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Abstract  

Hashing algorithms can map the floating-point 

data into compact binary code, and it can fast 

respond to the ANN search task according to the 

Hamming distance. The main idea of hashing 

algorithms is to cluster the data points into different 

groups and assign binary codes. Generally, many 

existing hashing algorithms adopt the K-means 

clustering algorithm to divide the data points into 

different clusters. K-means clustering algorithm 

learns the clustering results according to the 

Euclidean distances among data points, and clusters 

the data points with small distances to a center into 

the same group. Therefore, the K-means clustering 

algorithm is not applicable to the data with the non-

spherical distribution. To solve this problem, this 

paper proposes to compute the clustering groups 

based on density peaks and learns the binary codes 

according to the obtained cluster groups, which can 

make the encoding results well adaptive to data 

distribution. Furthermore, a two-step mechanism is 

adopted to learn the linear hashing functions which 

can recompute the above binary encoding results. To 

effectively reduce the training time complexity in this 

paper, only cluster centers are involved in the 

training process. While learning the hashing 

functions, the cluster centers’ binary codes are 

demanded to preserve the Hamming space's 

Euclidean similarity relationship. Thus, the data 

pairs’ Hamming distances can approximate their 

Euclidean distance. The comparative ANN search 

experiments in three image datasets show that the 

proposed density peak hashing (DPH) can achieve an 

excellent performance. 
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I. INTRODUCTION 

Generally, the approximate nearest neighbor 

(ANN) search task is achieved according to the 

Euclidean distance among floating-point data. For 

example, the image content is usually represented as 

a high dimensional feature descriptor (such as GIST 

and SIFT). The Euclidean distances among these 

feature descriptors are utilized to fulfill the image 

search task. However, the time complexity of 

Euclidean computing distance is too high, and it’s 

difficult to fast respond to large scale ANN search 

tasks. In addition, with the development of Internet 

technology, the number of images is rapidly 

increasing. Thus, how to fast respond to the ANN 

search task becomes a hot problem. More and more 

people have recently focused on hashing algorithms 

[1-8], which can map floating point data into compact 

binary codes. Furthermore, the computer hardware 

instruction XOR can be utilized to compute the 

Hamming distance among binary codes, which can 

effectively reduce the ANN search task's time 

complexity.  

The classical method, local sensitive hashing (LSH) 

[9], firstly proposes to map floating point data into 

compact binary code. LSH can map similar data 

points into the same compact binary code with a 

higher probability. Thus, LSH can directly utilize 

Hamming distance to achieve ANN search task. To 

guarantee the ANN search performance obtained in 

the Hamming space, LSH demands that the generated 

binary codes satisfy the local sensitive restriction. In 

other words, the Hamming distances among nearest 

neighbors should be smaller than those among dis-

similar data points.  

According to whether the training samples are 

utilized to learn hashing functions, existing hashing 

algorithms are roughly divided into data-independent 

algorithms [9] and data-dependent methods [10-12]. 

As no training process is involved in LSH [9], LSH 

[9] belongs to the data-independent method, 

randomly generating linear hashing functions. When 

the number of binary bits increases, the ANN search 

performance of LSH [9] method cannot obviously 

improve. To fix the problem caused by the random 

hashing functions in LSH [9] method, the data 

dependent hashing algorithms utilize machine 

learning mechanisms to learn the compact binary 

codes which can well preserve the floating data 

points’ original Euclidean distance relationship. 

Spectral hashing [10] utilizes a similarity graph to 

represent the Euclidean distance relationship among 

data points and generate binary codes by graph 

partition mechanism. For a large scale dataset, the 

time complexity of establishing a spectral graph [10] 

is unacceptable. To avoid this problem, anchor graph 

hashing (AGH) [13] firstly adopts the K-means 

clustering method to learn clustering centers. Then 

only the centers are involved in establishing the 

spectral graph. Thus, AGH [13] method can 

effectively reduce the training time complexity. 

During the training process, both spectral hashing [10] 

and anchor graph hashing [13] demand the training  
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Fig 1: The flowchart of the proposed density peak hashing (DPH) 

Samples should obey the uniform distribution. 

However, in practice, the real dataset does not satisfy 

the above assumption. So, an excellent hashing 

method should get rid of the distribution requirement. 

