
SSRG International Journal of Computer Science and Engineering Volume 10 Issue 1, 1-16, January 2023

ISSN: 2348 – 8387 / https://doi.org/10.14445/23488387/IJCSE-V10I1P101 © 2023 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Label Projection based on Hadamard Codes for Online

Hashing

Nannan Wu1, Zhen Wang1, 2，*, Xiaohan Yang1, Wenhao Liu1, Xinyi Chang1, Dongrui Fan1

1School of Computer Science and Technology, Shandong University of Technology, Zibo, Shandong, China.

 2Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University,

Changchun, Jilin, China.

Received: 20 November 2022 Revised: 23 December 2022 Accepted: 05 January 2023 Published: 17 January 2023

Abstract - When new data streaming arrives, traditional hashing methods should retrain the hashing functions based on all

samples. That leads to high training time complexity. In contrast, the online hashing algorithm re-computes the hashing

functions just based on the new arrival streaming data and has been widely applied in large-scale image retrieval tasks.

However, differences exist in numbers and labels between new arrival and old datasets, which causes the data imbalance

problem while establishing their similarity matrix. This paper proposes a novel supervised online hashing method, Label

Projection, based on Hadamard Codes for Online Hashing (LHOH), which jointly employs the label projection and

similarity preservation mechanism to solve the data imbalance problem. In addition, LHOH considers the Hadamard codes

as the label projection target domains to avoid the problem of difficult discrete optimization of the objective function. Then,

LHOH employs the label projection matrix as label weight values, which can solve the data imbalance problem while

computing the similarity matrix between new arrival and old datasets and preserve the consistency of Hamming and

semantic space similarity. To increase the distinguishability among the hash codes, LHOH designs triple supervision

learning mechanisms, including assigning Hadamard codes, projecting labels, and embedding labels. To validate the

performance of the proposed LHOH method, this paper sets up the approximate nearest neighbor (ANN) search comparative

experiments on two widely used datasets. The final results show that LHOH outperforms six current state-of-the-art online

methods.

Keywords - Online hashing, Hadamard code, Label projection, Triple supervision, Image retrieval.

1. Introduction
With the development of Internet technology, massive

multimedia data streaming such as images, videos, and

audio are flooding into the network. And they are

characterized by diversity, rapid growth, and large quantity.

For large-scale multimedia data, it has become a prevalent

issue for fast response the multimedia retrieval request in

the computer vision field.

Traditional hashing methods[1-5] map high-

dimensional floating-point data into compact binary codes

and preserve their original similarity relationship in the

Hamming space.[6-9] Hash-based approximate nearest

neighbor (ANN) search methods have been widely used to

respond to large-scale multimedia ANN search tasks[10-12]

due to their less storage space and fast computation.

However, traditional hashing methods learn the hash

function offline and should re-compute the hashing

functions based on all data when new multimedia data

arrives. Unfortunately, the internet dataset rapidly increases,

which leads to the high training time complexity of offline

learning procedures. Online hashing algorithms learn

hashing functions based only on new data streaming to solve

the above problem. However, data streaming has the

characteristics of uncertainty, real-time, and novelty, which

makes it a challenge to update hash functions online with

high quality.

Recently, researchers proposed online hashing such as

Online Kernel Hashing(OKH),[13] Adaptive Hashing

(AdaptHash),[14] and Online Supervised Hashing

(OSH)[15] to respond fast the real-time multimedia ANN

search task. Online hashing often uses a sign function to

map floating point data to binary codes. However, the sign

function usually causes NP-hard problems. To avoid this

problem, AdaptHash and Hadamard Codebook based on

Online Hashing (HCOH)[16] transform the objective

function solution space into an approximately continuous,

which usually results in inefficient optimization.[17] With

the development of discrete optimization in traditional

hashing methods,[18] Some online hashing algorithms [17,

19, 20] propose to update the objective function using a

discrete iterative scheme, which builds the foundation for

the discrete optimization of online hashing.

