
SSRG International Journal of Computer Science and Engineering Volume 8 Issue 9, 5-11, Sep 2021
ISSN: 2348 – 8387 /doi:10.14445/23488387/IJCSE-V8I9P102 ©2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A Novel Approach to Version XML Data

Warehouse

Mitesh Athwani

Senior Director, Exusia Inc. Chicago, United States of America

Received Date: 01 August 2021
Revised Date: 02 September 2021
Accepted Date: 13 September 2021

Abstract - Data warehouses are fast becoming a norm for

a standard company. XML has emerged as a standard for

communication and storage of data. A distributed data

warehouse having data format as XML i.e., XML
warehouses have gained much popularity. Data

warehouses have emerged as an important aid in decision-

making and in what-if-analysis. To achieve this purpose,

the presence of historical data is essential. Versioning

plays an important role particularly in maintaining

historical data. Research and implementation of document

versioning have been carried out on many fronts, but the

issue of schema versioning is still in its early stage. In this

paper, we have concentrated on both content versioning as

well as schema versioning. Earlier work on schema

versioning has largely taken the view of versioning on

attributes. We have versioned the schema on a new
approach taking the dimension level.

 To maneuver the challenging task of schema

versioning we have also taken an example case study that

has been used to describe the scenario in a better manner.

Also, to portray our work, we have made a prototype using

the .NET framework that depicts both schema versioning

as well as content versioning. The approach is user-centric

and therefore it allows the user to generate versions of

schema according to their need specified in an XML

document called” Version Specification Document”

(appended to this paper). As an additional characteristic,
it also allows validation of document files against the

schema files.

Keywords - Data Warehouse, XML, Versioning,

Dimensions, Facts

I. INTRODUCTION

A. Nature of the Problem
Data warehouses serve as an important tool for decision-

making, what-if-analysis, future prediction, time series

analysis and various other applications. It has also been

highly used for Online Analytical Processing (OLAP).
These applications require the maintenance of historical

data along with the current data. Trend analysis has come

up as one of the major applications. Mining tools extract

interesting patterns from the data that aid in better decision

making. Organizations cannot survive without future

planning as they are highly dependent on the predictions

based on the analysis and outcome of data warehouse.

 In a data warehouse, data is collected from

many sources for basis of decision making. It is the data

that acts as source for analysis which is then used for

studying the patterns and predicting the future trends. The

accuracy of prediction is solely dependent on data being

used. More accurate and updated is the data better is the
analysis for prediction. Data warehouse cannot therefore

allow data to be lost in any scenario. Thus, Versioning in

warehouses tends to be an important issue to be

investigated.

In our work we are dealing with an XML

warehouse, where the data sources are XML documents.

These XML sources are the backbone of data warehouse.

But the problem arises when a source may evolve with

time and need, which may lead to changes in structural

definitions, hence causing mismatching of schemata being

followed by the sources and the data warehouse. To this

situation if there is need of change in data definitions. For
example, it can be the change in the details, with few more

properties being added, this would require a change to be

made at the schema level as well. To make changes at the

schema level, it would be a tedious and inefficient task to

read the changes requested from the documents and then

make the schema changes.

The possibility of changes in a data warehouse

cannot be neglected or changes cannot be disallowed

because the changes in the data are sensitive and can cause

the entire trend pattern to vary. Thus, change negligence

could lead to incorrect pattern trends being predicted. This
would call for versioning in terms of content and schema.

Thus, the platform is set up for versioning to be the

solution of the times.

B. Previous Work
Compared to schema versioning most of the

current work is focussed on providing content versioning

for the data warehouse. Very less work has been done in

the domain of schema versioning.

 Few approaches have been carried out in the
past in the case of schema versioning. One of them is to

ignore the changes appearing in the data source. The

problem with this approach is that sooner or later there

would be considerable difference in schemata rules of the

data source and the data warehouse, which could make the

warehouse obsolete. There would be mismatching of

current data with the old data, if the changes are not

propagated into the warehouse. Such a situation would be

a disaster as the basic purpose of data warehouse would be

defeated i.e., aid in decision-making. Another approach

http://www.internationaljournalssrg.org/IJCSE/paper-details?Id=456
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mitesh Athwani / IJCSE, 8(9), 5-11, 2021

6

could be to correctly reflect the changes occurring in the

sources into the warehouse. This leads to correctly

updating the content as well as schema of the data

warehouse as per the data sources. The concept of

versioning arises when one must deal with these
mentioned issues [1, 2]. Another possibility is that the

XML document is first changed into equivalent relational

schema and then with the application of standard data

warehouse methodology, one can incorporate it into a data

warehouse [3].