Principal component analysis hashing (PCAH) [14] 

considers the linear functions with large eigenvalues 

as hashing functions. PCAH [14] encodes the data 

according to their projection signs obtained based on 

the hashing functions. Unfortunately, many data 

points with small distances may be separated into 

different sides of the hashing functions, and they are 

encoded as different binary codes. To avoid the 

above problem, the RR method proposes to randomly 

rotate the PCA-projected data. To further improve the 

performance of obtained hashing functions, iterative 

quantization hashing iteratively learns the rotation 

matrix to minimize the similarity loss. In ITQ [11], 

the data points are mapped into the vertices of a fixed 

cubic. In contrast, K-means hashing [12] learns the 

encoding centers with minimal quantization error, 

which makes the encoding results adapt to data 

distribution.   

According to the way of generating binary codes, 

existing hashing algorithms can be divided into two 

kinds, the lookup hashing [12] and the projection 

hashing [9, 11]. The lookup hashing (such as K-

means hashing) encodes the data as the same binary 

code as its nearest center, and it needs to compute 

and compare the Euclidean distance between the data 

and all encoding centers. For generating M-bit binary 

code, the time complexity of lookup hashing method 

is O(2
M

). Correspondingly, the projection hashing 

just needs to compute M projection results, and the 

time complexity is only O(M). Thus, in this paper, 

the proposed density peak hashing (DPH) adopts a 

two-step mechanism to learn the hashing functions 

and the flowchart is shown in Fig. 1. Firstly, the 

training samples are clustered into different groups 

according to the density distribution, and the density 

peaks are considered the cluster centers. The data 

points located in the same group are encoded as the 

same binary code. Secondly, the linear functions 

which can separate different clustering groups into 

different sides are learned to encode the training 

samples.  

The main contributions of the proposed density 

peak hashing (DPH) are concluded as follows.  

(1) The traditional K-means clustering method 

only adapts to the data with a spherical distribution. 

To avoid the above problem in this paper, the initial 

clustering groups are obtained based on the density 

value, which is more adaptive to the data 

distribution.  

(2) DPH method demands a data pair’s 

Hamming distance, and Euclidean distance have an 

identical value after transforming them into the same 

scale space. Thus, the Hamming lengths can 

approximate the corresponding Euclidean distances, 

which can improve the ANN search performance.  

(3) During the training process, only the density 

peaks are involved in learning hashing functions, 

which can effectively reduce the training complexity. 

  

II. DENSITY PEAK HASHING 

The basic idea for mapping floating point data 

into binary codes includes two steps. (1) The similar 

data points should be clustered into the same group to 

encode the same binary code. (2) The binary codes of 

different cluster groups should satisfy the similarity 

preserving restriction. Correspondingly, two novel 

mechanisms are proposed in this paper, and the 

details are described below.  

A. Learning Cluster Centers Based on Density 

Value 

Traditionally, many hashing algorithms (such as 

K-means hashing [12] and anchor graph hashing [13]) 

employ the K-means clustering method to solve the 

problem (1). K-means clustering method utilizes 

Euclidean distance to measure the similarity degree 

among data points, and the data points are assigned to 

its nearest cluster center. Thus, the K-means 

clustering method is only applicable for the data 

points with a spherical distribution. In this paper, to 

get excellent clustering results for the data with any 

distribution, the clustering method based on density 

peak [15] is employed to learn the initial clustering 

centers. The learning process is introduced below.  

The clustering method based on density peaks 

considers the clustering centers having the following 

features. Firstly, the clustering centers have a higher 

density value. Secondly, the distances among the data 

points with higher density values should be more 
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considerable. Thus, the cluster centers can be found 

by finding the data points which own the above two 

characteristics. 

 
Fig 2: The cluster centers obtained based on density values 

X = {x1,⋯, xN} represents the training dataset 

which contains N samples, and the distance between 

the i-th and j-th sample can be computed as dij = dist 

(xi, xj ). Here, dist(∙,∙) means the Euclidean distance. 

Usually, the cluster centers are located at the 

center of the group, and they are surrounded by the 

samples that belong to the same clustering group. The 

value of density can describe this feature. The local 

density value of the data point xi can be computed by 

Eq. (1). 

 ( ) ( )

j

i ij t

x X

x d d 



    (1) 

In Eq. (1)It is the threshold value. 𝜒(∙∙) is the 

judicial function, and the definition is shown in Eq. 

(2). 

 
1, 0

( )
0 , 0

x
x

x



 



  (2) 

According to the definitions of Eq. (1) and (2), 

the density value means the number of the data points 

which have smaller distance value than the threshold, 

and this definition is consistent with the characteristic 

of cluster centers. 

Usually, more than one data point with higher 

density value is obtained. To further distinguish 

which data point is the right cluster center, the 

distances among the data points with high-density 

value should be computed, and its definition is shown 

in Eq. (3).   

 m in ( )
i i j

j C

d


   (3) 

C is the dataset, which includes the data points 

with higher density value. δi returns the minimal 

distance value between the i-th sample and the other 

samples with higher density value. 

