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Abstract:  

With the advent of the digital information age and 

multimedia technology development, the amount of image 

data is increasing day by day. The method of image 
sampling has been paid much attention to. The traditional 

triangular mesh sampling method needs to initialize the 

sampling set and the metric tensor before sampling, which is 

prone to problems such as unreasonable specification. 

Therefore, an intelligent image sampling method based on 

the Q-Learning reinforcement learning algorithm is 

proposed. Built on the interaction between reinforcement 

learning agents and the environment, an adaptive sampling 

method is designed to update agents' characteristics 

constantly. The experimental results show that this method 

can achieve the same effect as the traditional triangular 

mesh sampling method and is more intelligent. 

Keywords: image sampling, reinforcement Learning, Q-

Learning algorithm 

I. INTRODUCTION  
With the advent of the digital information age and 

multimedia technology development, the amount of image 

data is increasing day by day[1-3].  Many practical 

applications require that the image representation method 

save the storage space and improve the processing speed and 

quality of the image[4–7]. To reduce the image's storage 

space and its transmission bandwidth, it is necessary to 

sample out the set of detail points from the image and 

represent the entire image with these sets of points. 

Therefore, image sampling has become the focus of image 

processing. A digital image can be represented by two-
dimensional matrices. Each matrix grid contains the details 

of images. To capture the high-level details of images and 

provide a variable resolution approximation for digital 

images, some literature presented hierarchical 

representations, such as quadtrees and pyramids[8–12]. 

Sullivan and Baker derived a new quadtree construction 

method using the Lagrange multiplier method to solve the 

optimal allocation rate without monotone constraints[8]. 

Shukla proposed a compression algorithm built on tree 

structure segmentation, making the segmented image 

optimal[9]. Based on the model, Scholefield and Dragotti 

proposed an adaptive model based on length penalty, 
making the model more suitable for image recovery[10]. 

Burt and Adelson continuously removed the correlation 

between pixels between the image itself and the image copy, 

and generate a pyramid data structure by an iterative 

process, and then achieve the purpose of image 

compression[11]. The above image compression methods 

can preserve important features of images, which are of 

great significance for data storage and transmission. 

With the development of image mesh 

representation[13–16], polygonal meshes show better 

performances to acquire the details of digital images than 

regular meshes. In particular, important features such as 

corners and edges can be caught by the edges of triangular 

meshes.  Adams has proposed a GPRFS framework which is 

based on the GPR scheme[17]. In his method, some points 

are supposed to construct a triangle mesh, and then data 

points are added to the triangle mesh until the approximation 
error is reached. Different from Adams’method, some 

methods simplify the triangle meshes, which contain the 

entire set of sampled data points to obtain the optimal 

sampling set. For example, Bommes et al. proposed a 

dynamic node/spring system, which can automatically adjust 

the points in the boundary region and used a few points to 

represent the image[18]. Botsch et al. proposed an adaptive 

mesh generation method based on a metric tensor and used 

four parameters (minimum and maximum Euclidean edge 

length, a maximum stretch of measurement, and target 

length of an edge in measurement) construct the metric 

tensor[19]. They first select a suitable set of parameter 
values to get a metric tensor and then adjust the initial 

meshes and finally get about 80% fewer points than the 

initial meshes to represent the image. By combining binary 

spatial partitioning and clustering techniques, Maglo et al. 

segmented the triangles, which initialize the meshes 

continuously until the approximation error is satisfied [20]. 

It not only narrows the sampling points but also preserves 

the feature of the image. This literature provided better 

methods for the extraction and representation of image 

features and improved data storage and transmission 

performance. 
All the above methods are built on the reasonable 

metric tensor and sampling point set for initial sampling and 

then optimizing the point set. However, it is also a complex 

process to develop a set of reasonable metric tensor and 

sampling point sets in the face of innumerable images. 

