
SSRG International Journal of Computer Science and Engineering Volume 9 Issue 4, 7-13, April 2022

ISSN: 2348 – 8387 / https://doi.org/10.14445/23488387/IJCSE-V9I4P102 © 2022 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Source Code Readability, Clean Code, and Best

Practices: A Case Study

Lucas de Lima Silva1, Giovani Fonseca Ravagnani Disperati2, Antonio Angelo de Souza Tartaglia3

1,2,3Federal Institute of Education, Science, and Technology of São Paulo, São Paulo, Brazil.

Received: 05 March 2022 Revised: 05 April 2022 Accepted: 10 April 2022 Published: 29 April 2022

Abstract - Maintenance of a software product during its operating lifecycle is usually the most expensive part of a project, as

this phase extends indefinitely. A software project that originally met a certain set of requirements will invariably change over

time since the requirements themselves tend to change. Thus, one of the main challenges of Software Engineering, particularly

considering the coding activity, is establishing practices that allow greater readability of source codes to keep codebases

under control. Clean code, source code refactoring, automated testing, and the application of best practices - such as design

patterns - are considered starting points for this. In this article, we sought to carry out a case study based on the code kata

known as Gilded Rose. A questionnaire was applied to compare programmers' understanding of a code without best coding

practices to understanding a refactored code using best practices. We conclude that student or intern-level programmers most

beneficiated from such practices as a more readable code imposes less of a barrier to their understanding of the code itself

and the functional requirements implemented by such code.

Keywords - Clean code, Code implementation, Design patterns, Software engineering.

1. Introduction
Techniques and tools for coding quality software

projects are one of the main study points in Software

Engineering. Quality software can be defined as one that

attains the functional and non-functional requirements,

follows a consistent style, is easy to understand, is well

documented, and can be tested [4], [5], [6], [7]. Such

characteristics, therefore, make quality software easier to

maintain throughout its life cycle, which is usually the

longest phase in any software project [1], [3]. Maintainability

is essential since a software project usually has a closed set

of functional and non-functional requirements that must be

reached in its initial conception. Still, over time, such

requirements tend to change due to changes in the business

rules, technologies, and external regulations, among other

factors, which causes the codebase to be modified to meet

these new requirements. A software project that is

intrinsically hard to modify will present challenges in the

long run. For this reason, it becomes evident that software

engineers must focus on maintainability.

One of the main factors contributing to the

maintainability of a software project throughout its life cycle

– that is, one of the main factors for obtaining quality

software – is readable code. Software projects have two

distinct value types: behavioral and structural values. The

behavioral value of software is what it delivers in the present,

that is, the fulfillment of current business requirements. The

structural value, in turn, presents itself concerning the

possibility of software to continue meeting the requirements

throughout its life cycle. The structural value of a software

project concerns its architecture, whose maintenance

throughout the life cycle is also correlated with the

readability and ease of understanding of the codebase [5].

Most of the efforts employed in software maintenance are

related to new features and fault correction. The consequence

is a decline in software quality as the code quality and

structure degrade as modifications occur. At the beginning of

its life cycle, software that needs a certain number of people

to maintain will require more people over time due to the

degradation of the quality of its source code. A hard-to-

maintain code base will be costlier.

It is a serious problem in the software industry because

the high complexity sometimes makes the project unfeasible.

In this sense, low quality is one of the main reasons for

extrapolating the schedule of software projects, and the lack

of quality is responsible for the cancellation of half of the

projects. In the same way that computer systems can generate

competitive advantages, they can also cause an organisation's

ruin. With those, new concerns arise concerning the quality

of the code developed.

Thus, techniques and methods emerge proposing code

production and maintenance practices to maintain code

quality throughout its life cycle. Among these, clean code,

refactoring, and best practices stand out in particular. Clean

code can be defined as methods and guides for writing source

http://www.internationaljournalssrg.org/

Lucas de Lima Silva et al. / IJCSE, 9(4), 7-13, 2022

8

code focusing on its readability and understanding [1].