Only the data points have a large density value 

during the training process, and δi values are 

considered cluster centers. To explain this 

phenomenon, one example is given in Fig. 2. 

In Fig. 2，it is clear that all data points can be 

classified into three groups. By computing the 

density value ρ and the distance value δ, the number 

1, 2, 3 data points with higher density value and 

maximum minimal distance value are considered 

cluster centers. The number 5 data has a higher 

density value, but its δ value is small. In contrast, the 

number 4 data has a large distance value and a 

minimum density value. Therefore, both numbers 4 

and 5 data points can not be considered as a cluster 

center.  

When the cluster centers are found, the remaining 

data points are assigned to its closest point with a 

higher density value. 

B. Normalized Distance Similarity Preserving 

Hashing Functions 

The above section has successfully clustered the 

data points X = {x1⋯, xN} into different groups. The 

next mission is to find their binary codes and the 

linear functions that can separate the data from the 

clustering results. The linear functions that map the 

data with different binary codes into different sides 

can be considered the hashing functions. To illustrate 

this situation, an example is given in Fig. 3.  

In Fig. 3, the linear function f1 can separate the 

data points with different binary codes on the first bit. 

Therefore, f1 can be considered as the first hashing 

function. Correspondingly, f2, which can separate the 

data with different binary codes on the second bit, is 

taken as the second hashing functions.  

 

 
Fig 3: The linear hashing functions separate the data 

with different binary code into the other side.  
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As described above, the binary encoding process 

can be defined as in Eq. (4). The floating-point data 

are mapped into binary codes according to the sign of 

projection results.  

 1

1

( ) { ( ) , , ( )}

{ ( ( ) ) , , ( ( ) )}

i i m i

i m i

B x b x b x

s ig n f x s ig n f x




  (4) 

The aim of mapping floating point data into 

binary code is to fast respond to the ANN search task. 

Thus, the generated binary codes should approximate 

the corresponding Euclidean distance, and this 

requirement is termed as similarity preserving 

restriction, which is defined in Eq. (5). 

 2

1

( ) ( ( ( , ) ) ( , ) )

N N

i j h i j

i j i

L X N d x x d x x

 

     (5) 

d(∙, ∙) represents the Euclidean distance and dh(∙, 

∙) computes the Hamming distance. As the value 

range of the Euclidean distances is different from that 

of Hamming distance, the normalization process is 

employed to make the different kinds of distance 

values have the same scale range. N(∙) represents the 

normalization procedure. 

In Eq. (5), the binary codes are involved in the 

process of computing Hamming distance. 

Unfortunately, the sign(∙) function makes the binary 

codes have discrete integer values. As a result, it 

would be a NP-hard problem to directly optimize the 

objective function in Eq. (5). 

In this paper, the tanh(∙) function is utilized to 

relax the binary encoding function to a continuous 

form, as defined in Eq. (6). 

 ( ) ta n h ( )
T

m i m i
b x w x   (6) 

Therefore, the Hamming distance of a data pair is 

re-defined as in Eq. (7). 
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For the m-th hashing function, the partial 

gradient descent of the objective function is defined 

in Eq. (8). 
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For the Hamming distance of a data pair, its partial 

gradient descent is shown as in Eq. (9). 

 

( , )
(1 ta n h ( ) ta n h ( ) )

(1 ta n h ( ) ta n h ( ) )

h i j T T

i m i m j

m

T T

j m j m i

d x x
x w x w x

w

x w x w x


 



 

  (9) 

Finally, the gradient descent algorithm can be 

utilized to learn the m-th hashing functions and the 

parameter wm is updated as in Eq. (10). 
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During the training process, only the cluster 

centers obtained according to the density value are 

utilized to learn the hashing functions, and this 

measure has two merits. (1) It guarantees the 

encoding results are consistent with the clustering 

results obtained based on density peaks. (2) It reduces 

the number of data points involved in the training 

process which can effectively reduce the training 

time complexity. 

