
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 7– July 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 8

An algorithm for Prevention and Detection of

Cross Site Scripting Attacks
 Aqsa Afroz

#1
, Dr Mohsin Ali Memon

*2
, Salahuddin Saddar

#3 , Muhammad Haris Khan
#4

Software Engineer’s & Department of Software Engineering

Mehran UET, Jamshoro, Pakistan

Abstract:

Currently, we live in an era of information and

communication technology (ICT) in which humans

are globally connected with each other through

Internet. With the advent of World Wide Web

(WWW), Internet has enabled numerous useful

applications for the benefit of people around the

world. These include online shopping, e-learning,

internet banking, social interactions, etc. However,

security of web applications has always remain a

major concern of its users in general and prevention

from hacking attacks in particular. Although, an

adversary might attack on web applications by

exploiting several hacking techniques, but in recent

years Cross-Site Scripting (XSS) and Cross-site

Request Forgery (XSRF) attacks has got significant

attention from the researchers. According to Open

Web Application Security Project (OWASP), XSS

attack is amongst the top ten web application

vulnerabilities (Mahindrakar, 2014; Cross-site

Scripting, 2015). XSS might result in several types of

threats, such as phishing, pop-up flooding, session

hijacking, etc. The focus of this research is analysis,

detection and/or prevention of XSS attacks. In

contrast to earlier work on XSS attacks, this research

provides a solution that is browser compatible and

web development language independent. And our

approach will provide zero code modification of

already running web applications, equally beneficial

for providing prevention to legacy systems.

Keywords- Cross Site Scripting, Algorithm ,Scripting

Attacks, Vulnerabilities, Prevention and Detection,

SQL Injection, Security Misconfiguration, Maliciuos

Attacks, Broken Authentication and Session

Management, Cross Site Request forgery

 I. Introduction
Internet has turned this world into a global village.

The advent of World Wide Web further reduced the

distance between service providers and consumers.

Every day almost each of us uses some type of web

application (i.e. e-shopping, e-banking etc) in some

way that makes trust and security as the essential

requirements of web applications. As most of the

applications are not developed on complete measure

of security and to harm such web application are

much easy. If attacker targets famous web

applications a lots of users will become victim and

result will be horrible. For such pre developed web

applications there should be an additional mechanism

required for making use of such application secure of

any kind of malicious code attacks.

According to Open Web Application Security Project

(OWASP) latest report some web applications attacks

are listed below

 Cross Site Scripting Attack (XSS)

 SQL injection

 Cross Site Request Forgery

 Malicious File Execution

 Insecure Direct Object Reference

 Security Misconfiguration

 Broken Authentication and Session

Management

I precede my research with Cross Site Scripting

Attacks, a kind of attack through which attacker

injects malicious code into the web application

which may harm to permissible user.

Cross-site scripting (XSS) is a hacking technique

that exploits vulnerabilities in the code of a web

application and steals sensitive data from the

victim's web application. By using XSS

technique, an adversary could easily insert

malicious code (such as HTML, VBScript,

ActiveX, JavaScript, etc) into a vulnerable

dynamic page (Shar and Tan, 2012). As a result,

the adversary might get sensitive or confidential

information, steal cookies, create fake requests or

execute malicious code on the victim’s system,

which has several other severe consequences,

such as redirecting the users towards a fake web

page (phishing threat), changing the visual

appearance of the victim's web page (defacing

web site threat), adding fake information, e.g. "for

more details, email to xyz@fake.com"

www.internationaljournalssrg.org
ssrg 5
Text Box
ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 8

ssrg 5
Text Box

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 7– July 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 9

(misinformation threat), adding web scripting

language's code, which forwards victim's cookies

to the adversary (session hijacking threat), etc

(Nithya1 et al.,2015). In general, XSS attacks are

classified into three categories: reflected, stored

and document object model (DOM) based. Brief

description of these attacks are given below

A. Reflected XSS

Also known as non-persistent cross site scripting

attack, in this type the malicious code is non-

permanently stored on web application itself but

immediately reflect back to the victim of

maliciously crafted link. Attacker do this attack by

sending a link to the victim through email or other

resource, when user clicks on that link the

malicious script will run and become part of

information which is send back to the user’s web

browser where this malicious code will executed.