Therefore, it is a developing direction to optimize image 

sampling points directly. The famous sensor selection 

problem gives a solution[21]. They selected K optimal 

sensors by testing all possible numbers 



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



M

N
with the 

minimum reconstruction error. But this is a big burden on 

computers. For example, the possible number of 
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 combinations is 10500, which is difficult for 

the computation. For the sensor selection problem, there are 

also some relevant methods to solve it, such as branch and 

bound search [22], convex relaxation [21], heuristic-based 

methods [23], and so on. These methods have a common 

drawback, i.e., they can not provide an optimal solution to 

polynomial time. To deal with the drawback. Basirian et al. 

proposed a method that samples the graphic signals based on 

a random walk[24]. The advantage of their work is that it 
only concerned the local graph information and thus 

improved sampling effectiveness. 

However, Abramenko argued that it might be over-

sampled or under-sampled in some environments[25]. 

Therefore, enhance the quality of intelligent image sampling 

technology, and automation become the inevitable trend of 

image sampling technology development. The core of 

reinforcement learning technology is to find the optimal 

strategy to win through continuous learning. Reinforcement 

learning in this aspect has merit. Combined with 

reinforcement learning theory, improving the image 
sampling technique of sampling is the principal direction of 

image sampling technology. To sample the image boundary 

features, we use reinforcement learning technology to 

continuously learn and find the optimal strategy to obtain the 

image features and obtain the image sampling set according 

to the strategy.  Among the algorithms of reinforcement 

learning, the q-learning algorithm has been widely applied, 

for example, underwater Wireless Sensor Networks [26], 

mobile social networks [27], Wireless Networks [28]. 

This paper's main contribution is that We introduce 

the reinforcement learning algorithm into the image 
sampling problem and use the reinforcement learning agent 

to interact with the environment to realize the features of 

learning evolution to realize the adaptive sampling of image 

sampling. 

The rest of this paper is organized as follows. In 

section 2, we propose an image sampling algorithm, which 

is dealt with in detail. In section 3, the effectiveness of the 

image sampling algorithm is verified by experiments. 

Finally, we conclude the whole paper in section 4. 

II. MATERIAL AND METHODS 

A. Material 

a) Introduction of the reinforcement learning 

Reinforcement learning has been a hot topic in the 

field of artificial intelligence in recent years. Reinforcement 

learning, as a sub-field of machine learning, can interact with 

the external environment to realize the learning and evolution 

of agents to have stronger adaptability[29-30]. Figure 1 

shows the interaction between the reinforcement learning 

agent and the environment. The learning evolution of 

reinforcement learning agents can be summarized as follows: 
First: Reinforcement learning agents will detect the 

environment's state in real-time and perform adjustment 

action commands to the environment according to their 

action strategies.  

Second: The external environment will change under the 

agent's action instruction, and the agent will use the form of 
return function to quantify the advantages and disadvantages 

of the external environment state change.  

Third: Agents optimize and adjust their action strategies 

according to the value of return function and improve them 

continuously. 

 

 

 

 

 

 

 

 

Figure 1. The interactive process between the Action 

and the environment. 

b) Q-Learning algorithm 

Reinforcement learning algorithms include model-

based and model-free methods. In particular, Q-learning 

algorithm (1) which use a tow-dimensional table Q about 

state-action pairs (s, a) to evaluate the advantage and 

disadvantage of taking action for the particular state is one of 

the model-free methods, that is, it does not know the 

probability distribution of the state transition and Reward 
[31]. After the interaction between the Action and the 

environment returns the Reward, the q value of the 

corresponding state-action pair can be updated by the 

following update formula: 

a) ,sQ(max +α(r  + a) Q(s, = a) Q(s, a
  

Where α and γ are the learning rate and discount factor, 

respectively, both within the range of 0 and 1, q (s, a) and 

Q(s’, a) are action-value functions corresponding to state-

action pairs (s, a) and (s,’ a), respectively. r represents the 

immediate Reward. 

Algorithm 1 Q-Learning Algorithm 

1:  Initialize Q(s,a) arbitrarily 

2:  Repeat(for each episode): 

3:      Initialize s        

4:      Repeat(for each step of the episode): 

5:           Choose a from s using policy derived from Q 

6:           Take Action a, observe r, s.’ 

7:           a) ,sQ(max +α(r  + a) Q(s, = a) Q(s, a
  

8:            s ← s.’ 