Two approaches are particularly applicable to

schema versioning situation. One of them is called Schema

evolution where schema is updated and data from old

schema to new schema is transferred. Only the latest

version is kept. Another approach is known as Schema

versioning in which history of all the versions is

maintained [4]. The versions are kept as different physical
copies, or they are maintained logically. Another approach

is to focus on meta-schema-based mapping. In this way,

the mapping between the source and the internal schema

does not need to be hard wired thereby providing

flexibility. User is given the option of selecting the schema

if the need arises and the mapping process is not hidden

from them [5].

Some other approaches provide easy versioning

schemes. New versions could be added by giving numbers

to them in increasing order. It is also possible to add an

attribute in the schema which designates the schema. One
can also use the basic property of “target Namespace” for a

different context of schema versioning. New versions can

be physically kept in other locations. This would lead to an

increment in the copies of schemas [6]. Creating

intermediate versions of data warehouse and producing the

complete version of the entire data warehouse gradually is

another possible approach. This simplifies the mapping

process between the old and the new versions of data

warehouse since the updates are performed gradually [7].

C. Contribution of our Paper
The purpose of our paper is to propose a

mechanism that would help in making the xml warehouse

up to date with the evolution of data source. All the

changes appearing in the data sources would be invited (if

they are in accordance with the need of the data

warehouse) with the creation of new version of schema.

Also, the possibility of content versioning would help in

better storage of evolving data. We have proposed a

mechanism which would make it possible to automatically

bring changes to the schema according to the changes in

the documents. This would ease the way the changes have

to be done. Apart from this, it would make the formatting
rules of the documents from the sources (of distributed

data warehouse) less stringent as more than one version of

schema would be used for validation of the documents.

We have defined the schema mapping at the

dimensional level of a data warehouse. A detail study of

the possible changes in the data warehouse is required

which could affect the schema definitions to change. This

study is then used to formulate a “version specification

document” i.e., change specification document, which

consists of all the possible changes that would require a

different schema version to be generated. These details are

then used to generate a new version of the schema; a

schema would be a representation of a dimension of data

warehouse.
In our case the new version of schema that is

generated would not invalidate the documents that follow

the definition of previous version of schemas. This same

approach has been used for versioning the content in a data

warehouse. With the addition of content in XML

documents there is a need for change in schema as well,

this required change in schema is done by changing the

cardinality property of schema document.

Thus, approach we have taken is to provide

versioning to both the content as well as on the schema.

Schema versioning is done on the dimensional level. We

have designed a case study on “: Criminal Data
Warehouse” based on which we have performed our

versioning mechanism. A prototype in .NET framework is

made to depict the versioning both on the content and

schema level. The prototype supports Graphical User

Interface (GUI), and the approach is hence user centric.

II. VERSIONING IN XML WAREHOUSE

 A. A New Approach

a) Mechanism

The need of versioning in data warehouse has grown over

the time but there has not yet been a provider who would
have given the absolute solution. We have tried to divide

the need as well as our solution logically. The logical

separation of our thoughts could be mapped to a scenario

of a real-life distributed data warehouse. To understand our

division of ideas we should first look at the setup of a

distributed data warehouse.

In a distributed data warehouse, the sources play

the same role as they play in a conventional data

warehouse, the difference being that the sources are not

located at a single site. The sources in a distributed data

warehouse are located at different sites. Each source is

connected to each other and a data repository. We can
classify the data repositories as a data mart in an

organisational data warehouse scenario. These data

repositories are all connected to form a data warehouse.

The entire picture of distributed data warehouse seems to

be divided into parts, but the key role of distributed

architecture is to depict a single global data warehouse

image on the front. The architecture remains the same in a

warehouse which holds XML data with the only

distinction being the format of content. Each source holds

as well as provides data to the repository as XML data.

Thus, the situation changes to a distributed XML
warehouse.