Given diagram shows the complete steps involve

in this kind of XSS attack.

1.1.0 Architecture & Flow of Reflected Cross-Site Scripting Attack.

B. Stored XSS

In Stored XSS attack, an attacker inject malicious

code into the web application permanently and

this scripted code will be stored over the targeted

server as html text. Stored XSS attack takes

victims data, stores it in a database, a file or any

other back end system and this data later on shows

to the victim. If user visits the web page which

contains XSS malicious code, this code will

execute over victim’s browser, which in return

sends sensitive data of user to attacker. This type

of attacking is extremely dangerous when we are

talking about blogs, message posting on forums,

CMS etc. where large number of comments are

posted from other individuals. Stored Cross Site

Scripting is also called as Persistent XSS attack.

This type is much more dangerous than Reflected

XSS vulnerability, because it constantly attack the

users unless until administration of web

application will remove it. Given figure shows the

architecture of Stored XSS.

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 7– July 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 10

1.2.0 Architecture & Flow Diagram of Stored Cross- Site Scripting Attack.

C. DOM Based XSS

DOM based is totally different from previous two

types, DOM based attack is performed by

modifying the DOM environment in client side

rather than sending infected code to the sever. It

allows the script to modify XML or HTML

documents.

DOM based XSS will not inject malicious code

into the web application. Like other types of XSS,

DOM based XSS is also used to steal confidential

user information or for hijacking user’s account.

1.3.0 Architecture & Flow Diagram of DOM-based Cross- Site Scripting Attack.

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 7– July 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 11

A reflected attack can be launched while a user

from its browser tries to access a web application

through re-directing the user’s request to a fake

web server. Whereas in stored XSS attack, the

adversary stores malicious code on server in a

message, comment field or in a database. Both

reflected XSS and Stored XSS attacks are results

of weak or without sanitization on server. In

contrast, DOM-based XSS attack is directly

launched on web browser in order to steal the

sensitive data, such as cookies, passwords, etc.

(Hayes and Offutt, 2006). Researcher have

proposed many solutions (Shahriar and

Zulkernine, 2009; Jim et at., 2007; Liu and Tan,

2009) to encounter XSS attacks, however they

lack the support of cross browser compatibility as

well as their proposed solutions are not web

development language independent.

 II. Background and Related Work

To prevent existing web applications from such

attacks and to entertain users with security is

currently a big issue which almost every

application on internet is facing in these days.

Many applications were introduced and many

were implemented but none of them are much

accurate to take guarantee of absolute level of

providing security over web application. A major

reason of this shortcoming is, for implementing

these security shields one needs to modify their

source code which is not an easy task for existing

web applications. According to the latest survey

of 2015 many approaches and provided solutions

were discussed along with their advantages and

disadvantages i.e. static analysis approach,

dynamic analysis approach , client side security,

server based security etc. are highlighted.

There were many solutions had been propose to

provide XSS attacking detection and prevention.