Refactoring is a process that consists of changing the source

code without changing the software's behavior, which can be

used to achieve clean code [9], [10]. Refactoring can also be

understood as a change made to the software structure to

make it easier to understand and cheaper to modify without

changing its observable behavior. Good practices, in turn,

refer to a more general practical-theoretical set of practices

that involves the construction of automated tests for the

application, the use of principles known as SOLID, and the

use of design patterns, among others [2], [4]. Those methods

have been extensively studied in the literature [11-25].

In this context, a case study is proposed to evaluate the

understanding of a source code without using such practices

versus a refactored code using techniques focused on

providing improved legibility and ease of understanding. A

questionnaire was made to conduct this case study.

Volunteers were asked questions concerning their

understanding of a code kata known as Gilded Rose before

and after its refactoring process.

The case study was focused mainly on undergraduate

students of the systems analysis and development course of

São Paulo’s Federal Institute of Science and Technology

Campus of Guarulhos, São Paulo. Professional analysts were

also respondents to the questionnaire. They provided a

baseline of comparison for the following research question:

will an easier-to-understand code be more beneficial to

students and junior analysts?

2. Materials and Methods
The case study of this software included a refactor of a

pre-existing codebase known as Gilded Rose, which is

typically used as a challenge for programmers to practice

refactoring. The codebase is well-known to be challenging

and purposefully hard to understand, with the business rules

appearing under nested if-else clauses and cryptical names.

It was also the code in which refactoring based on the

techniques known as good practices was implemented. After

the refactoring process, a questionnaire with questions

focused on impressions about the impacts that the

refactoring had on the code was made [8]. The applied

questionnaire consists of 10 questions with multiple choice

answers and an optional comment at the end, where the

participants can share their perceptions about the codebase

before and after the refactor. The step was to identify the

participant's experience level to compare results. After that,

a brief introduction about the code was made to present the

following questionnaire.

The first question presented the code in Fig. 1 (a). and

Fig 1 (b), shown in Appendix A, which introduces the

GildedRose class. It is important to notice that in the

codebase, before refactoring, every business rule of the

Gilded Rose code kata is implemented in this GildedRose

class.

Based on the above code, it was asked, "Observing the

code, how hard was it for you to understand the functional

requirements?”. The objective was to identify how difficult

it was to understand what the unaltered code did, using a 4-

point Likert scale, (1) very difficult, (2) difficult, (3) easy,

(4) very easy. That was a relevant question since only a brief

introduction about the code was made, and no further

clarifications were provided. That may be a common

occurrence in a real-world scenario of legacy code. Thus

some degree of comprehension of the functional

requirements obtained after reading the code base is an

important aspect of a maintainable software project.

The second question, “How long did it take you to

understand the code above?” asked the participant how long

it took to understand the code presented in Fig. 1, with 4

alternatives, (1) up to 2 minutes, (2) up to 10 minutes, (3) up

to 20 minutes, (4) more than 30 minutes.

To ensure that the code in Fig. 1 (a). and Fig. 1 (b) was

interpreted, the third question was formulated as “Look

again at the code snippet above. What will happen when the

item is Sulfuras, Hand of Ragnaros?” with 3 alternatives,

being (1) “The item does not have its sale date or quality

changed," (2) "The item increases its quality from zero," (3)

"Item increases its quality when the quality is lower than

50". The correct answer is, in this case, alternative (1).

After this question, we introduce the refactored code in

the questionnaire. Fig. 2, shown in Appendix A, shows a

refactored code snippet.

 Fig. 2 presents the result of the refactor, which

implemented the Simple Factory pattern, creating objects

from the classes of items implemented with the Strategy

pattern. This pattern was chosen because it facilitates the

separation of the individual rules of each item in its specific

class, thus allowing each class to have only one

responsibility, that of dealing with the individual rules of

each item, as defended by the principle of single

responsibility.