In practical applications, the new and old datasets are

significantly different in the quantity and content of the

features. As a result, this causes a data imbalance problem

and leads to asymmetric sparse semantic similarity

matrices.[17] To solve the above problem, BSODH

separately assigns different weight values to the similar and

dissimilar sample pairs by utilizing two balancing factors.

However, BSODH artificially sets the balancing factors,

which may change the original distance between the new

http://www.internationaljournalssrg.org/

Nannan Wu et al. / IJCSE, 10(1), 1-16, 2023

2

and old datasets. LPOH maps labels to hash codes and

considers the label projection matrix as weight values.

Unfortunately, the target matrix is unknown, and the binary

codes are discrete in LPOH. Its objective functions are hard

to optimize.

This paper proposes Label projection based on

Hadamard codes for Online Hashing(LHOH), which jointly

exploits label projection and similarity preservation

mechanism to solve the data imbalance problem. LHOH

offline generates Hadamard codes based on the data label

and utilizes them as the target domain for the label

projection. Then, we can directly obtain the closed solution

of the label projection matrix using a least square regression

method. Afterwards, the label projection matrix is utilized

as the label weight value. We compute the semantic

similarity matrix between the new and old datasets based on

the weight labels. As a result, we resolve the data imbalance

problem of the semantic similarity matrix. In addition,

LHOH establishes a triple supervision mechanism in the

three processes: Hadamard encoding, label projection, and

similarity matrix learning. This process utilizes labels as

supervision information that enhances the performance of

semantic similarity preservation in Hamming space.

2. Related Work
Online hashing updates the hash functions according to

new data streaming, which can obtain superior ANN search

performance on old and new datasets. With the advantages

of low training complexity, insufficient storage space

occupation, and flexible application scenarios, more

researchers have focused on online hashing. We roughly

divide the online hashing algorithms into unsupervised and

supervised methods based on whether using the label as

supervision information.

Unsupervised online hashing[21-23] learns hashing

functions based on the intrinsic properties and regularity of

the dataset. And the training process does not require

supervised information, such as data labels. Sketching

Hashing (SketchHash)[21] employ the frequent direction

algorithm (FD)[24] to draw the sketch matrix of the data.

SketchHash can obtain the key information of the samples,

which solves the problem of excessive storage space

occupation in large-scale image retrieval. To accelerate the

rate of learning the hashing function, FasteR Online

Sketching Hashing (FROSH)[22] utilizes the Subsampled

Randomized Hadamard Transform (SRHT)[25] to

compress the data, which further reduces the time

complexity of SketchHash. Angular Quantization Online

Hashing (AQOH)[23] preserves the original similarity

relationship in Hamming space by minimizing the

Hamming distance and cosine distance among the new and

old datasets. As the unsupervised online hashing training

does not involve the data label, it cannot preserve the

original semantic similarity relationship. As a result, it has

an inferior semantic ANN search performance.[26]

The supervised online hashing[13-17, 19, 20, 26-29]

utilize the label information to supervise the process of

learning hash functions. Furthermore, supervised online

hashing[14-16, 26, 43] utilizes the Stochastic Gradient

Descent mechanism(SGD)[30] to optimize the objective

function, which can save storage space. Online Kernel

Hashing(OKH)[13] uses the Passive-Aggressive (PA) [31]