Some of them are discussed here. Scott D &

Sharp R [10] proposed web proxy which worked

between web application and user as a firewall,

making sure that web application is stick to pre-

described security policies. The main drawback of

this approach is the creation of security policies

over network and there management task is quite

difficult and error- prone. Another tool was also

developed by YW Huang [11] named as Webs

SARI (Web Application Security By Static

Analysis and Runtime Inspection). In his

approach he used to combine runtime inspection

and analysis of static code features to find

vulnerabilities. He implemented intra procedural

approach and lattice model for finding out

vulnerabilities. The main drawback of his tool is

that it provides large number of positive and

negative results because of intra procedural

technique based analysis. Webs SARI also took

result from user’s filter, hence there is a chance of

missing the actual vulnerability, it is also possible

that the actual malicious code may not be detected

by the designed filter functionality. Webs SARI is

language dependent i.e. only prove security to

PHP based web applications.AppShield is a

commercial product, a web application proxy

firewall proposed and developed by Robert,

Xuhua and Yueqiang [12]. This product claims

that apparently it doesn’t need security policies

and it automatically detects web threats i.e. XSS

attacks. One cannot verify this claim because the

AppShield is a closed source. Furthermore it is a

plugin which can perform only simple checks and

can provide limited security. Wassermann and Z.

Su used Untrusted List approach [13] in which a

list of harmful scripts is used to detect malicious

data. In this method provided data is checked

from provided blacklist and if the result was

positive the further action was taken. Searching

and replacing of few characters is consider as

weak practice and can be attacked easily. There

are numerous ways for XSS attack which can

easily bypass this blacklist validation. Another

approach was used known as BEEP (Browser-

Enforced Embedded Policies) approach, in which

T. Jim, Swamy and Hicks introduced a white list

of all scripts which was provided by web

application to the browser so that it can protect

web applications from XSS attack [8]. Its

drawbacks are every browser has its own

mechanism to parse data and secondly

modification required in all web browsers. Since

every user needs to have an updated version of

browser on their machines. Many other projects

like AppScan [14], WebInspect [15] and ScanDo

[16] follow approach to identify errors in

development cycle and they are unable to provide

any prevention to running web application.

Moving forward there is another tool named as

Noxes. Noxes is a web based proxy provides

protection against stealing of sensitive

information from user’s site to a third party site

[17]. This is an application level firewall which

monitors every connection coming or leaving the

client machine, Noxes prompts user to decide

whether the connection is allowed or blocked.

Similar type of approach has been adopted in [10

and 18]. It is not enough to black list links in

order to provide security from cross site scripting

attack. Proxy based fails to find errors and

requires watchful configuration. Moreover many

other tools are also present as open source HDIV

is one of them. HDIV provide security against

XSS attack and protects web application from all

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 7– July 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 12

OWASP top 10 risks. HDIV offers no change of

code but it requires configuration in XML files of

the web application. Another drawback is, it

works only with some specific frameworks of

java, it has Spring dependency and it is unable to

provide security to legacy systems.

TOOLS ADVANTAGES DISADVANTAGES

ModSecurity Open source, easy to install apache

module

Has no support for different

encodings and filters are not

effective

PHPids Easily catches all injections of basic

level, open source, codebase support.

PHP dependent, CPU

consumption etc.

HDIV Open source, eliminates or mitigates

web security risks, easy to install

Works only with some specific

frameworks of java, spring

dependent, needs to modify

source code i.e. modification in

web.xml.

NOXES Provide protection against cross site

scripting attack

Closed source, client side solution

working only on Microsoft

windows, have to run on client’s

personal computer as a firewall.

WebSSARI Provide protection against cross site

scripting attacks

Only for PHP based web

application. Gives large number

of positive and negative analysis.

XSSFilter Provide protection against cross site

scripting attack, Language Independent,

Deployment Environment independent,

can run on any operating system.

Currently working only for Cross-

Site Scripting Attacks. Remaining

9 of OWASP Vulnerabilities are

remaining.