After presenting the refactored code, we reintroduced

the code in Fig. 1 and highlighted each if statement with an

item's name. We then asked the fourth question, “Do you

consider the highlighted code snippets easier to understand

after the refactor?”. Then, the fifth question was asked

concerning the refactored code “How long did it take you to

understand the code above?”.

Then, the non-refactored code was reintroduced, and a

direct comparison against the refactored one was made. Fig

3., shown in Appendix A, shows the code snippet

reintroduced in question five.

Lucas de Lima Silva et al. / IJCSE, 9(4), 7-13, 2022

9

Based on the code snippet in Fig. 3, the sixth question

asked, “Looking at the code snippet below, what do you

understand?” with the following alternatives: (1) “The code

is adding the item "Backstage passes to a TAFKAL80ETC

concert" in a list," (2) “The code is removing the item

"Sulfuras, Hand of Ragnaros," (3) “The code is updating the

"Aged Brie" item." The correct answer is, in this case,

alternative (3).

As the seventh question, it was asked again about the

snippet in Fig. 3, “How long did it take you to understand

the code above?” with 4 alternatives, (1) up to 2 minutes, (2)

up to 10 minutes, (3) up to 20 minutes, (4) more than 30

minutes. After that, for question 8, the refactored code

shown in Fig. 4 was introduced.

It was then asked, as the eighth question, what the code

snippet was doing, “What is the refactored code of the

AgedBrieStrategy class doing?” and the following

alternatives were presented: (1) “Increasing Quality if it is

less than the maximum quality," (2) “Reducing Sellin if the

quality is less than the maximum quality," (3) “Increasing

Sellin if the quality is higher than the maximum quality."

The correct answer is, in this case, alternative (1).

The ninth question concerned the code snippet in Fig. 4,

shown in Appendix A, and asked, “How long did it take you

to understand the code above?" with 4 alternatives, (1) up to

2 minutes, (2) up to 10 minutes, (3) up to 20 minutes, (4)

more than 30 minutes.

Finally, the tenth question was an open field where the

participants could express their thoughts about the presented

codes: “Based on the pre-refactoring and post-refactoring

code, speak freely about your understanding of both

versions.”

3. Results
The questionnaire was shared with professionals who

work as software engineers and students in areas related to

information technology. In total, twenty-six participants

answered the questionnaire.

Of those twenty-six, seventeen, or 65.4%, were students

or intern level. Five, or 19.2%, were junior developers, one,

or 3.8%, was a developer, and three, or 11.5%, were senior

developers.

For the first question, “Observing the code, how hard

was it for you to understand the functional requirements?”

nineteen, or 73.1%, said it was “hard." The three senior

developers said the code was easy or easy to understand, and

only two student or intern-level developers said it was easy

to understand. The vast majority of students or intern-level

developers, fifteen out of seventeen, said it was either hard

or hard to understand to code presented in Fig. 1.

For the second question, nineteen out of the twenty-six

participants took 10 minutes to understand the code.

The third question, which verified if the participant had

understood the code presented in Fig. 1, had fourteen correct

answers. Eight out of the seventeen students or intern-level

developers, or 47.06% of this group, had an incorrect

answer.

For the fourth question, every participant agreed that the

refactored code presented in Fig. 2 was easier to understand.

In the fifth question, eighteen out of the twenty-six said it

took them until two minutes to understand the code.

For the sixth question, seventeen out of the twenty-six

had a correct answer, including twelve out of the seventeen

student or intern-level developers.

For the seventh question, sixteen out of the twenty-six

participants took ten minutes to understand the code.

In the eighth question, however, twenty-four out of the

twenty-six participants had a correct answer after presenting

the refactored code. Twenty-one of them took two minutes

to understand the code presented in Fig. 4, as answered in

question nine.

4. Conclusion
The answers support the theoretical aspect of the case

study: an easier-to-read code base is easier to understand. It

is supported by the theory and the established practices in

the Software Engineering field.