 With the above architecture described, the

possibility of versioning can appear at different levels of

the warehouse. First, we look at the schema versioning

prospects. In a data warehouse, whenever a source

provides data, it is important for the data warehouse but

there are large numbers of data sources that act as data

provider. If each provider uses a different format, although

the representation of data is in XML, then the data

Mitesh Athwani / IJCSE, 8(9), 5-11, 2021

7

warehouse would simply become a warehouse of digital

files. It would be impossible for any kind of classification

mechanism to be applied. To control this problem there is

always a set of rules that are to be followed by each data

provider or there is a standard pre-processing stage that
converts data according to predefined structural rules.

These rules act as a schema to the data. Each time when

data must be entered into the warehouse, there is a

validation of data according to the schema rules. With

XML as the format being followed in our data warehouse,

the significance of schema enriches as well. Not only

would schema perform data warehouse format rules but

also it would act as a schema of the XML documents

which would be validated against it. The beneficial part of

this dual role of schema is that the XML document files

would not be declared as well defined unless they confirm

to the schema, this implies that the documents that enter
the data warehouse will all be according to the warehouse

format requirements.

 This schema definition thus directs the

inflow of data in a data warehouse. The importance of

change in schema definitions can be understood by this

fact that if there were a change in the schema this would

cause problems to the integrity of data warehouse. Even if

we try to handle the changes in schema there are two

possibilities. Firstly, the documents that are present in the

data warehouse would have to be upgraded according to

the new schema definitions which is a tedious task (if at all
it is done), otherwise it may logically cause problems if the

XML format in presently stored data is manipulated.

Secondly, the change of schema definition is not a

favourable step as the schema plays a pivotal role in a data

warehouse, even more important in an XML warehouse.

 In our work, we have followed a methodology

that simplifies the above discussed issues. We have viewed

the dimension in a data warehouse as the schema. It means

that each dimension acts as a schema for the data

concerned with it i.e., the content is logically divided onto

dimensions. The segregation of a single global schema into

dimensional schemas helps in better working of data
warehouse as the XML documents can be guided to their

respective schemas for validation thus following a

multidimensional model [8] for schema validations. Also,

when there is a need of change in the schema definition of

one dimension, it does not hinder working of entire data

warehouse since other dimensional schemas can still be

used for validations. To tackle the issue of change in

schema definitions we followed the strategy of schema

versioning. Before going into the details of schema

versioning we should get familiar with the term “version

specification document”. A deep study is done to
understand and compile the possible future changes in the

XML document structure. This compilation leads to a set

of possible needed changes in the present schema

definition. We call this set as “version specification

document”.

 When there is an evolution in the document files

that requires a similar up hilling in the schema definitions,

we are required to create a version of that dimensional

schema. This need of versioning will be entertained only

if it is of use to the organisation that is using the data

warehouse, otherwise it is disregarded. This need of

organisation has been converted into a possible set of

changes in the “version specification document”.

Therefore, if the requested changes in the schema are
according to the “version specification document”, then a

new version of the schema is created. The XSD schema

definition of the “version specification document” is

shown in Fig 1.

The new version of the schema consists of all the

expected elements from the “version specification

document”. We add the entire set in the new version of the

schema even if there was a request of only a single element

to be added. The reason for this bulk set addition to

schema is that the entire set has been compiled by the

experts and is important to the data warehouse so even the

“still not requested” elements might get included in the
XML documents with evolution.

Hence, at that time there would not be another

version of schema required to handle the changes in the

document. Also, it is important to note that we do not

invalidate the previous XML documents i.e., even the

latest version of schema can be used to validate the earliest

documents in the data warehouse. This helps in the

maintenance of the versions as well, that is if an old

version of the schema has become obsolete then it can be

removed without any issue because if there is an XML

document confirming to the older version of the
dimensional schema it can be validated using the new

version of the schema as well. We use the “minOccurs”

property of XML schema for not invalidating the older

XML documents. This aspect of support for older XML

documents i.e., backward compatibility makes the schema

definitions more flexible with respect to the data providers

hence more user (in this case sources) centric.