strategy to optimize the hash model while retaining the key

information from both new and old datasets. Adapt Hashing

(AdaptHash)[14] defines hinge-like loss as reducing the

distance of the similar data pairs and increasing the

dissimilar data pairs, which can improve the ANN search

performance. Based on information theory, Online Hashing

with Mutual Information(MIHash)[26] considers mutual

information between neighbors and non-neighbors to

reduce the ambiguities of neighborhoods in the Hamming

space. Online Supervised Hashing (OSH)[15] proposes a

two-step learning approach. It is achieved by assigning

Error Correcting Output Codes(ECOC)[32-34] to the data

and then learning the hash function to adapt the anonymous

labeled data in the online learning framework. Hadamard

Codebook-based Online Hashing (HCOH)[16] takes the

Hadamard matrix as an ECOC and assigns the Hadamard

codes to the data based on label information. As a result,

HCOH is robust to noise. Online selection hashing

(OSelH)[27] proposes an online bit selection method to

capture data features, ensuring a low correlation between

hash functions. Hadamard Matrix Guided Online Hashing

(HMOH)[43] considers the Hadamard matrix columns as

the target codes. HMOH adopts the hash function as a

binary classifier to minimize the quantization errors in the

relaxation process. Fast Class-wise Updating for Online

Hashing(FCOH)[29] compensates for the poor adaption and

inefficiency of online hashing by rapidly updating the hash

function in terms of the data classes and optimizing the

objective function by a semi-relaxation method.

While online hashing relies on traditional

relaxation,[35, 36] the discrete space is converted to

approximately continuous space, leading to inefficient

optimization of the objective function. Online hashing[17,

19, 20] employs a discrete iterative scheme for optimizing

the objective function to address the above problem.

Balanced Similarity for Online Discrete Hashing (BSODH)

designs two balancing factors that balance new and old

datasets' similarity matrices to solve the data imbalance

problem.[17] Scalable Supervised Online Hashing(SSOH)

introduces an intermediate variable to replace the hash

codes of the old dataset, which both alleviates the data

imbalance problem and teaches the semantic information of

the hash codes.[20] To balance the semantic similarity

matrix between new and old datasets, Label Projection

Online Hashing for Balanced Similarity (LPOH) maps

labels into hash codes and utilizes the label projection

matrix to attribute different weight values to labels.[19]

However, optimizing the objective function is difficult as

LPOH is affected by the binary code discretization and the

unknown label projection matrix.

This paper proposes a novel supervised method to solve

the data imbalance problem and maintain a similar

relationship between new and old datasets. We term this

Nannan Wu et al. / IJCSE, 10(1), 1-16, 2023

3

proposed method as a Label projection based on Hadamard

codes for Online Hashing (LHOH). Figure 1 shows the

LHOH consists of three major components: Hadamard

codes, label projection, and similarity preservation. 1) First,

we generate offline Hadamard matrices and then use

Hadamard matric columns as Hadamard codes. Afterwards,

as in (a) and (i), we assign Hadamard codes to the new and

old data according to their label information. It is the first

supervised learning process based on the label classes. 2) As

in (b), (c), (f), and (h), this paper aligns the length of the

Hadamard codes and the hash codes by employing the

Locality Sensitive Hashing (LSH). We generate the label

projection matrix V by projecting the labels into Hadamard

codes. It is the second supervised learning process based on

label information. Then, as in (d) and (g), we reconstruct the

weight semantic similarity matrix by using the label

projection matrix as the label weight values, which can

avoid data imbalance. It is the third supervised learning

process based on the label classes. 3) We set the semantic

similarity preservation and codes error constraint to ensure

the ANN search performance in the Hamming space. Of

these, the semantic similarity preservation constraint

ensures similarity relations between Hamming and original

semantic space, which minimizes the error between the

inner product of the hash codes and the semantic similarity

matrix, as in (d), (e), and (g). As in (j) and (k), code error

constraint preserves the characteristics of the data itself by

minimizing the error between the hash code and the hash

function of the new dataset.

As described above, the contributions of the proposed

LHOH method are as follows.

• LHOH utilizes the Hadamard codes instead of hash

codes as the label projection target domain.

Furthermore, we consider the label projection matrix as

label weight values, which can solve the data imbalance

problem by balancing the similarity matrix between the

new and old datasets. In addition, the label projection

matrix can get a closed solution using the least square

regression method, which facilitates the discrete

iterative optimization of the objective function.