III. EXPERIMENTS AND RESULTS 

A. Experimental Setting and Evaluation Measure  

The global feature descriptor GIST [16] is 

usually utilized to fulfill the image search task. Thus, 

the ANN search performance of the proposed DPH 

method and the other comparative methods can be 

evaluated by searching the nearest neighbor of GIST 

descriptor in the Hamming space. In this paper, three 

large scale image datasets including NUS-WIDE [17], 

22K LabelMe [18] and ImageNet 100 are adopted to 

achieve the comparative experiments. The GIST 

descriptors [16] of the images in these three datasets 

are extracted and their nearest neighbors are defined 

based on Euclidean distance. To learn hashing 

functions and test their ANN search performance, 

each dataset is further divided into three parts 

including the training dataset, query dataset and test 

dataset. The samples in training dataset are utilized to 

learn hashing functions, and the nearest neighbors of 

the samples in query dataset are retrieved from the 

test dataset. 

The images in NUS-WIDE [17] dataset are 

picked from Flickr dataset, and the number is 270 

thousand. For NUS-WIDE dataset, its training dataset, 

query dataset and test dataset separately has 50 

thousand, 50 thousand and 190 thousand images. The 

total number of the images in 22K LabelMe [18] is 

22 thousand, and 20 thousand images are randomly 

picked as test dataset. Correspondingly, the other 2 

thousand images in 22K LabelMe is considered as 

query samples and the training dataset has 5 thousand 

images. ImageNet 100 dataset is the sub-set of 

ImageNet dataset and it contains 100 categories of 

images. For ImageNet 100 dataset, 130 thousand 

images are randomly selected as the test data, and the 

training dataset has 30 thousand images. 

Correspondingly, the total number of the images in 

query dataset is 10 thousand. 

In this paper, the evaluation standard precision 

is adopted to measure the ANN search performance 

of the proposed DPH method and the other 

comparative hashing methods. The definition of 

precision (pr) is shown in Eq. (11). 

 
# ( )

# ( )

re tr ie v e d p o sitiv e sa m p le s
p r

re tr ie v e d sa m p le s
   (11) 

pr represents the ratio of the positive samples to 

all retrieved samples. #(retrieved positive samples) 

counts the number of the nearest neighbors to the 

query samples in retrieval result. #(retrieved samples) 

is the number of retrieved samples. A higher 
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precision value means the ANN search performance 

is better. 

B. Comparative Experiments and Results  

To prove the proposed density peak hashing 

(DPH) can well improve the ANN search 

performance, 7 classical hashing algorithms 

including local sensitive hashing (LSH) [9], spectral 

hashing (SH) [10], principal component analysis 

hashing (PCAH) [14], anchor graph hashing (AGH) 

[13], random rotation (RR) hashing, iterative 

quantization (ITQ) [11] hashing and K-means 

hashing [12] are utilized as the baseline methods. 

The ANN search comparative experiments are 

separately conducted in three widely used large scale 

image datasets including NUS-WIDE [17], 22K 

LabelMe [18] and ImageNet 100. To achieve the 

image search task in the Hamming space, the GIST 

descriptors [16] of the images in these three datasets 

are separately mapped into 32-bit, 64-bit and 128-bit 

binary code. Then, the images with small Hamming 

distance to the query image are returned as the 

nearest neighbors. The precision curves of all 

methods in three datasets are shown in Figs. 4, 5, 6. 

 

 
Fig 4: The precision curves of ANN search results in 22K LabelMe dataset. 

 

 
Fig 5: The precision curves of ANN search results in NUS-WIDE dataset. 

 

 
Fig 6: The precision curves of ANN search results in ImageNet 100 dataset. 

LSH [9] method firstly proposes to achieve the 

ANN search task in the Hamming space. However, 

the hashing functions in LSH are independent from 

the training samples and they are randomly generated 

without a training procedure. As a result, the ANN 

search performance of LSH method is not stable and 
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it can not obviously improve as the number of binary 

bit increasing. In contrast, the other 6 hashing 

algorithms and DPH utilize machine learning 

mechanisms to learn hashing functions which are 

well adaptive to the data distribution. Thus, the 

machine learning based methods can achieve a better 

ANN search performance with compact binary code. 

To further guarantee the ANN search performance 

obtained in the Hamming space, the similar data 

points should map into the same binary code. 

Therefore, SH [10] method establishes a similarity 

spectral graph and maps the nearest neighbors into 

the same binary code by graph partition mechanism. 

Correspondingly, the graph partition mechanism is 

also adopted by AGH method. But, not all samples 

are involved in the training process of AGH method. 