9:      Until s is terminal 

10:Until convergence is reached 
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B. Method 

In our sampling scheme based on the q-learning 

algorithm, starting the RL agent at the position of a pixel 

with the maximum gradient value interacts with the image 

through the discrete actions taken by the action-value 
function observed at the position of the current pixel to 

obtain the pixel sampling set finally. In this process, the 

agent tries to obtain a strategy that maximizes the long-term 

returns (discounted cumulative rewards) [32]. The Markov 

process (MDP) in the sampling scheme based on the q-

learning algorithm is described below. 

 

a) State: 

We represent the state as the coordinate of the 

agent’s position on the image corresponding to the pixel. For 

any position i, the corresponding state s = s(i) is the 

coordinate formed by the number of rows and columns 
observed in the two-dimensional image matrix at the 

corresponding position. For the agent to traverse the entire 

image, we allow the agent to observe and m × m matrix 

centered on the corresponding position. In this case, m is the 

matrix dimension. 

 

b) Action: 

We consider a discrete action space A={1, . . . , H}, 

where H represents the total number of actions. A specific 

action, a ∈  A, represents the number of steps between the 

current and new point it+1. The new point it+1 is added to 
the sampling set M, i.e., M:= M ∪  M {i}. For the specific 

Action a, the current point has many corresponding new 

points that can be constituted as a new point set N(it, a). In 

particular, we randomly choose a new point, it+1, which 

belongs to the N(it, a) (see figure 2). 

 
Figure 2. The black point represents the current location at 

time t. The red points represent the set of the action 1 (N(it, 

1)), the yellow points represent the set of the action 2 (N(it, 

2)). 
In addition, to avoid the agent's tendency to use 

only, the ɛ-greedy strategy is constructed to optimize the 

agent's strategy: 
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After optimization, the agent will execute the 

original strategy with probability 1-ɛ, and the probability ɛ 

will execute any action from the action space A. 

c) Reward: 
At any point in an image, the agent is intended to 

select an action that maximizes the discount accumulation 

reward. Therefore, for agents to move closer to the goal, we 

should give appropriate Reward to encourage agents to make 

choices: 
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d) Action-value function:  
The point with the maximum gradient value of an 

image is selected at first. Then the agent draws an action 

according to the policy π(a|s) in each time step and 

transforms to the new point it+1, which is selected randomly 

from the new point set N(it, at). After that, the new point it+1 

is put to the sampling set M, i.e., M:=M ∪  M{it+1}. At the 

same time, we also make an action list, i.e., L:=L ∪  L{at} to 

record the Action. The process is reiterated until the 
sampling set M satisfies a prescribed size. 

Q-learning's core idea is to make a Q-table of the 

state and Action, store the action-value Q(s, a), and then 

select the Action that can get the maximum benefit by the 

action-value Q(s, a). The updated formula for Q-learning in 

our method is shown as follows: 
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In our work, we make the action-value Q(s, a) 

update after an episode and not after selecting one Action. 

As was pointed out earlier, and this is because the Reward is 

related to all actions which are selected and also because the 

Reward is observed after the sampling set M is satisfied. The 

intuition about the update equation(3) is that for each Action 

that contributes to pick a point into sampling set M (a = at), 

the action-value Q(s, a) is updated, whereas the Action does 

not contribute value (a = at), action-value Q(s, a) keep the 

value the same. 
The update of action-value Q(s, a) is repeated with 

enough episodes to reach the convergence. After that, 

starting with the maximum gradient value of the point, 

according to the maximum action-value Q(s, a), we pick a 

new point into the sampling set. Starting with the new point, 

we repeat the above procedures until a point does not have 

suitable Action to select. The above process is summarized in 

Algorithm 2. 

An image can be viewed as a function f which is 
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defined on a domain Λ. The quality of image approximation 

is evaluated by the peak signal to noise ratio (PSNR), which 

is calculated as follows: 
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Where f̂  is the image of recovery, and p is the sample 

precision in bits/sample? The smaller the MSE, the bigger 

the PSNR. Therefore the bigger the PSNR, the better the 

image quality. 