The questions analyzed in Figure 4 demonstrated that

even without the refactoring process, the simple fact that the

code was displayed focused on a code snippet improved the

results. It may indicate that theories, heuristics, and

techniques, which defend the simplicity and objectivity of

the code, contribute to readability.

The questions that analyzed the refactored code brought

great results, as it was possible to reduce the time to

understand it without impairing the understanding of the

code. Based on these results, it is evident that the use of

clean code heuristics and best practices increased the

readability and quality of the code.

It also points towards the importance of readability n the

code base to lower the required skill level of developers

involved in the project. The results obtained show that it was

evident that the students or intern-level developers were the

most beneficiated by the refactoring in the codebase. This

group had the most difficulties understanding the non-

refactored code base, as it could be verified, especially in

question three.

Lucas de Lima Silva et al. / IJCSE, 9(4), 7-13, 2022

10

The ratio of students or intern-level developers with

incorrect answers in question three was much higher than

that of the question. In the tenth and final question, where

participants could speak freely about the code, most praised

the refactored code and talked about how much easier it was

to understand.

It is concluded, thus, that the importance of a readable

code base is not only due to maintainability in its lifecycle

but also as a means of lowering the skill level required of a

working developer in a software project.

However, this raises another question: would a group of

student or intern-level developers be able to maintain a

readable codebase using the refactoring techniques presented

not only in this case study but also throughout the literature?

Further studies in this sense might be made to explore this

question.

References
[1] Martin Fowler, Refactoring: Improving the Design of Existing Code, Boston, Usa: Addison-Wesley, 2019.

[2] Alberto S. Nunez Varela et al., “Source Code Metrics: A Systematic Mapping Study,” The Journal of Systems and Software, vol. 128,

pp. 164-197, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[3] Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software, 1st Edition Boston, USA: Addison-Wesley,

1995.

[4] Robert C. Martin, Clean Code a Handbook of Agile Software Craftsmanship, Pearson Education, 2009. [Google Scholar]

[5] Robert C. Martin, Clean Architecture: A Craftsman's Guide to Software Structure and Design, London, England: Pearson, 2017.

[Google Scholar]

[6] Kent Beck, Test Driven Development: by Example, Bonton, USA: Addison-Wesley, 2003. [Google Scholar]

[7] Hanan Qassim Jaleel, “Testing Web Applications,” SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE),

vol. 6, no. 12, pp. 1-9, 2019. [CrossRef] [Publisher Link]

[8] Manas Kumar Yogi, and Godavarthy Kavya, “Novel Empirical Methods for Advance Software Engineering Research,” SSRG

International Journal of Computer Science and Engineering (SSRG-IJCSE), vol. 5, no.7. pp. 14-20, 2018. [CrossRef] [Publisher Link]

[9] Bjorn Latte, Soren Henning, and Maik Wojcieszak, “Clean Code: On the Use of Practices and Tools to Produce Maintainable Code for

Long-Living,” In EMLS 2019: 6th Collaborative Workshop on Evolution and Maintenance of Long-Living Systems, pp. 96-99, 2019.

[Google Scholar] [Publisher Link]

[10] Henning Grimeland Koller, “Effects of Clean Code on Understandability: An Experiment and Analysis,” University of Oslo, 2016.

[Google Scholar] [Publisher Link]

[11] Jack Ganssle, “Tools for Clean Code,” Embedded Systems Programming, vol. 14, no. 4, pp. 177-180, 2021.

[12] S. W. Ambler et al., “One Sure Thing is Good Clean Code,” Communications of the ACM, vol. 44, no. 12, pp. 11-13, 2001.