• To solve the data imbalance problem, LHOH unites

label projection and similarity preservation

mechanisms. That maintains the Hamming and

semantic space similarity.

• Relationship and automatically balances the similarity

matrix between the new and old datasets.

• To enhance the distinguishability of different labels'

hash codes, LHOH sequentially implements the triple

supervision processes based on labels, which includes

the Hadamard codes, label projection, and learning

similarity matrix. As a result, this can increase the

classification ability of hash codes.

3. The Proposed Method
3.1. Problem Definition

Figure 2 shows the training and ANN search process

based on online hashing. As new data streaming arrives, the

online hashing will update the current hash function F(X)

(a) and generate the hash code (b) in real time. At the same

time, we can update the binary codes of the old dataset

according to the hash function F(X), as shown in (c) and (d).

Finally, when retrieving the nearest neighbor, the query

dataset must generate binary codes depending on the hash

function F(X). Online hashing computes the Hamming

distance relationship between hash codes to query nearest

neighbor samples in the new and old datasets, as shown in

(e) and (f).

To ensure that the online hashing can achieve better

nearest neighbor retrieval performance in Hamming space,

the Hamming distance relationship between the new and old

datasets should be consistent with their semantic

relationships. During the training process, online hashing

often establishes a semantic similarity matrix based on the

label classes of the new and old datasets. However, there are

significant differences in the number of samples and the

label classes, which makes the established semantic

similarity matrix sparse and asymmetric.

Fig. 1 Framework diagram of the LHOH algorithm process. We can divide the framework diagram into three significant parts: Hadamard

codes, label projection, and similarity preservation. Assign new and old dataset Hadamard codes as parts (a) and (i). In parts (b) and (h), the

labels project to Hadamard codes for obtaining the projection matrix V for both new and old datasets. In similarity preservation, parts (d), (e),

and (g) demonstrate the preservation of similarity between Hamming and semantic space; (j) and (k) illustrate the preservation of the

characteristics for the new data streaming itself.

Nannan Wu et al. / IJCSE, 10(1), 1-16, 2023

4

Fig. 2 Diagram of online hashing and nearest neighbor retrieval for online learning. Online hashing updates the hash function based on the new

data streaming and generates binary codes for new and old datasets.

Fig. 3 Diagram of the data imbalance problem. Different colors of data mean that they have other labels.

Fig. 4 Diagram of the process of distributing Hadamard codes. Hadamard codes are colored to match the corresponding data colors.

Nannan Wu et al. / IJCSE, 10(1), 1-16, 2023

5

The number of dissimilar pairs is more extensive than

similar pairs, which leads to a data imbalance problem.

When the label of the new dataset is different from the old

dataset. The new dataset and all the old datasets constitute

other sample pairs. It results from the old dataset having

similar binary codes, thus reducing the distinguishability

between the old datasets' binary codes and weakening ANN

search performance within the Hamming space.

Figure 3 illustrates the data imbalance problem, which

minimizes the distinguishability of the binary codes. In

Figure 3, we built the semantic similarity matrix (b)

according to the similarity relationship between the labels

of the new and old datasets (a). The similarity matrix has a

value of 1 if the samples' labels are similar. Otherwise, the

value is 0. There is a disparity between the new and old

datasets, such as numbers and labels. Since the quantity of

0 is greater than 1, the similarity matrix is unbalanced and

asymmetric, resulting in a data imbalance problem. For

example, the labels are different between the new data a and

the old data e, f, and g. So, the values in the similarity matrix

are all 0. Assuming that the binary code of a is [1,-1,-1,1,-

1,-1,-1,-1,-1], we maximize the Hamming distance between

the new data a and the old data e, f, and g to preserve the

original semantic similarity relationship between the

samples in Hamming space. Then it will make the old data

e, f, and g have the same binary codes [-1,1,1,-1,1,-1,1,-1],

as shown in (c). Although the old data e, f, and g have

different labels, they are less distinguishable from any

sample with the same Hamming distance.