Fig 1: XSD schema definition of “Requirement

Specification Document”

<?xml version="1.0" encoding="utf-8" ?>

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="rs" type="nodetype" />

<xsd:complexType name="nodetype">

<xsd:sequence>

<xsd:element name="node" type="innode"

minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="innode">

<xsd:sequence>

<xsd:element name="parent" type="xsd:string" />

<xsd:element name="root_element"

type="xsd:string" />

<xsd:element name="nodename" type="xsd:string" />

<xsd:element name="nodeatt" type="xsd:string" />

<xsd:element name="nodetype" type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Mitesh Athwani / IJCSE, 8(9), 5-11, 2021

8

The idea of schema versioning has taken birth because of

the ever-growing data and its increasing importance in a

data warehouse. This data itself can have more than single

value even for the same element in an XML data

warehouse. The multi valued content needs proper
handling for better and precise analytical studies. The

possible method than has been used earlier in data

warehouses for such multi valued data has been to create

new copies of document files holding new values. In an

XML warehouse, we can follow a better methodology for

handling such multi valued elements. Here again we have

followed the same policy of “version specification

document”. This document contains set of all the elements

that could possibly require content versioning. If the

requested element that carries new content (for an already

existing element in an XML document file of data

warehouse) is present in the “version specification
document” then content versioning is carried out. The

XML properties can be of good use for doing the

versioning of content in such situations. We can simply

add another instance of the same element in the XML

document of the warehouse carrying the new content. With

the addition of content in the XML document file, we

should make the corresponding required changes in the

schema. These changes would be in the cardinality of

occurrence of element in the documents i.e., by increasing

the value of “maxOccurs” value of the element in the

schema definition.

B. Case Study

a) Introduction: We now discuss a case study where we

can sense the need of the discussed mechanisms of schema

versioning and content versioning. The architecture of the

data warehouse in the case would be the same distributed

XML warehouse. Also, the mechanism of schema

versioning will be carried out at the dimensional level, or

we can say we will have the concept of dimensional

schemas. The warehouse we are addressing in our case

study is an XML warehouse having data of criminals of a

country i.e., criminal warehouse.

b) Structural View: The criminal warehouse in our case

study has the XML data sources and the data repositories

in distributed architecture. The databases of criminals at

the city level acts as the XML data sources while the state

view of these sources together represents the data

repository for each state. These repositories have been

referred to as data marts in an organisational view.

c) Versioning: We have discussed versioning of schema as

well as content at the dimensional level. We, therefore,
now take an example of a dimension of the criminal data

warehouse. The example dimension with its properties is:

Personal Details of convict:

 ID

 First Name

 Middle Name

 Last Name

 Date of birth

 Father’s Name

 Mother’s Name

 Gender

 Marital Status

 Occupation

 Number of siblings

 Fingerprints

 Height

 Weight

 Distinguishable mark on body

 Complexion

 Religion

 Literacy

The XSD schema definition for the above dimensional
schema is shown in Fig 2.

The possibilities of schema versioning and content

versioning in the dimension mentioned above are:

Schema Versioning:

 Alias

 Number of children

 Picture of convict

Content Versioning:

 Height

 Weight

These mentioned possibilities should also be present in the

“version specification document”.

The XSD schema definition of the discussed dimension

would have the added elements as mentioned under the

schema versioning possibilities. The newly generated XSD

schema definition of the dimension has been shown in the

prototype implementation section of our paper in Fig 3.

The newly added elements have been marked as

highlighted.

The properties that we have mentioned under the headings
of schema versioning and content versioning could arise as

a need or may also be due to upgrading the data warehouse

to hold more data specific to each convict.

The other dimensions of the criminal data warehouse will

similarly have their need for schema versioning and

content versioning. The other possible dimensions are:

 Type Of crime under which the convict is being

convicted

 Court details

 Punishment details

 Related cases

 Previous convictions

C. Prototype Implementation

To depict the versioning mechanisms that we have

discussed in the paper, we have developed a prototype that

shows the same on XML documents. The prototype has

been developed for depicting the example of the case study

that we have mentioned above.

Mitesh Athwani / IJCSE, 8(9), 5-11, 2021

9

 There are three functionalities that have been

included in the prototype that carry out the required tasks

of versioning. The three components of the prototype are:

XML Validator: The Validator is used to validate an XML
document against an XSD schema. The aim of the

Validator is to help in knowing whether the XML

document is confirming to a particular version of the

schema or not.

Schema Versioning: The most important component of the

prototype is schema versioning component. It requests the

user for an XSD schema and a “version specification

document” in XML format. The XSD schema here can be

mapped to as a dimensional schema in a real-life data

warehouse scenario. A new version of the given XSD

schema is created based on the inputs of the “version
specification document”. This schema can then be

validated against the latest documents using the XML

Validator of the prototype. The snapshot from the

prototype after a schema version has been generated has

been shown in Fig 4.