III. Need For XSS Filter Application/ Motivation / Contribution

In present days existing web applications are

facing XSS attacks. Malicious code can easily be

injected to harm web applications i.e. its vendor

and users equally. The attacker sniffed the request

and he tried to inject his malicious code inside

web application, unfortunately because of security

lack he successfully hijacked users authorized

account and enjoying all access of victim’s

account. A victim can be any web application

over the World Wide Web which is facing

security issue and carrying sensitive data i.e.

online banking, shopping carts, government

websites etc. are common examples. Through

XSS attack, attacker get control over dynamic

content in HTTP response i.e. JavaScript, CSS,

HTML etc. by injecting code like

“>< img src = ‘i:i’ onerror=’alert(0)’>

“><iframe src=’JavaScript: alert(0)’>

Some common mistakes which leads XSS attack

are weak input validation, no security prevention

results in account hijacking, cookie theft,

changing of user’s account settings. Currently

many tools are present in market but all of them

have some dependency or need code to modify

and are not beneficial for legacy systems. One

major reason of this shortcoming is lack of

complete methodology for evaluation in term of

performance or modification of source code is

needed which is an overhead for existing systems.

A system is required which will be easy to deploy

and provide a better performance to detect and

prevent web application from Cross Site scripting

attacks.

By keeping in mind the need of time we proposed

a XSS filter which totally works independently

prior to the development language, by using

which web application is designed and developed,

have no tension on which environment the web

application is running as well as there is no need

of any code modification for binding XSSFilter

which detects and prevent from XSS attacks.

Proposed approach will not only detects harmful

XSS attacks over web application but also remove

such malicious code from the request before it hits

the actual web application. This XSS Filter is

equally beneficial for any language based web

application or even for legacy systems too.

Present tools also provide security from XSS

attacks but they are limited either to technology or

environment. Some are browser specific or some

required changing’s on code level. Some are

purchased and other needs typical installations for

providing security against XSS attacks. In contrast

with these tools, application and browser based

plug-in XSS Filter over the web applications, such

as shopping carts, online banking and other web

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 7– July 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 13

applications containing very sensitive data. With

the help of proposed web tool vendors of the web

applications will be able to add further security to

their existing applications without changing the

source code and runtime environment.

There are four main goals of the proposed

tool/application which are usability, compatibility,

independency and security as well. From usability

we mean the tool is simple enough to use and easy

to understand so that every developer can use it.

By compatibility point of view, the application

should be easily integrated with any language

based web application i.e. JSF, PHP, VB.net etc.

By independency means tool/application should

not dependent on the programming language

through which the targeted web application is

developed, not thinking about the environment

over which the application is running. From

Security point of view, the XSS Filter tool will

make sure that it is capable of establishing secure

and separate session for each individual and also

assure that all communication between web

application and user; and between several entities

of the web application must be safe and secure.

The Major goal of XSS Filter is to provide

security to existing web application without

making any change in their code. In last we make

sure that this application is light weight and

providing 100% security to any web application

of any programming language accessed by using

any web browser deployed on any operating

system.

XSS Filter acts as a web application and works on

all possible patterns to mitigate credible Cross

Site Scripting Attempts. XSS Filter effectively

works against leakage of information from user’s

account, requiring no customization effort.

 IV. Proposed Approach

Cross-site scripting (XSS) is a hacking technique

that exploits vulnerabilities in the code of a web

application and steals sensitive data from the

victim's web application. By using XSS

technique, an adversary could easily insert

malicious code (such as HTML, VBScript,

ActiveX, JavaScript, etc) into a vulnerable

dynamic page (Shar and Tan, 2012). As a result,

the adversary might get sensitive or confidential

information, steal cookies, create fake requests or

execute malicious code on the victim’s system,

which has several other severe consequences,

such as redirecting the users towards a fake web

page (phishing threat), changing the visual

appearance of the victim's web page (defacing

web site threat), adding fake information, e.g. "for

more details, email to xyz@fake.com"

(misinformation threat), adding web scripting

language's code, which forwards victim's cookies

to the adversary (session hijacking threat), etc

(Nithya1 et al.,2015). In general, XSS attacks are

classified into three categories: reflected, stored

and document object model (DOM) based. A

reflected attack can be launched while a user from

its browser tries to access a web application

through re-directing the user’s request to a fake

web server. Whereas in stored XSS attack, the

adversary stores malicious code on server in a

message, comment field or in a database. Both

reflected XSS and Stored XSS attacks are results

of weak or without sanitization on server. In

contrast, DOM-based XSS attack is directly

launched on web browser in order to steal the

sensitive data, such as cookies, passwords, etc.