In this paper, to simulate the real-time training process

of online hashing, the entire samples dataset X is divided

into old and new datasets： X=[Xs
t ,Xe

t]∈Rd×n, where d

denotes the dimensionality of the data features and n is the

number of total samples. Xs
t =[xs1

t ,……,xsnt

t]∈Rd×nt

denotes the feature vectors of the new dataset generated by

t-batch, also called streaming data. And Ls
t =[ls1

t
,……,lsnt

t]∈

{1,0}c×nt is its label vector, where nt is the size of the t-

batch. The vector xsi
t in Xs

t means that the label of the i-th

instance is lsi
t

. Hs
t =[hs1

t
,……,hsnt

t]∈{-1,1}m×nt denotes

Hadamard codes matrix consistent with Xs
t .

Xe
t =[xe1

t ,……,xe(n-nt)
t]∈Rd×(n-nt) denotes the feature vectors

of the old dataset and Le
t =[le1

t
,……,le(n-nt)

t]∈{1,0}c×(n-nt)

denotes its label vector. The corresponding Hadamard codes

matrix of the old dataset is He
t =[he1

t
,……,he(n-nt)

t]∈

{-1,1}
m×(n-nt). L=[Ls

t ,Le
t]∈{1,0}c×n is the entire sample

dataset label, where c is the number of classes of the sample.

H=[Hs
t ,He

t]∈{-1,1}m×n denotes the corresponding

Hadamard codes matrix of the dataset, where m is the length

of the Hadamard codes matrix.

The hash codes for the new and old datasets are

B=[Bs
t ,Be

t]∈{-1,1}
k×n

, where k denotes the length of the

hash code. Bs
t =[bs1

t
,……,bsnt

t
]∈{-1,1}

k×nt denotes the hash

codes of the new dataset Xs
t . Be

t =[be1
t

,……,be(n-nt)
t

]∈

{-1,1}
k×(n-nt) denotes the hash codes of the old dataset Xe

t .

Alternatively, the hash function generated based on the t-

batch dataset is defined as：

B=F(X)=sgn((Wt)
T
X) (1)

Wt=[w1
t ,……,wk

t]∈Rd×k is the projection matrix from the

t-batch dataset to the binary hash codes. Sign function

sgn(x) returns +1 if the variable x > 0. Otherwise, it returns

1.

3.2. The Data Imbalance Problem

Online hashing aims to update the hash function only

based on the new data streaming in real-time and preserve

the original semantic similarity relationship between the

new and old datasets in Hamming space. However, the

number and classes are different between the new and old

datasets, which leads to the data imbalance problem of the

semantic similarity matrix. As a result, the ANN search

performance of online hashing is inferior. This paper takes

Hadamard codes as the projection target domain of the

semantic labels, which simplifies the solution of the label

projection matrix to a least square problem. Furthermore,

we use the label projection matrix as the semantic label

weight to automatically balance the semantic similarity

matrix.

3.2.1. Hadamard codes

To avoid the data imbalance problem in the semantic

similarity matrix, we utilize the label projection weight

matrix A to assign different weight values to the labels Ls

and Le.[19] The semantic similarity preservation objective

function is defined in Equation 2. Where Bs and Be denote

the hash codes of the new and old datasets, respectively. A

is the projection matrix mapping the semantic labels to the

hash codes.

min
Bs,Be, A

‖(Bs)
T
Be-k(ALs)

T
ALe‖

F

2
 (2)

In Equation 2, Bs and Be are discrete binary codes. A

is an unknown matrix, which makes it a challenge to

optimize this objective function directly. This paper

proposes a two-step mechanism to solve the above

problem. The weight

matrix A is solved first. Then the objective function is

optimized.

