Section III:PSO Algorithm Introduction 

4. Section IV: Proposed PSO-RTSP Algorithm 

5.    Section V: Implementation and Results of      

              Proposed PSO-RTSP 

6. Section VI: Conclusion 
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   Finally, paper ends with the references. 

 

II. RANDOM TRAVELING SALESMAN 

PROBLEM 

There are many types of traveling salesman 

problem (TSP) described in the literature based on 

their characteristics. To list a few: 

1. Symmetric TSP 

2. Asymmetric TSP 

3. Dynamic TSP 

4. Random TSP. 

5. Spherical TSP 

and many more. 

Symmetric TSP is a tsp where distance between the 

cities is same from the either side. Asymmetric TSP is 

a TSP where distance between the cities from the 

either side is not same. Dynamic TSP is a TSP where 

the problem changes itself at run time. In a spherical 

TSP all cities lie on a sphere. Random TSP is a TSP 

where all the city problems are defined randomly 

before starting to find its solution. This is done to 

remove the problem of local optima during the 

solution finding. A random instance generator is used 

to generate the city problems randomly. This paper 

presents an algorithm to solve Random TSP. Particle 

Swarm Optimization algorithm is used here to solve 

the Random TSP. all city problems are generated in 

the range of 10 to 100. 

III. PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO) is an intelligent 

optimization algorithm based on the Swarm 

Intelligence. It is based on a simple mathematical 

model, developed by Kennedy and Eberhart in 1995, 

to describe the social behavior of birds and fish [29]. 

The model relies mostly on the basic principles of 

self-organization which is used to describe the 

dynamics of complex systems. Subsequently PSO was 

applied to solve many continuous and discrete 

optimization problems by various authors. PSO is 

swarm intelligence based meta-heuristic which is 

inspired by the group behavior of bird flocking or fish 

schooling. Similarly to genetic algorithms (GAs), it is 

a population-based method, that is, it represents the 

state of the algorithm by a population, which is 

iteratively modified until a termination criterion is 

satisfied. In PSO algorithms, the population of the 

feasible solutions is often called a swarm. The feasible 

solutions are called particles. The PSO method views 

the set of feasible solutions as a “space” where the 

particles “move”. 

Unlike GAs, PSOs do not change the population 

from generation to generation, but keep the same 

population, iteratively updating the positions of the 

members of the population (i.e., particles). PSOs have 

no operators of “mutation”, “recombination”, and no 

notion of the “survival of the fittest”. On the other 

hand, similarly to GAs, an important element of PSOs 

is that the members of the population “interact” or 

“influence” each other. 

Each particle i has its neighbourhood Ni (a subset 

of P). The structure of the neighbourhoods is called 

the swarm topology, which can be represented by a 

graph. 

A. Characteristics of particle i at iteration t  

 xi 
(t)

 … the position (a d-dimensional vector)   

 pi
(t)

 … the “historically” best position   

 li
(t)

 … the historically best position of the 

neighbouring particles; for the fully 

connected topology it  is the historically best 

known position of the entire swarm   

 vi
(t)

 … the speed; it is the step size between 

xi
(t)

 and xi
(t+1)

 

 At the beginning of the algorithm, the 

particle positions are randomly initialized, 

and the velocities are set to 0, or to small 

random values.  

B. Algorithm Parameters 

 w
(t)

 … inertia weight; a damping factor, 

usually decreasing from around 0.9 to around 

0.4 during the computation   

 φ1, φ2 … acceleration coefficients; usually 

between 0 and 4. 

C. Update  Velocity and positions of the particles  

Particle Velocity update takes place using equation 

1. 

 

 

vi 
(t+1)

 = w
(t)

 vi
(t)

+ φ1u1(pi
(t)

 - xi
(t)

)+ φ2u2(li
(t)

    

              -  xi
(t)

) 

 

 

(1) 

The symbols u1 and u2 represent random variables 

with the U(0,1) distribution. The first part of the 

velocity formula is called “inertia”, the second one 

“the cognitive (personal) component”, the third one is 

“the social (neighborhood) component”. Position of 

particle i changes according to equation 2. 

 

xi
(t+1)

 = xi
(t)

 +vi
(t+1)

 (2) 

 

The goal of the algorithm is to have all the particles 

locate the optima in a multi-dimensional hyper-

volume. This is achieved by assigning initially random 

positions to all particles in the space and small initial 

random velocities. The algorithm is executed like a 

simulation, advancing the position of each particle in 

turn based on its velocity, the best known global 

position in the problem space and the best position 

known to a particle. The objective function is sampled 

after each position update. Over time, through a 

combination of exploration and exploitation of known 

good positions in the search space, the particles cluster 

or converge together around optima, or several optima. 

The algorithm is terminated after a given number of 

iterations, or once the fitness values of the particles (or 
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the particles themselves) are close enough in some 

sense. 