AGH [13] method adopts the K-means clustering 

method to learn the cluster centers. During the 

training procedure, the obtained cluster centers are 

considered as the vertices of anchor graph which can 

effectively reduce the training complexity. Both SH 

[10] and AGH [13] can achieve an excellent ANN 

search performance for the data points under the 

uniform distribution. Unfortunately, the real dataset 

does not obey the above assumption, and their ANN 

search performances are relative inferior in these 

three large scale dataset in this paper. In contrast, 

PCAH [14], RR, ITQ [11], KMH [12] and DPH have 

got rid of the restriction of data distribution. PCAH 

[14] considers the linear projection functions with 

high eigenvalues as hashing functions. Then, the high 

dimensional floating point data can be encoded as 

compact binary code according to the sign of the 

projection results. As many similar data points 

distribute around the hashing functions, they would 

be assigned as different binary code. This would lead 

an inferior retrieval result. To avoid the above 

problem, RR method rotates the PCA-projected data 

before generating binary code. However, RR method 

employs a random rotation matrix. To further 

improve the ANN search performance, ITQ [11] 

method adopts a machine learning mechanism to 

optimize the rotation matrix and it maps the data to 

the vertices of a hyper cubic. During the training 

procedure, ITQ [11] method aims to minimize both 

the quantization loss and the similarity loss, which 

can make the similar data points map to the same 

vertex. In ITQ [11] method, the hyper cubic is fixed 

and it may lead the encoding results not adapt to the 

data distribution. In contrast, KMH [12] method 

learns encoding centers which can minimize the sum 

of the distance values between the center and its 

nearest neighbors. Furthermore, KMH [12] assigns 

binary codes to the encoding centers by minimizing 

the similarity loss. KMH [12] adopts an optimization 

mechanism which likes that in the k-means clustering 

method to iteratively learn the encoding centers and 

binary codes. However, the centers obtained by k-

means clustering method only adapt to the data with 

spherical distribution. In practice, the distribution of 

the dataset is non-spherical. In this paper, the 

proposed DPH method learns the encoding centers 

based on the training samples’ density value. The 

final obtained clustering results are more adaptive to 

the data distribution. DPH requires the values of data 

pairs’ Hamming distances and Euclidean distances 

are identical in the same scale space. Therefore, the 

Hamming distance can well approximate the 

Euclidean distance. Initially, the encoding 

mechanism of DPH method is as the same as that of 

K-means hashing. KMH encodes the data as the same 

binary code as its nearest center and it needs to 

compute and compare 2
M

 distance values. With the 

assistance of two-step mechanism, DPH further 

learns linear hashing functions based on the obtained 

clustering centers, and the encoding mechanism 

based on linear projection function is adopted. Then, 

DPH just needs to compute the projection results 

with M linear hashing functions to achieve the 

encoding procedure. Correspondingly, the encoding 

time complexity is only O(M). Thanks to the above 

innovative measures, DPH can fast respond the ANN 

search task in large-scale dataset and have an 

excellent ANN search performance as shown in the 

experimental results.  

IV. CONCLUSIONS 

In this paper, a novel binary encoding 

mechanism termed as density peak hashing (DPH) is 

proposed to map the floating point data with high 

dimension into compact binary code. The nature task 

of binary encoding mechanism is clustering the data 

into different groups and assigning them binary codes. 

For the first stage, many hashing algorithms adopt the 

classical K-means clustering method to learn the 

classify results. As K-means clustering method 

divides the data points which have small Euclidean 

distance to the identical cluster center into the same 

group, the hashing algorithm based on K-means 

clustering mechanism only adapt to the data with 

spherical distribution. In practice, not all real datasets 

obey the above assumption. To solve this problem, 

DPH learns the clustering results according to the 

density value. During the training process, the data 

points which have higher density value and larger 

distance to its nearest density peak are considered as 

the cluster centers. To guarantee the data pairs’ 

Hamming distances can approximate their Euclidean 

distances, the binary codes should satisfy the 

similarity preserving restriction. DPH transforms the 

Hamming distances and Euclidean distances into the 

same scale space and demands the two kinds of 

distances of each data pair are identical. There are 

two optional mechanisms, such as the lookup 

mechanism and projection based mechanism, to 

encode the raw data. When generate M-bit data, the 

lookup mechanism should compute and compare the 

distances between the raw data and 2
M

 centers, and its 

complexity is O(2
M

). In contrast, the projection based 

mechanism just needs to compute the projection 
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results with M linear hashing functions and its 

complexity is O(M). Therefore, DPH adopts the two-

step mechanism to learn the linear hashing functions 

according to the obtained density peaks. As described 

above, DPH can encode large scale raw data points 

with a low time complexity and preserve the data 

pairs’ Euclidean distance relationship in the 

Hamming space. Therefore, DPH can fast respond 

the ANN search task in the Hamming space. The 

final experimental results in three large scale image 

datasets have also shown that DPH can achieve an 

excellent ANN search performance.  
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