The projection matrix V∈Rc×k substitutes the label

projection weight matrix A. We can pre-calculate the label

projection matrix V, mapping the data label L to the

Hadamard code H and using it as the label weight value. The

projection matrix V minimizes the error between the

projection target domain H and the projection value L. The

function is defined in Equation 3.

min
V

‖HT-LTV‖
F

2
 (3)

To obtain the closed solution of the label projection

matrix, we replace the hash code B with the Hadamard code

H to be the target domain for the projection of the label L in

the training dataset. The convergence of hash codes

generated by the same label data, and the distinguishability

generated by dissimilar is the goal of label projection to hash

Nannan Wu et al. / IJCSE, 10(1), 1-16, 2023

6

codes. [2] In this paper, Hadamard codes pre-meet the

projection target domain expectation. The same label data

have consistent Hadamard codes, and dissimilar have

distinguishable Hadamard codes. Therefore, Hadamard

codes can be ideal target codes for label projection. In

addition, Hadamard codes have the following advantages

over hash codes. 1) We can obtain Hadamard codes from

the Hadamard matrix columns.[37] It only has two values,

including +1 and -1, which conform to binary codes'

characteristics; 2) Hadamard codes satisfy orthogonality

and equilibrium. Any code pairs have maximum and equal

Hamming distance, which provides more substantial error

correction.

In this paper, the length of the Hadamard code H is

m=2a(a=1,2,3,4…….) and the number of the label is c. To

ensure that each label has a different Hadamard code H, the

relationship between m and c should satisfy m≥c. In

addition, the Hadamard code length m should be larger than

the hash code length k, defined as m≥k. To satisfy all three

conditions simultaneously, we define the process of

selecting the Hadamard code length as in Equation 4.

m= min{l|l=2a,l≥k,l≥c,a=1,2,3,4……} (4)

Inspired by HCOH and HMOH, Figure 4 shows the

process of assigning Hadamard codes to the dataset, which

consists of two main steps. 1) Pre-construct a Hadamard

matrix of length m (a) and use the Hadamard matrix

columns as Hadamard codes; 2) we assign Hadamard codes

according to labels. This achieves the first supervised

learning process based on label information. The

distribution principle follows assigning the same Hadamard

codes to the same label data and the difference to the

dissimilar, as shown in Figure 4(b).

3.2.2. Label Projection Matrix

Following section 3.2.1, Hadamard codes are assigned

to the data according to the label, generating the Hadamard

codes matrix Hs and He for the new and old datasets. In

addition, we convert the solution of the label projection

matrix V into a least square problem, which implements the

second supervised learning process based on label classes.

Online hashing updates the hash function according to new

streaming in real-time. When new streaming arrives in t-

batch, the new and old dataset label vectors Ls
t and Le

t

project onto their Hadamard codes Hs
t and Hs

t . The formula

is defined as follows：

min
Vt

‖(H
s

t
)
T
-(L

s

t
)
T
Vt‖

F

2

+ ‖(H
e

t
)
T
-(L

e

t
)
T
Vt‖

F

2

+μt‖Vt‖F
2 (5)

Vt∈Rc×k is the projection matrix which maps the label

vectors of the new and old datasets onto the corresponding

Hadamard codes matrix in t-batch. μt is the prevent

overfitting coefficients in t-batch.

This paper considers Hadamard codes instead of hash

codes as the target domain for label projection. The

Hadamard code length m should be the same as the hash

code k. The pre-designed Hadamard code length may be

longer than the hash code length, as in section 3.2.1. So it is

necessary to align the Hadamard codes with hash codes.

Locality Sensitive Hashing (LSH)[38] can reduce the

Hadamard code length while preserving their similar

structure.[16, 43] Therefore, we use the LSH to align m with

k. The formula is defined as follows：

H̃=sgn(W̃
T
H) (6)

When m>k, W̃
T
∈Rm×k is the random Gaussian

projection matrix. m=k, W̃
T
∈Rm×k is the identity matrix. H

is the Hadamard code assigned to the data, and H̃ denotes

Hadamard code for the aligned hash code length.

