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Abstract - Epilepsy is a common neurological disease characterized by seizures. Automatic prediction of these seizures can 

help clinicians prepare for and manage patient seizures due to prior knowledge of seizure onset. Automatic seizure prediction 

is done using electroencephalography (EEG) data containing brain activity representing seizures. Deep learning classifiers 

have been attempted in predicting seizure onset but are hindered due to a lack of high-quality preictal data in the dataset 

compared to the amount of interictal data. Solutions to the issues of data scarcity and data imbalance have been tried, such as 

under-sampling and various oversampling methods; however, these methods have not been successful in creating ample data. 

We propose a DCGAN that generates synthetic high-quality preictal data for the seizure prediction task. The synthetic data is 

compared to random oversampling of preictal data on the CHB-MIT Scalp EEG database using a CNN classifier with a 5-12% 

improvement. 

Keywords - Electroencephalography, Preictal, Interictal, Generative Adversarial Networks, Seizure prediction. 

 

1. Introduction 

Epilepsy is a neurological disease caused by sudden 

abnormal brain activity characterized by seizures. Sixty-five 

million people worldwide have epilepsy, making it the fourth 

most common chronic neurological disorder [1]. Due to the 

sudden and erratic nature of the seizures, predictive measures 

for epilepsy can help support preventative treatments and 

give patients time for precautionary measures. 

 

To record brain activity for epileptic patients, 

electroencephalography (EEG) is used. EEG data for 

epileptic patients have been used for machine learning 

research, particularly through seizure detection and 

prediction algorithms. Such algorithms use extracted features 

of EEG from both the time and frequency domains to find 

the period where a seizure onset occurs. 

 

Electroencephalography data can be recorded by placing 

the electrodes on the scalp of a patient, known as scalp EEG, 

or by implanting the electrodes within a patient's brain tissue, 

known as intracranial EEG (iEEG) [2]. Even though iEEG 

data has a better signal-to-noise ratio and is thus easier to 

extract features from [3], the invasiveness of the method 

makes it more difficult to collect. 

 

Within EEG data containing epileptic seizures, there are 

four phases of the seizure visible in the data. Normal brain 

activity in the time between two seizures is known as the 

interictal state, abnormal brain activity around 60 to 90  

 

minutes prior to seizure onset is known as the preictal state, 

the period from the onset of the seizure to the end of the 

seizure is known as the ictal state, and the period after a 

seizure where the patient returns to baseline condition is 

known as the postictal state [32]. These four states are seen 

in Fig. 1. 

 

This EEG data can be used for deep learning-based 

seizure detection and prediction tasks. The seizure detection 

model focuses on detecting ongoing seizures and is primarily 

used to provide clinicians with seizure data that can be useful 

for epilepsy management [5]. Seizure detection primarily 

looks to differentiate between seizure and non-seizure data 

[6]. So classification algorithms for seizure detection assess 

only the preictal and ictal states to detect when exactly a 

seizure occurs. Predictive models for epilepsy can help 

clinicians by forecasting seizure onset, allowing clinicians to 

prepare medications. Such predictive models have developed 

fairly recently, as previous neuroscientists believed epileptic 

seizures were sudden until analysis of EEG recordings 

showed that seizures were predictable [7]. In order to have 

ample time to prevent seizures, interictal and preictal states 

are assessed as if the change in states between interictal and 

preictal states is detected; clinicians can use this knowledge 

to prevent seizures during the preictal state. 

 

Deep Learning (DL) classifiers have been a promising 

way to approach the seizure prediction task. Various methods  
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Fig. 1 One channel of EEG data depicting the interictal, preictal, ictal, and postictal states. 

 

have been used to extract DL algorithms' features, including 

short-time Fourier Transform and wavelet Transform for 

converting EEG data from the time domain to the frequency 

domain. 

 

There are also many variations between the deep 

learning classifiers themselves, as convolutional neural 

networks (CNN) and recurrent neural networks (RNN) have 

been used to approach classification between preictal and 

ictal states. 

Though DL algorithms have been attempted to approach 

seizure prediction, the major challenge is that high amounts 

of data are required to obtain meaningful results. The current 

state-of-the-art machine learning-based approaches to 

epilepsy prediction require vast amounts of data [8]. 

However, this data is difficult to collect manually, as it 

requires patients to be clinically monitored in hospitals, 

leading to datasets containing few patients and a limited 

amount of EEG recording for each one [8]. Data imbalance is 

another major issue, as interictal data is much more abundant 

than preictal data within EEG datasets. Solutions to the data 

imbalance problem have been attempted through 

undersampling and oversampling methods like random 

oversampling [9] and SMOTE [10].    