(Hayes and Offutt, 2006). Researcher have

proposed many solutions (Shahriar and

Zulkernine, 2009; Jim et at., 2007; Liu and Tan,

2009) to encounter XSS attacks, however they

lack the support of cross browser compatibility as

well as their proposed solutions are not web

development language independent. The main

motto of our approach is to provide prevention

from XSS malicious code attacking from client

side over web application. We aim to detect every

vulnerable content that may go through any input

validation mechanism inside a web application. In

order to achieve the desired results, and overcome

the deficiencies of previously developed

application/ tools, we’ll develop a filter

application that will work on the client side over

the web in between user’s request and web

application in order to protect the web

applications from XSS attacks.

Our approach is not only for finding Cross Site

Scripting vulnerabilities due to unchecked or

insufficiently check malicious data but also

providing zero code modification facility. Below

mention table show XSS attacks tricks.

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 7– July 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 14

 User Input XSS Attack

var name = “Smith”

var name=”Smith”; “<script> alert(‘evil’); </script>”

var msg= “hello Smith ”

var msg= “Hello \n

<script> var i = new Image();i.src='http://attack.com

?msg='+document.cookie</script>”

alert(“HI Smith”);

String.fromCharCode(97,108, ……………….n);

The approach has two parts: (1) wrap a web

application into XSS Filter so that any client’s

request passes through it to get requested data and

(2) if any malicious attack is found first

transform the request before hitting the real web

application, we remove malicious code through

prelisted regular expression scheme of our own.

Given figure shows the working of XSS Filter.

A. Working Diagram of XSS Filter

In contrast to prior work, the proposed solution

will be web development language independent,

deployment environment, cross browser

compatible and needs no ZERO code

modification. Our proposed solutions are

equally beneficial for existing web applications

as well as for legacy systems.

 This research makes these main

contributions.

 Proposes an approach for detecting XSS attack

cause because of weak input validation.

 Through this prevention of Legacy Systems

becomes possible.

 It gives an actual running example of single

application which provides security against

XSS to any language based web application.

 V. Implementation

To test our approach we implemented a system

and named it as XSS Filter. Our approach is

totally different from existing approaches. We

work on transformation of request rather than on

modification of existing web application.

We implement our approach as a JAVA based

Web Application Framework names as XSS

Filter which provides detection and prevention

against Cross Site Scripting attacks. The flow of

information between user and web application is

controlled by XSS Filter. It extends the behavior

of existing web applications with respect to

security against XSS malicious code injection.

This implies that we can use XSS Filter with web

application developed by using any

programming language in transparent way

without any simple or complex addition to the

web application. An illustration of XSS Filter’s

architecture is presented in Fig 5.0.The XSS

Filter consists of five phases; Request Receiver,

URL Transformation, XSS Detector and XSS

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 7– July 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 15

Remover, Response to User. It works on front of

web application. The request receiver receives

user input as original web application is

receiving and forward that request to URL

Transformation Module. This phase after getting

the request transform it according to the rule we

made and getting its request parameters and

enters into XSS Detector phase. In XSS

detection phase the requesting parameters are

processed through the XSS detection scheme, if

any clue of XSS malicious code traced the

request enters in to XSS Remover phase. This

phase removes all the vulnerable data through

our define custom methods, produces clean

parameter towards transformation phase after

that request is forwarded to the original web

application which process this request and sends

response to Response to User phase, this final

phase is responsible for out to user and for the

session management for each individual of the

web application.