III. RESULTS 

We conducted experiments in three classical data 

sets and used the proposed sampling method based on q-

learning in three different data sets, available from [33] and 

USCSIPI Image Database [34]. Figure 3 shows two test 

images, with their respective dimensions (pixels). First, we 

initialize ɛ = 0.1, α = 0.1,γ=0.9. And the sampling budget 

M size is defined by sixty percent of the points of the entire 

image. We let an agent crawl over the image for selecting 

the maximum gradient value of point i. According to point 
i, the agent selects the next point inext using the ɛ-greedy 

until the sampling budget M size is satisfied. After that, the 

Q[s, a] can be restated by the Reward we are learning. This 

whole process is over until the Q-table is convergent. For 

each data set, sample points of the whole image are taken 

according to the action-value function obtained from Table 

Q, and these points are used to recover the entire image. As 

shown in figure 4, figure 5. 

 

To verify the effectiveness of our algorithm, using 

 

Algorithm 2 Image point sampling based on Q-Learning 
algorithm 

1: Input: Image G, sampling budget M,  ɛ, α, γ 

2:    Initialize: M={∅ }, L={∅ },  Q-table 

3:    Repeat 

4:          select starting point  i  

5:          M={i} 

6:          L={∅ } 

7:          for t :=1; t<M do 

8:                )),(on(SampleActi : a ai  

9:                )),(t(G,SamplePoin : inext aiN  

10:             }{: nextiMMM   

11:              ),st(LAppendToLi : L a   

12:              nextii :  

13:         end for 

14:         
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15:          for k:=1; k<M do 

16:                for a:=1;a<H do 
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18:                 end for 

19:           end for 

20:    Until convergence is reached 

21: Output: Q-table 

 

 In the Lena and Peppers images, we compared three point-

insertion measurements in a triangular mesh using maximum 

absolute error (MAE), Laplace maximum error (LMAE), and 

error standard deviation weighted maximum absolute error 

(MAES) [35]. For Lena and Peppers' image, these three 

methods are shown in figure 6, figure 7. By comparing the 
PSNR values of the three methods (see table 1) for the Lena 

image, our algorithm can reach the average value of the 

triangular mesh algorithm. And in the case of the Peppers, 

our algorithm did a better job of sampling than the other 

algorithms. 

IV. CONCLUSIONS 

Image sampling provides crucial technical support 

for image processing storage, transmission, and compression. 

Our work proposes a sampling method founded on Q-

learning. To effectively and successfully learn with the 

action-value function, we use the ε-greedy strategic learning 

method, which assigns a large selection probability to the 

actions of the action-value function, while the other actions 

assign the same small selection probability. The agent is 

utilized to interact with the image, and the corresponding 

action-value function is updated after a period of time when 

the Reward is obtained. Compared with the triangular mesh 

method, we use the Q table after convergence to directly 
sample the image pixel points instead of initializing the 

triangular mesh and optimizing sampling points. Through the 

comparison of PSNR values, compared with the triangular 

mesh method, our algorithm not only achieves the effect of 

the traditional triangular mesh algorithm but also realizes a 

more intelligent effect. 
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(a) Lena (256 × 256 pixels) (b) Peppers (256 × 256 pixels)

Figure 3. Two data sets used in the experiments 

 

 

 

 

                                             

 

 

 

 

 

 

 

 

 

(a) sample points                                                                                 (b) recovery of image Lena

Figure4. Representation of image Lena: (a) sample points; (b) recovery of image Lena, PSNR = 24.71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) sample points  (b) recovery of image Peppers  

Figure5. Representation of image Peppers: (a) sample points; (b) recovery of image Peppers, PSNR =25.88 
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(a)MAE, PSNR = 24.96                       (b) LMAE, PSNR = 24.05                       (c) MAES, PSNR = 24.80 

Figure 6. Triangulations using different refinement metrics for approximations of Lena image 
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(a) MAE, PSNR = 24.01                      (b) LMAE, PSNR = 25.52                       (c) MAES, PSNR = 25.32 

Figure 7. Triangulations using different refinement metrics for approximations of Peppers image 
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