 

However, they have not successfully created ample data 

that seizure prediction classifiers can use.  

 

Data scarcity and imbalance issues can be solved 

through synthetic data generation. Generative Adversarial 

Networks [11] have been widely used for data generation to 

create synthetic data of high quality. Synthetic data has been 

used for many machine-learning tasks, including medical 

imaging [33] [13] [14] and Intensive Care Unit (ICU) 

monitoring [15] [16] [17]. Data generated by GANs have 

even been used for epilepsy data [18], and this synthetic  

 

 

epilepsy data generated by GANs has been developed for the 

seizure prediction task in the past [19].  

 

We propose a model that improves existing GAN-based 

seizure prediction models [19]. Our work contributes:  

1. A Generative Adversarial Network that is used to 

generate synthetic data and resolve the issue of data 

scarcity of pre-ictal data on scalp-EEG data.  

2. A CNN classification network for seizure prediction is 

trained and tested on real and synthetic data to determine 

the value of synthetic data for improving state-of-the-art 

results.  

  

2. Epilepsy Prediction: A Review  
The rest of this section will discuss various methods of 

epilepsy prediction. A summary of the various works 

discussed in this section will be in Table 1.  

 

2.1. Feature Extraction  

As EEG data containing epileptic seizures contains time 

domain data, it is intuitive to extract data from the time 

domain with Robust Generalized Synchrony [26]. However, 

extracting features from frequency domain data instead 

of time domain data is much more common. It is done in 

order to remove noise in the time domain and extract better 

features from frequency domain data. The Fast Fourier 

Transform (FFT) has been used to extract features from the 

frequency domain for both epilepsy detection and prediction 

by calculating the discrete Fourier transform with efficiency, 

particularly by Lee et al. 2017 [27] and Chu et al. 2017 [20]. 

Similarly, the Short Time Fourier Transform (STFT) 

implements various Fourier transforms over a sliding 

window. The exact calculation for the Fourier transform is 

shown below.  

𝑋(𝑘) = ∑ 𝑥(𝑛) ∙ 𝑒−𝑖
2𝜋𝑛𝑘

𝑁𝑁−1
𝑛=0                ( 1) 
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Table 1. Summary of Discussed Feature Extraction and Classification Methods for Seizure Prediction 

Seizure Prediction Method Feature Extraction Classification 

Method 

Sensitivity Specificity FPR/h 

Chu et al. 2017 [20] FFT Threshold between 

epileptic states 

86.7 86.7 0.367 

Truong et al. 2018 [21] STFT CNN 81.2 84.0 0.367 

Qin et al. 2019 [22] STFT CNN and ELM 95.85 - 0.045 

Khan et al. 2017 [3] DWT CNN 87.8 85.8 0.142 

Feudjio et al. 2021 [23] DWT Random Forest 99.1 98.0 - 

Cho et al. 2017 [24] EMD/Wavelet SVM 80.54 80.50 - 

Chaovalitwongse et al. 2007 [25] Time-Series Data KNN 81.29 72.86 - 

Rasheed et al. 2021 [19] STFT GAN + CNN 96.0 - 0.05 

 

STFT has been used to extract various features from 

frequency domain data by Truong et al. 2018 [21] and Qin et 

al. 2019. [22] The STFT can have various sliding windows, 

but 30-second windows are commonly used. While feature 

extraction methods using the Fourier transform have been 

attempted, the disadvantage of using the Fourier transform is 

that it tends to contain global frequency information, which 

is not necessarily important in seizure prediction due to the 

relatively fast oscillation of EEG data. Wavelet Transforms 

and Discrete Wavelet Transforms (DWT) are used to develop 

time-frequency representations of data by decomposing the 

function into wavelets [34] and have been used as a feature 

extraction method in epilepsy prediction by Khan et al. 2017 

[3] and Feudjio et al. 2021 [23]. A less used but notable 

method for feature extraction includes Empirical Mode 

Decomposition (EMD), which attempts to extract features 

from data through the time-frequency-amplitude domains by 

decomposing the signal into intrinsic mode functions. It has 

been attempted by Cho et al. 2017 [24].  