5.0 Architecture & Flow Diagram of XSS Filter.

 VI. Evaluation

In order to evaluate the proposed system and for

providing support to our approach we tested our

XSS Filter over 4 web applications, 3 are open

source and one is custom made (for testing

purpose). Through this evaluation, we tried to get

answers of given questions: Does our approach

compromises over the required output of the web

application? Is the approach really effective in

removing malicious XSS scripts from web

applications of real world? Does this XSS Filter

web application provide security to legacy web

application? Is ZERO code modification

statement true?

Our setup for evaluation of our approach

consisted of a machine (4GB RAM, dual core

processor) using Windows Operating System.

We deployed the actual web application and XSS

Filter over two separate Tomcat 7 servers. Then

we divide our experiments into two parts;

discussed in detail below

A. Evaluation on Real World XSS Attacks

Our first objective was the evaluation of the

effectiveness of our proposed approach XSS Filter

against the real world XSS attacks. Since our XSS

Filter targeted towards legacy web applications;

we go through the CVE repository [19] and

choose such famous applications that had reported

in 2015. MOODLE, X-cartare taken from CEV

report and source code is taken from their official

web sites; EOBI and MVR were taken from

departments on request.

Now we discuss these exploits and experience of

APPLICATION VERSION LANGUAGE XSS ATTACK

 DESCRIPTION

EOBI 3.0 JEE via form input fields

MOODLE 2.8.5 PHP via input fields

X-cart 4.5 PHP via arguments pass through URL

MVR 2.0.1 JEE via HTTP argument in URL

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 7– July 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 16

evaluating XSS Filter against these application’s

vulnerabilities.

EOBI: This is an intranet web based application

developed on JEE Struts1 framework. Stands for

Employee Old Age Benefit Income. This

application basically works for money saving as

employee can get benefit after retirement

especially in private sectors. This intranet web

application has many forms and input fields. XSS

code can be injected through these fields easily.

MOODLE: Stands for Modular Object Oriented

Dynamic Learning Environment; focus on online

teaching and learning of courses. Most of the

universities and educational institutes use this

open source application to interact with students.

Unfortunately the input fields in MOODEL can be

attacked through persistent XSS. We tested XSS

attack on MOODEL by editing our profile and put

some JavaScript code i.e. <script>alert(“HELLO

There”); </script>, web application accepts our

input and displayed our injected alert message.

X-cart: It is an open source web application, used

for online shopping. Code is developed on PHP.

One can use code from this web site and

customize it according to requirement, host it over

purchase domain. Unluckily X-cart accepts XSS

attack embedded in URL

i.e.xcart.com/product.php?pro=’><script>al

ert(document.cookie)</script>

MVR: MVR stands for motor vehicle registration

system. This is an intranet application used to

register, transfer vehicles. This web application

was developed on JEE Struts2 framework. We

attack on this application by adding vulnerable

code into request, send through URL and found

that application is vulnerable.

Such typical XSS vulnerabilities are not checked

by input validators and here is the need of some

external safeguard like our XSS Filter. Proposed

solution successfully provides defense against all

4 XSS exploits mention in above table. This

evaluation shows that our XSS Filter can be user

to provide protection to real world application

successfully.

B. Comprehensive Evaluation

In this part we evaluate resilience of our

XSSFilter, we select OWASP XSS Filter Evasion

Cheat Sheet [21], a collection of numerous XSS

attacking hacks. In our evaluation we focused on

20 XSS attacks, test using two different browsers

namely Mozilla Firefox and Google Chrome.

These vulnerabilities are classified into various

categories few of which are mention below.

 XSS Case Insensitive Attack is the attack

by adding case insensitive data to the

JavaScript code to bypass XSS sensitive

check e.g. < IMG src=

JavaSCripT:alert(‘Attack’)>. XSSFilter

disallow it.

 Grave-Accent Obfuscation used both

double and single quotes to encapsulate the

malicious JavaScript’s code. Most of the

XSS filters do not provide prevention

against grave accent. Our approach detects

and removes this vulnerability from input

code.