There is a plethora of different versions of PSOs, 

which usually modify the formula for the change of 

velocity (e.g., instead of u1 and u2 they use diagonal 

matrices U1 and U2, in other variants they use no 

inertia, but enforce an upper limit on the particle speed, 

there is the so-called “fully informed” PSO, and there 

is also a popular modification using a “constriction 

coefficient”. 

There exist versions of the PSO for constrained 

optimization, for discrete optimization, and for multi-

objective optimization.Pseudo code of the Particle 

Swarm Optimization algorithm is given below. 

 

For each particle 

     Initialize particle 

End 

Do 

     For each particle 

        Calculate fitness value 

        If the fitness value is better than the best       

        fitness value(p
best

) in history 

        Set current value as the new P
best    

 

     End 

    Choose the particle with the best fitness value   

    of all the particles as the g
best

  

    For each particle  

       Calculate velocity according equation (1) 

       Update particle position according equation   

       (2) 

    End 

While maximum iterations or minimum error criteria 

is not attained 

 

Fig. 1   Pseudocode of Particle Swarm Optimization 

IV. PROPOSED PSO-RTSP MODEL 

Now, basic PSO can’t be applied directly to the 

TSP as TSP is a discrete optimization problem. The 

equation 1 and 2 are slightly modified here. We 

introduce the concept of probability here. In the TSP, 

next city will be chosen based on the probability (X) 

and a random number (R) defined. The value of 

random number is kept in between 0 and 1. During 

each updation, if R <= X then the corresponding edge 

is selected for further operation. 

A new Parameter u3 is also used here to avoid the 

local optima or to explore the search space very 

efficiently. So, the formula 2 is converted into formula 

4 here and the new updated equation looks like as 

follows, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Flowchart of the Proposed  

       PSO-RTSP Model 

 

 

 

 (1) 

 

Initialize Particles 

Calculate the 

Fitness values of 

each Particle 

Is current Fitness 

value better than 

pbest 

Assign current 

fitness as new 

p
best

 

Keep previous 

p
best

 

Calculate velocity for each 

particle  

Assign best particle’s p
best 

value 

to g
best

 

Use each particle’s velocity 

value to  

Update its data value  

 

Target or 

Maximun     

Iterations? 
End 
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vi 
(t+1)

 = w
(t)

 vi
(t)

+ φ1u1(pi
(t)

 - xi
(t)

) +    

              φ2u2(li
(t)

  - xi
(t)

) 

 

 

xi
(t+1)

 = vi
(t+1) 

 φ3u3 *  xi
(t)

 (2) 

 

Fitness function is the only standard of judging 

whether an individual is “good” or not. We take the 

reciprocal of the length of each path as the fitness 

function. Length the shorter, fitness value the better. 

Flowchart of the proposed PSO-RTSP model is given 

in the Figure 2. 

V. IMPLEMENTATION AND RESULTS 

Proposed PSO-RTSP model is implemented in 

Matlab -12. Program developed is run on a dual core 

machine with four GB RAM. As mentioned, all tsp 

problems are generated randomly in the range of 10 to 

100. Algorithm runs itself based on the termination 

criteria. Termination criteria used here is number of 

iterations. Table 1 shows the results obtained by the 

algorithm. Results are also shown graphically in the 

figure 3 to 12. 

TABLE I.  RESULTS OBTAINED FROM PROPOSED         

PSO-RTSP MODEL 

City 

Proble

m 

PSO-RTSP 

Length Time Iterations 

10 281.6978 16.9741 

200 

(Termination 

Criteria) 

20 406.4415 19.0053 

30 452.2936 22.0370 

40 505.4753 25.8914 

50 609.8611 30.9500 

60 720.5503 38.9281 

70 785.1615 43.9166 

80 902.1146 51.5915 

90 943.2347 60.2499 

100 980.1618 68.5272 

 

 

 

 
Fig. 3 10 City Problem Results 

 
Fig. 4 20 City Problem Results 

 

 
Fig. 5 30 City Problem Results 

 

 
Fig. 6 40 City Problem Results 

 

 
Fig. 7 50 City Problem Results 
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Fig. 8 60 City Problem Results 

 

 
Fig. 9 70 City Problem Results 

 

 
Fig. 10 80 City Problem Results 

VI. CONCLUSION 

A PSO algorithm based on the flocking behaviors 

of the birds has been introduced to solve the TSP. The 

model has been tested on a set of randomly generated 

TSP problems. As this is the initial implementation of 

PSO on Random TSP, we hope to improve the model 

further to achieve optimal values for the list of 

randomly generated TSP problems. This algorithm 

generates very good results in terms of time as well as 

distance for the small to average size of the TSP 

problems. The algorithm starts to detoriate in terms of 

quality as the size of the problem increases. It is 

observed that with the some parameter settings the 

quality can be improved for the big size problems also.  
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