 

2.2. Classification Methods  

After feature extraction has been performed, there are a 

myriad of classification methods that can be attempted to 

classify between interictal and preictal states for seizure 

prediction. Many feature extraction methods are traditional 

machine learning classifiers, such as k-nearest neighbor 

(KNN), which classifies test samples based on the samples' 

labels. Depending on the labels of the surrounding samples, 

the algorithm chooses to classify the test sample. The smaller 

the distance between the test sample and a "neighbor 

sample," the more similar the two samples are. This approach 

was attempted by Chaovalitwongse et al. 2007 [25], where 

an 81% sensitivity and a 73 % specificity were achieved 

using T-statistical distance. Naive Bayesian models have 

been attempted by Sharmila and Geethanjali 2016 [29] for 

the seizure detection problem, where the Naive Bayes 

algorithm uses Bayes' theorem for classification while 

assuming maximum independence between the different 

samples. They achieved accuracies between 90 % and -100 

% for various patients. Support vector machines (SVM), 

such as the ones used by James and Gupta 2009 [30] for 

epilepsy prediction, attempt to develop a hyperplane that can 

clearly divide the samples to separate interictal and preictal 

data. A sensitivity of 86 % and a specificity of 80 % were 

achieved with this model. The random forest classifier uses a 

series of decision trees to make its predictions between 

interictal and preictal data. Feujdio et al. 2021 [23] used the 

random forest for prediction and obtained a 99.1 % mean 

sensitivity and a 98.0% specificity. Chu et al. 2017 [20] used 

a threshold for differentiating between interictal and preictal 

states, achieving an 86.67 sensitivity and specificity.  

 

Though traditional machine learning models have had 

some success with the epilepsy prediction task, deep learning 

approaches to the epilepsy prediction task are much better, as 

they can engineer features automatically. The Convolutional 

Neural Network (CNN) is a feedforward deep learning 

algorithm that uses layers of neurons to extract valuable data 

that can be used for classification for seizure prediction. 

Truong et al. 2018 [21] achieved an 81.2% sensitivity and an 

84% specificity with a 5-minute prediction time using a CNN 

and an STFT. Khan et al. 2018 [3] used the Discrete Wavelet 

Transform for feature extraction and achieved a sensitivity of 

87.8% and a specificity of 85.8%. The Extreme Learning 

Machine is another feedfoward deep learning algorithm that 

does not need its neurons to be tuned. Qin et al. 2019 [22] 

used this network and an STFT to achieve a 95.85% 

sensitivity and a false prediction rate of 0.045 per hour.  

 

Major issues with using machine learning and deep 

learning algorithms are the lack of data and the imbalance of 

data between the interictal and preictal states. To solve for 

data imbalance, undersampling and oversampling methods 

have been implemented. Random oversampling [9] and 

SMOTE [10] have been implemented for imbalances in the 

seizure detection task. Generative Adversarial Networks 

(GAN) are promising for solving data imbalance and 

scarcity. Generative Adversarial Networks are used to 

generate data to increase the accuracy of data-driven 

classifiers. It is done through a generator and a discriminator, 

where the generator generates random noise and makes 

adjustments to the network based on the information given to 

it by the discriminator, which differentiates between real data 

and data generated by the generator. Rasheed et al. 2021 [19] 
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used a Deep Convolutional GAN to improve the accuracy of 

a CNN-based seizure prediction algorithm with a sensitivity 

of 88.21% and a false prediction rate of 0.14/h when training 

with synthetic data and testing with real data.  

 

3. Materials and Methods 
3.1. Dataset  

The proposed framework is being run on the CHB-MIT 

Scalp EEG database [31]. The dataset consists of 23 cases 

from 22 patients, with each case containing between 9 to 42 

continuous files of EEG data in the .edf data format. The 

scalp EEG data was mostly collected in 23 channels with 256 

samples per second as a sampling rate. There are a collection 

of 182 seizures within the 23 cases. However, due to some 

consecutive seizures having a short time horizon between 

them, they were grouped together as if they were one seizure 

for this work, where the preictal period for the leading 

seizure was the preictal period for the consecutive seizures. It 

is intuitive, as predicting the leading seizure would lead 

clinicians to take precautions for any consecutive seizures 

proceeding the leading one.  