 No Semicolon and No Quotes is the trick

to inject malicious code without adding any

quote or semicolon to the script. XSS Filter

also provides security against such kind of

attack.

 Using the JavaScript Directives image

XSS can be done. XSS Filter can fight

against this vulnerability too.

 Decimal HTML Character is used to add

vulnerability when there is no quote of any

kind allowed. This can be done by calling

String.fromCharCode () method using

script. Our solution works efficiently

against this attack too.

 Hexadecimal HTML Character is a

tricky kind of XSS attack. This attack is

done by converting malicious JavaScript

code into Hexadecimal format. Most of the

filters assumes that there is a numeric value

with a pound symbol. Our XSSFilter never

miss such tricky attack of XSS, detect it

and remove it from request generated by

user.

We used our custom application to check all

these vulnerabilities of Cross Site Scripting.

After that we provide protection to our custom

web application by wrapping it under XSSFilter,

which is able to defend all. The successful

safeguard against several attacks proves that

XSSFilter is highly resilient.

VII. Conclusion

The developed application will work as

session hijacking filter over the existing web

applications like financial sites, web application

for hospitals,shopping sites etc. Any change

made to the filter will be independent of the web

application and won’t affect its architecture.

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 7– July 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 17

With the help of this software vendor of web

applications can add security to their running

applications without changing the existing code.

This anti XSS Software will detect and prevent

web applications from the attackers attack.

Moreover this filtering software can be added to

the newly developing website in order to provide

security from session hijacking. This software

will work independently for any web application,

developed by using any programming language

(PHP, JSP, ASP.net, JSF and etc.), and provide

cross browser compatibility too

 VIII. Future Work
Although XSSFilter is fully functional. At first we

think to make XSSFilter tool available as

purchased utility. But at the moment we provide it

on demand with our custom support and

integration support. Through XSSFilter we only

covered CROSS Site Scripting vulnerability

among top ten security concerns of OWASP. We

are thinking to extend our XSSFilter Tool so that

it covers all remaining 9 OWASP. We would like

to provide these functionality as soon as possible.

Acknowledgment
First and foremost, praises and thanks to the

ALLAH, the Almighty, for His showers of

blessings throughout my research work to

complete the research successfully. I would like

to express my deep and sincere gratitude to my

research supervisor, Dr Mohsin Ali Memon and

co- supervisor, Salahuddin Saddar for giving me

the opportunity to do research and providing

invaluable guidance throughout this research. I

am extremely grateful to my parents for their

love, prayers, caring and sacrifices for

educating and preparing me for my future. I am

very much thankful to my Husband Muhammad

Haris Khan for his love, understanding, prayers

and continuing support to complete this

research work. Also I express my thanks to my

sisters, brothers, and brother in law for their

support and valuable prayers. My Special thanks

goes to my friend’s and my Project Manager

Bushra Hasnat for the keen interest shown to

complete this research successfully.

Finally, my thanks go to all the people who have

supported me to complete the research work

directly or indirectly.

References

[1] A. S. Christensen, A. Mooler and M. I. Schwartzbach,
“Precise analysis of string expression”, In proceedings

of the 10th international static analysis symposium,

LNCS, Springer-Verlag, vol. 2694, pp. 1-18. S
[2] Y. W Huang, F. Yu, C. Hang, C. H. Tsai, D. Lee and S.

Y. Kuo, “Verifying Web Application using Bounded

Model Checking,” In Proceedings of the International
Conference on Dependable Systems and Networks.

[3] Cross-site Scripting (XSS).

https://www.owasp.org/index.php/Cross-
site_Scripting_(XSS)

[4] H. Liu, H.B.K. Tan (2009). “Covering Code Behavior

on Input Validation in Functional Testing”. Information
& Software Technology. Vol. 51,No. (02)

[5] H. Shahriar, M. Zulkernine (2009). “MUTEC:
mutation-based testing of cross site scripting”. In

Proceedings of the 5th International Workshop on

Software Engineering for Secure Systems (SESS’09).