Content Versioning: The other important component of the

prototype is of content versioning. The user is required to

provide the XML document where the content is to be

added, the XSD schema file to which the XML document

confirms and a data file in XML format which contains the
elements to be added. The content from data file is

extracted and then converted to XML format before adding

it to the XML document. The corresponding changes in the

XSD schema definition file are also made.

We have show Version specification document in the end

as appendix.

Fig 2: Schema Versioning in our prototype

 Fig 3: XSD Schema Definition of example dimension

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="details" type="detailstype" />

<xsd:complexType name="detailstype">

<xsd:sequence>

<xsd:element name="cname" type="nametype"/>

<xsd:element name="dob" type="xsd:date"/>

<xsd:element name="fathers_name"
type="xsd:string"/>

<xsd:element name="mothers_name"

type="xsd:string"/>

<xsd:element name="gender" type="xsd:string"/>

<xsd:element name="marital_status"

type="xsd:string"/>

<xsd:element name="occupation" type="xsd:string"/>

<xsd:element name="no_of_siblings"

type="xsd:string"/>

<xsd:element name="finger_prints"

type="xsd:string"/>
<xsd:element name="height"

type="xsd:positiveInteger"/>

<xsd:element name="weight"

type="xsd:positiveInteger"/>

<xsd:element name="distinguishible_mark"

type="xsd:string"/>

<xsd:element name="complexion"

type="xsd:string"/>

<xsd:element name="religion" type="xsd:string"/>

<xsd:element name="literacy" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="nametype">

<xsd:sequence>

<xsd:element name="first" type="xsd:string"/>

<xsd:element name="middle" type="xsd:string"/>

<xsd:element name="last" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Mitesh Athwani / IJCSE, 8(9), 5-11, 2021

10

Fig 4: XSD Schema Definition of example dimension

after Schema Versioning

III. CONCLUSION

Versioning is an important mechanism for managing data,

work, or development strategically. The growth and

expansion of data should not appear as a hindrance to a

data warehouse, instead more data leads the path to
preciseness in analysis of trends and corresponding

predictions. With the escalation of data there could also be

evolution of details and the specifications of content in the

sources, which in turn would affect the data warehouse.

Versioning can play an important role in such scenario

where the data evolution is an obvious aspect. In a

distributed data warehouse, this possibility of content

format evolution becomes more of certainty.

 The advantages of versioning can be

exemplified by the decision to segregate the global schema

into dimensional schemas. Our approach has the advantage

of creating versions of schema according to the
specifications laid by the data warehouse experts through

“version specification document”. The creation of new

version of schema also acts as a favorable step towards

schema evolution. The backward compatibility of newly

generated schemas also helps in the maintenance of the

versions of schemas. With content versioning being

possible we can have more than single version of content.

The opportunity of content versioning in XML warehouse

is easily possible because of the nature of schema

definitions. It can therefore be very easily implemented in

the scenario of XML warehouse.

 If we do not have an XML warehouse,

then our approach of validating documents against a

schema and then generating new versions of schema is

applicable to any data warehouse picture. The limitation

would come when we try the backward compatibility of

the newly generated schema. Also, the prototype

implementation of the idea has a limitation that while

doing schema versioning we cannot add an element of

user-defined data type.

 The actual tool of our prototype could have our

proposal as functionality. The tool should have
connectivity over network to the repositories of the data

warehouse. Also, there could be a view feature that

represents the evolution of schema versions through

concept maps.

APPENDIX A

Format of Version Specification Document

The scope of versioning in the XML warehouse is

identified and classified into schema versioning needs and

content versioning needs. The following tables depict the
need of versioning in the case study taken.