 

3.2. Data Preprocessing  

The task of seizure prediction involves distinguishing 

between two states: interictal and preictal. The interictal 

state, as mentioned earlier, is the state of normal activity 

between two seizures. For this work, a recording segment is 

considered interictal if it is at least 4 hours away from the 

nearest seizure. The preictal state is defined as the recording 

segment starting from 65 minutes before the seizure onset up 

to 5 minutes prior to the onset. The period of recording 30 

minutes after the seizure offset is the postictal period. In case 

of seizures in quick succession, the part of recording defined 

as postictal is not considered to be preictal. The data 

corresponding to 3 patients, viz., chb01, chb02, and chb03 is 

preprocessed using the above-defined rules, resulting in 65 

hours of interictal and 12 hours of preictal data.  

  

3.3. Feature Extraction  

For feature extraction, STFT was used to convert from 

the time domain to the frequency domain. We used a window 

length of one second (256 samples) with no overlap between 

them. After taking the magnitude of the conjugate values of 

the STFT, the D.C. noise was removed, and the 60Hz power 

line noise by removing the frequencies from 57-63Hz and 

117-123Hz. As one-minute samples are being used as 

training data for both the DCGAN and the CNN, the 

continuous data is split into the shape (X, 23, 114, 60), where 

X is the number one minute samples, 23 is the number of 

channels, 114 is the relevant frequencies, and 60 is the 

number of seconds per sample.  

  

3.4. Generation of Synthetic Data  

A DCGAN is used to generate scalp EEG data for the 

CHB-MIT Scalp EEG Database. The generator takes 100 

randomly generated samples of Gaussian noise as its input, 

which is then reshaped to 4096 through a dense hidden layer 

to 256 x 4 x 4. The rest of the network consists of 

deconvolutional layers. The first deconvolutional layer has 

128 output channels, a kernel size of 7 x 5, and a stride of 2 

x 2. This deconvolutional layer is followed by a rectified 

linear unit (ReLU), while normalization follows all the 

following deconvolutional layers in addition to ReLU. The 

second deconvolutional layer has 64 output channels with a 3 

x 5 kernel size and a 2 x 2 stride, and the third 

deconvolutional layer has 32 output channels with a 5 x 5 

kernel size and a 2 x 1 stride. The final deconvolutional layer 

has 23 output channels with a kernel size of 5 x 5 and a stride 

of 2 x 2. It led to the generation of samples with the size of 

(23 x 115 x 61), so the first 114 samples of the frequency 

dimension and the first 60 samples of the time dimension 

were kept to maintain the same shape as the real data.  

 

The goal of the discriminator is to distinguish between 

real data and the synthetic data generated by the generator. 

The ability of the discriminator to classify data correctly is 

then fed into the generator to generate spectrograms that are 

indistinguishable from real spectrograms. The network 

consists of four convolutional layers, and each 

convolutional layer of the discriminator is followed by 

normalization and ReLU. The first convolutional layer of the 

network has 32 output channels with a kernel size of 5 x 5 

and a stride of 2 x 2. The second convolutional layer has a 

similar kernel size and stride as the first layer but has 64 

output channels. The third convolutional layer has 128 output 

channels with a kernel size of 4 x 4 and a stride of 2 x 2. The 

final convolutional layer has 256 output channels with a 

kernel size of 5 x 5 and a stride of 2 x 2. The output of the 

last convolutional layer is then flattened with a fully 

connected layer and a sigmoid activation function.  

 

The discriminator and the generator use binary cross-

entropy loss and the Adam optimizer with a learning rate of 

10−3. The DCGAN was trained using only preictal samples to 

generate purely preictal data, as the lack of preictal data 

causes data imbalance for each patient. The synthetic preictal 

data was then added to the training set of the classification 

algorithm.  

  

3.5. Epileptic Seizure Classification  

Due to the success of CNN for the seizure prediction 

task, a CNN was used for the seizure prediction classifier. 

This classifier is trained using pure real and synthetic data to 

augment the training set and remove data imbalance from a 

lack of preictal data. The exact architecture of the network is 

shown in Fig. 2. 

 

The network consists of three convolutional layers, 

followed by a rectified linear unit (ReLU), a 2 x 2 pooling 

layer, a batch normalization layer, and a dropout of 0.5. The 

convolutional layers consist of a kernel size of 3 x 3, a stride 

of 1 x 1, and 0 paddings. The pooling layers consisted of a 
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kernel size of 2 x 2 and a stride of 2 x 2. The network ends 

with a fully connected linear layer and a sigmoid activation 

function. Using a batch size of 128, 70% of the interictal and 

two-thirds of the preictal instances were used for training, 

while the rest was used for testing. The training was done 

with 20 epochs with binary cross-entropy loss, an Adam 

optimizer, and a learning rate of 10−4. For training and testing 

the CNN on real data, random oversampling was used to 

solve for data imbalance.  