[6] I. Hydara, Abu Bakar Md. Sultan, Hazura Zulzalil,

Novia Admodisastro (2015). “Current State of research

on cross-site scripting (XSS) – A systematic literature

review”, International Journal of Information &

Software Technology, Vol. 58, Pages: 170-186.

[7] J.H. Hayes, A.J. Offutt (2006). “Input Validation

Analysis and Testing”, Empirical Software Eng. Vol. 11

No. (04).

[8] L. Khin Shar, Hee Beng Kuan Tan (2012). “Automated

removal of cross site scripting vulnerabilities in web

applications”. Journal of Information & Software
Technology, Vol. 54, No. (5). Pages: 467-478.

[9] Manisha S. Mahindrakar (2014), “Prevention to Cross-

site Scripting Attacks: A Survey”. International Journal
of Science and Research (IJSR), Vol. 3, Issue 7.

[10] T. Jim, N. Swamy, M. Hicks (2007). “Defeating Script

Injection Attacks with Browser Enforced Embedded
Policies (BEEP)”. In Proceedings of the 16th

International Conference on World Wide Web.

[11] V. Nithya1, S. LakshmanaPandian and C. Malarvizhi
(2015). “A Survey on Detection and Prevention of

Cross-Site Scripting Attack”. International Journal of
Security and Its Applications, Vol. 9, No. 3.

[12] David Scott and Richard Sharp (2002). “Abstracting

Application-Level Web Security”. In Proceeding the 11th
International World Wide Web Conference.

[13] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-

Hung Tsai, D.T. Lee and Sy-Yen Kuo (2004).
“Securing Web Application Code by Static Analysis and

Runtime Protection”. In Proceedings of the 13th

International World Wide Web Conference.

[14] Yueqiang Cheng, Xuhua Ding, Robert H. Deng (2013).

“AppShield: Protecting Applications Against Untrusted

Operating System”. School of Information Systems,
Singapore Management University.

[15] G. Wassermann and Z. Su (2008). “Static detection of

cross-site Scripting vulnerabilities”. In Proceeding of
the 30thInternational Conference on Software

Engineering.

[16] Sanctum Inc. “Web Application Security Testing—
AppScan” 3.5.http://www.sanctuminc.com

[17] SPI Dynamics (2003). “Web Application Security

Assessment”. SPI Dynamics Whitepaper.

[18] Kavado, Inc (2003). InterDo Version 3.0. Kavado

Whitepaper.

[19] E. Kirda, C. Kruegel, G. Vigna and N. Jovanovic
(2006). “Noxes: A client-side solution for mitigating

cross site scripting attacks”. In Proceedings of the

21stACM symposium on Applied computing, ACM pp.
330-337.

[20] N. Jovanovic, C. Kruegel and E. Kirda (2006). “Pixy: A

static analysis tool for detecting web application

www.internationaljournalssrg.org
http://www.sciencedirect.com/science/article/pii/S0950584911002503
http://www.sciencedirect.com/science/article/pii/S0950584911002503
http://www.sciencedirect.com/science/article/pii/S0950584911002503

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 7– July 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 18

vulnerabilities (short paper)”. In IEEE Symposium on

Security and Privacy, Oakland, CA.

[21] MITRE. Common Vulnerabilities and Exposure List.

http://cve.mitre.org.

[22] Sourceforge, Open source websiteW.

[23] Monali Sachin Kawalkar, Dr. P. K. Butey "An

Approach for Detecting and Preventing SQL Injection

and Cross Site Scripting Attacks using Query
sanitization with regular expression". International

Journal of Computer Trends and Technology (IJCTT)

V49(4), 2017.

[24] OWASP XSS Filter Evasion Cheat Sheet.

[25] https://www.owasp.org/index.php .

www.internationaljournalssrg.org