<?xml version="1.0" encoding="utf-8"?>

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="details" type="detailstype" />

<xsd:complexType name="detailstype">

<xsd:sequence>

<xsd:element name="id" type="xsd:positiveInteger"/>
<xsd:element name="cname" type="nametype" />

<xsd:element name="dob" type="xsd:date" />

<xsd:element name="fathers_name" type="xsd:string"

/>

<xsd:element name="mothers_name"

type="xsd:string" />

<xsd:element name="gender" type="xsd:string" />

<xsd:element name="marital_status"

type="xsd:string" />

<xsd:element name="occupation" type="xsd:string"

/>

<xsd:element name="no_of_siblings"
type="xsd:string" />

<xsd:element name="finger_prints" type="xsd:string"

/>

<xsd:element name="height"

type="xsd:positiveInteger" />

<xsd:element name="weight"

type="xsd:positiveInteger" />

<xsd:element name="distinguishible_mark"

type="xsd:string" />

<xsd:element name="complexion" type="xsd:string"

/>
<xsd:element name="religion" type="xsd:string" />

<xsd:element name="literacy" type="xsd:string" />

<xsd:element minOccurs="0" maxOccurs="1"

name="number_of_children"

type="xsd:positiveInteger" />

<xsd:element minOccurs="0" maxOccurs="1"

name="picture_of_convict"

type="xsd:positiveInteger" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="nametype">
<xsd:sequence>

<xsd:element name="first" type="xsd:string" />

<xsd:element name="middle" type="xsd:string" />

<xsd:element name="last" type="xsd:string" />

<xsd:element minOccurs="0" maxOccurs="1"

name="alias" type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Mitesh Athwani / IJCSE, 8(9), 5-11, 2021

11

 Scope of versioning (schema) in the proposed case

study:

 Scope of versioning (content) in the proposed case

study:

REFERENCES
[1] Bogdan Czejdo, Kenneth Messa, Tadeusz Morzy, Mikolaj

Morzy, Janusz Czejdo Data Warehouses with Dynamically

changing Schemas and Data Sources.

[2] Bartosz Bebel, Tadeusz Morzy, Robert Wrembel, Johann

Eder, Christian Koncilla, Creation and Management of

Versions in Multiversion Data Warehouse.

[3] Matteo Golfarelli, Stefano Rizzi, Boris Vrdoljak, Data

Warehouse Design from XML Sources.

[4] Matteo Golfarelli, Stefano Rizzi, Jens Lechtenborger

Gottifried Vossen, Schema Versioning in Data Warehouse.

[5] Li Yang , Naphtali Rishe, A Flexible & Effective XML

Storage & Retrieval System.

[6] XML Schema Versioning.

[7] John Finianos, Jugdish Mistry, Versioning in Existing Data

Warehouse.

[8] Marko Banek, Zoran Skoeir and Boris Vrdoljak, Logical

Design of Data Warehouses from XML.

S.No Dimension

Name where

change is

done

Measure/Attribute

added in new

version of schema

Reason for addition of

attribute

1 Personal

details of

convict/

criminal

Alias Convict having other

known names that may

be used for identifying

him/her.

2 Personal

details of

convict/

criminal

Picture of convict Picture identification is

introduced in the

system.

3 Type of

crime under

which the

criminal is

being

convicted

Name of operation It will be an important

addition if the convict is

arrested under a

special operation

because then the rules

and judgments would

be affected according

to the severity of the

operations importance.

S.No Dimension

Name where

change is done

Measure/Attribute

added in new

version of schema

Reason for addition

of attribute

1 Personal details

of

convict/criminal

Height It can change with the

passage of time if the

convict has been held

earlier at a young

age.

2 Personal details

of

convict/criminal

Weight It can change with

passage of time.

3 Court Details District Transfer of case from

one district to

another.

4 Court Details Level of court It could have more

than one value with

time if a case is

petitioned at a new

higher court.

5 Court Details Jury Jury team can change

even during the case.

6 Court Details Lawyer for Change of lawyer.

7 Court Details Lawyer against Change of lawyer.

8 Punishment

details
Convict no. If a convict is

transferred/moved

from one prison to

some other.

9 Punishment

details

Prison name If a convict is

transferred/moved

from one prison to

some other.

10 Punishment

details

Length of sentence If a convict is given

recommendation base

on good behavior.

11 Punishment

details

Type of prison cell Changes in prison cell

due to behavior of

convict (or

punishment).

	Senior Director, Exusia Inc. Chicago, United States of America
	Abstract - Data warehouses are fast becoming a norm for a standard company. XML has emerged as a standard for communication and storage of data. A distributed data warehouse having data format as XML i.e., XML warehouses have gained much popularity. D...
	Keywords - Data Warehouse, XML, Versioning, Dimensions, Facts