 

4. Results and Discussion 
We generated preictal samples for three patients from 

the CHB-MIT Scalp EEG Database and compared data 

augmentation using the DCGAN to random oversampling 

using the CNN classifier for epilepsy prediction. The results 

of the experiment are shown in Table 2.  
 

       For Patient 1, when using random oversampling of real 

preictal data, we achieved 85.5% sensitivity and 84.1% 

specificity on the testing set. When using preictal samples 

generated by the DCGAN, we achieved 99.5% sensitivity 

and 95.1% specificity, depicting a ≈12.3% increase in results. 

Similarly, for Patient 2, we achieved 85.0 % sensitivity and 

80.0% specificity on the testing set when using random 

oversampling of real preictal data, compared to the 93.5% 

sensitivity and 83.7% specificity we achieved when using 

preictal samples generated by the DCGAN, which is around 

a 6% increase in results. For Patient 3, we found an ≈ 5% 

increase in results when using samples generated by the 

DCGAN, as we achieved 85.8 % sensitivity and 84.1% 

specificity on the testing set with random oversampling. In 

comparison, we achieved 99.5% sensitivity and 95.1% 

specificity using the samples generated by the DCGAN.  

  

         This work aimed to improve the performance of state-

of-the-art deep-learning-based seizure prediction 

classification methods using samples generated by a 

DCGAN. With improvements in deep learning technology, 

the generation of high-quality data from a small number of 

training samples can lead to the possibility of more robust 

datasets. This work proved the viability of using synthetic 

data for the epilepsy prediction task, particularly with deep-

learning classifiers. However, using DCGANs to augment 

the data of other classifiers is also possible. Our work shows 

that the results of current state-of-the-art seizure prediction 

classifiers can be improved using data augmentation with 

DCGANs. This work outperformed other traditional methods 

of data augmentation, particularly random oversampling. 

Notably, methods of undersampling were attempted as 

traditional data augmentation without synthetic data for this 

work. However, due to the low amounts of preictal data for 

each patient, undersampling led to the weak performance of 

the CNN classifier.  

The use of generative methods for data augmentation is 

promising, as shown by this work, especially in the medical 

field, due to privacy concerns regarding patient data. It is 

difficult to obtain large amounts of data due to data sharing 

between hospitals and privacy concerns, so applying 

generative methods to create synthetic data improves seizure 

prediction methods' performance while maintaining patient 

data privacy.  

 

 
 

Fig. 2 Architecture for CNN-based Seizure Prediction Classifier 

Input (1 x 23 x 114 x 60)

3 x 3 2D Convolutional 
Layer (8 output channels)

ReLU, 2 x 2 Pooling, Batch 
Normalization, 0.5 Dropout

3 x 3 2D Convolutional 
Layer (16 output channels)

ReLU, 2 x 2 Pooling, Batch 
Normalization, 0.5 Dropout

3 x 3 2D Convolutional 
Layer (32 output channels)

ReLU, 2 x 2 Pooling, Batch 
Normalization, 0.5 Dropout

Fully Connected Layer

Sigmoid Activation
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5. Conclusion 
Seizure prediction research attempts to develop a system 

that can alarm patients and clinicians before seizures occur. It 

has been attempted in various ways, but deep-learning-based  

approaches seem to be the most popular and successful in 

their performance. However, even with the success of these 

deep-learning-based approaches, there is a major lack of 

data, primarily preictal data, that can be used to train deep-

learning networks to achieve satisfactory results. There are 

two explanations for this, the first being the difficulty in 

collecting data from seizure patients, as it requires patients to 

undergo seizures while being monitored, and the second 

being the relative abundance of interictal data, as that data is 

much more commonly collected during the monitoring of 

seizure patients. It ultimately leads to data scarcity and 

imbalance, which hinders the performance of deep-

learning classifiers. We proposed a DCGAN to solve data 

scarcity and imbalance by generating synthetic samples of 

preictal data. Through the validation of the DCGAN using a 

CNN classifier for the seizure prediction task, we achieved 

up to a 12% increase in seizure performance compared to 

using random oversampling for data augmentation. Though 

our proposed framework does indeed increase the 

performance of state-of-the-art seizure prediction algorithms, 

to implement this prediction system in a real-world setting, 

some embedded devices will be required, which can be used 

to monitor patient brain activity and predict seizure onset in 

real time. This real-world implementation can be further 

explored in future work.  
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