[13] John Petersen, Ten Reasons Why Unit Testing Matters, Code Magazine, 2021. [Online]. Available:

https://www.codemag.com/Article/1901071/10-Reasons-Why-Unit-Testing-Matters

[14] Paula Rachow, Sandra Schröder, and Matthias Riebisch, “Missing Clean Code Acceptance and Support in Practice-An Empirical

Study,” 2018 25th Australasian Software Engineering Conference (ASWEC), 2018. [CrossRef] [Google Scholar] [Publisher Link]

[15] Jozsef Katona, “Clean and Dirty Code Comprehension by Eye-Tracking Based on Gp3 Eye Tracker,” Acta Polytechnica Hungarica,

vol.18, no. 1, pp. 79-99, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[16] Jozsef Katona, “Examination of the Advantage of the Clean Code Technique by Analyzing Eye Movement Parameters,” Proceedings of

ISER International Conference, vol. 25, 2022. [Google Scholar] [Publisher Link]

[17] Tom Mens et al., “Refactoring: Current Research and Future Trends,” Electronic Notes in Theoretical Computer Science, vol. 82, no. 3,

pp. 483-499, 2003. [CrossRef] [Google Scholar] [Publisher Link]

[18] T. Mens, and T. Tourwe, “A Survey of Software Refactoring,” IEEE Transactions on Software Engineering, vol. 30, no. 2, pp. 126-139,

2004. [CrossRef] [Google Scholar] [Publisher Link]

[19] F. Simon, F. Steinbruckner, and C. Lewerentz, “Metrics Based Refactoring,” Proceedings Fifth European Conference on Software

Maintenance And Reengineering, 2001. [CrossRef] [Google Scholar] [Publisher Link]

[20] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan, “A Field Study of Refactoring Challenges and Benefits,” Proceedings

of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, pp. 1-11, 2012. [CrossRef] [Google

Scholar] [Publisher Link]

[21] Guilherme Lacerda et al., “Code Smells And Refactoring: A Tertiary Systematic Review of Challenges and Observations,” Journal of

Systems and Software, vol. 167, p. 110610, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[22] Eduardo Fernandes et al., “Refactoring Effect on Internal Quality Attributes: What Haven’t They Told You Yet?,” Information and

Software Technology, vol. 126, p. 106347, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[23] Itir Karac, and Burak Turhan, “What Do We (Really) Know About Test-Driven Development?,” IEEE Software, vol. 35, no. 4, pp. 81-

85, 2018. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.jss.2017.03.044
https://scholar.google.com/scholar?q=Source+Code+Metrics:+A+Systematic+Mapping+Study&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/S0164121217300663
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Clean+Code+a+Handbook+of+Agile+Software+Craftsmanship&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Clean+Architecture%3A+A+Craftsman%27s+Guide+to+Software+Structure+and+Design&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Test+Driven+Development%3A+by+Example&btnG=
https://doi.org/10.14445/23488387/IJCSE-V6I12P101
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=367http://www.internationaljournalssrg.org/IJCSE/paper-details?Id=367
https://doi.org/10.14445/23488387/IJCSE-V5I7P103
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=275
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Clean+Code%3A+On+the+Use+of+Practices+and+Tools+to+Produce+Maintainable+Code+for+Long-Living&btnG=
https://oceanrep.geomar.de/id/eprint/45829/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effects+of+Clean+Code+on+Understandability%3A+An+Experiment+and+Analysis&btnG=
https://www.duo.uio.no/bitstream/handle/10852/51127/master.pdf
https://www.codemag.com/Article/1901071/10-Reasons-Why-Unit-Testing-Matters
https://doi.org/10.1109/ASWEC.2018.00026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Missing+Clean+Code+Acceptance+and+Support+in+Practice-An+Empirical+Study&btnG=
https://ieeexplore.ieee.org/abstract/document/8587297
http://dx.doi.org/10.12700/APH.18.1.2021.1.6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Clean+and+Dirty+Code+Comprehension+by+Eye-Tracking+Based+on+Gp3+Eye+Tracker&btnG=
http://acta.uni-obuda.hu/Katona_108.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Examination+of+the+Advantage+of+the+Clean+Code+Technique+by+Analyzing+Eye+Movement+Parameters&btnG=#d=gs_cit&t=1684312387235&u=%2Fscholar%3Fq%3Dinfo%3AiPh5Zdgdh3wJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den
https://www.researchgate.net/profile/Jozsef-Katona/publication/359453575_Examination_of_the_Advantage_of_the_Clean_Code_Technique_by_Analyzing_Eye_Movement_Parameters/links/623d90d47931cc7ccff57fed/Examination-of-the-Advantage-of-the-Clean-Code-Technique-by-Analyzing-Eye-Movement-Parameters.pdf
https://doi.org/10.1016/S1571-0661(05)82624-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Refactoring%3A+Current+Research+and+Future+Trends&btnG=
https://www.sciencedirect.com/science/article/pii/S1571066105826246
https://doi.org/10.1109/TSE.2004.1265817
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+of+Software+Refactoring&btnG=
https://ieeexplore.ieee.org/abstract/document/1265817
https://doi.org/10.1109/CSMR.2001.914965
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Metrics+Based+Refactoring&btnG=
https://ieeexplore.ieee.org/abstract/document/914965
https://doi.org/10.1145/2393596.2393655
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Field+Study+of+Refactoring+Challenges+and+Benefits&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Field+Study+of+Refactoring+Challenges+and+Benefits&btnG=
https://dl.acm.org/doi/abs/10.1145/2393596.2393655
https://doi.org/10.1016/j.jss.2020.110610
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Code+Smells+And+Refactoring%3A+A+Tertiary+Systematic+Review+of+Challenges+and+Observations&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121220300881
https://doi.org/10.1016/j.infsof.2020.106347
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Refactoring+Effect+on+Internal+Quality+Attributes%3A+What+Haven%E2%80%99t+They+Told+You+Yet%3F&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584920301142
https://doi.org/10.1109/MS.2018.2801554
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=What+Do+We+%28Really%29+Know+About+Test-Driven+Development%3F&btnG=
https://ieeexplore.ieee.org/document/8405634

Lucas de Lima Silva et al. / IJCSE, 9(4), 7-13, 2022

11

[24] Ayse Tosun et al., “On the Effectiveness of Unit Tests in Test-Driven Development,” Proceedings of the 2018 International Conference

on Software And System Process, pp. 113-122, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[25] Myint Myint Moe, “Comparative Study of Test-Driven Development (TDD), Behavior-Driven Development (BDD) And Acceptance

Test-Driven Development (ATDD),” International Journal of Trend In Scientific Research And Development, vol. 3, no. 4, pp. 231-234,

2019. [CrossRef] [Google Scholar] [Publisher Link]

Appendix A

In this appendix, the source code used for the

questionnaire is presented. Fig. 1 (a) and Fig. 1 (b) present

the non-refactored version of the Gilded Rose Class. Fig 2.

presents the refactored code implementing the strategy

pattern. Fig 3. presents non-refactored if-else statements. Fig

4. presents the AgedBrieUpdateStrategy class. Each figure is

presented sequentially.

Fig. 1 (a) The Gilded Rose class before refactoring

https://doi.org/10.1145/3202710.3203153
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+Effectiveness+of+Unit+Tests+in+Test-Driven+Development&btnG=
https://dl.acm.org/doi/abs/10.1145/3202710.3203153
https://doi.org/10.31142/ijtsrd23698
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparative+Study+of+Test-Driven+Development+%28TDD%29%2C+Behavior-Driven+Development+%28BDD%29+And+Acceptance+Test-Driven+Development+%28ATDD%29&btnG=
https://www.ijtsrd.com/computer-science/other/23698/comparative-study-of-test-driven-development-tdd-behavior-driven-development-bdd-and--acceptance-test%E2%80%93driven-development-atdd/myint-myint-moe

Lucas de Lima Silva et al. / IJCSE, 9(4), 7-13, 2022

12

Fig. 1 (b) The gilded rose class before refactoring (continuation of the source code)

Fig. 2 Refactored code implementing the Strategy pattern

Lucas de Lima Silva et al. / IJCSE, 9(4), 7-13, 2022

13

Fig. 3 Non-refactored nested if-else statements

Fig. 4 The aged brie update strategy class