Combining Equations 5 and 6, the Equation for the

projection of labels to Hadamard codes is redefined as

follows:

 min
Vt

‖(sgn(W̃
T
Hs

t))
T

-(Ls
t)

T
Vt‖

F

2

+ ‖(sgn(W̃
T
He

t))
T

-

 (Le
t)

T
Vt‖

F

2

+ μt‖Vt‖F
2 (7)

Let H̃s

t
= sgn(W̃

T
Hs

t), H̃e

t
= sgn(W̃

T
He

t). Equation 7 is

rewritten as follows:

min
Vt

‖(H̃
s

t
)
T
-(Ls

t)
T
Vt‖

F

2

+ ‖(H̃
e

t
)
T
-(Le

t)
T
Vt‖

F

2

+μt‖Vt‖F
2 (8)

In contrast to LPOH, we project the labels to Hadamard

codes and consider the label projection matrix as the label

weight value. It can solve the data imbalance problem by

balancing the semantic similarity matrix between the new

and old datasets. This paper constructs semantic similarity

matrices for new and old datasets by embedding labels to

achieve the third supervised learning process based on label

classes. It helps the hash codes generated from the same

labels data to converge and the differences to be

inconsistent. When the t-batch of new data streaming

arrives, we can attribute weight values to the data labels

using the label projection matrix V. (Vt)
T
Ls

t and (Vt)
T
Le

t

denote the weight labels of the new and the old datasets. The

balanced semantic similarity matrix S't between the new and

old datasets is defined as follows:

S't= ((Vt)
T
Ls

t)
T

((Vt)
T
Le

t) (9)

Vt∈Rc×k is the projection matrix which maps the

label vectors of the new and old datasets onto the

corresponding Hadamard codes matrix in t-batch.

Let L̃s

t
=(Vt)

T
Ls

t , L̃e

t
=(Vt)

T
Le

t . Equation 9 can be

rewritten as follows:

S't=(L̃s

t
)
T
L̃e

t
 (10)

3.3. Similarity Preservation

To ensure the semantic similarity of Hamming space is

consistent with the original, we try to minimize the inner

product of hash codes and the semantic similarity matrix

Nannan Wu et al. / IJCSE, 10(1), 1-16, 2023

7

between the new and old datasets. As mentioned in Section

3.1, the direct construction of the similarity matrix suffers

from data imbalance. In Section 3.2, this paper projects the

label L onto the Hadamard codes matrix H and utilizes the

projection weight matrix V to balance its similarity matrix.

Combining Equation 10, preserving the consistent

similarity within the Hamming and original space is defined

as follows：

min
Bs

t ,Be
t

‖(Bs
t)

T
Be

t -kS't‖
F

2

 (11)

Where Bs
t∈{-1,1}

k×nt is the hash codes obtained from

the new dataset learning in t-batch, Be
t∈{-1,1}

k×(n-nt) is the

hash codes obtained from the old dataset learning in t-batch,

and S't∈{1,-1}
nt×(n-nt) is the balanced semantic similarity

matrix of labels for the new and old datasets in t-batch. From

Equation 11, the old dataset participates in the updating

process of the hashing function. That ensures the generated

online hash model can achieve a satisfied ANN search

performance for both new and old datasets.

To learn the structure of the new data features, we need

to quantify the error of the hashing function and hash codes

for new streaming data. According to Equation 1, the

quantization between the hashing function and hash codes

is defined as follows:

min
Bs

t ,Wt
‖Bs

t -sgn(Wt)
T
Xs

t ‖
F

2

+λ
t‖Wt‖F

2 (12)

λ
t
 is the coefficient to avoid the overfitting problem in the t-

batch.

Since sgn(.) is a discrete notation, optimizing Equation

12 is an NP-hard problem. We consider a linear function

(Wt)
T
Xs

t instead of the discrete function sgn((Wt)
T
Xs

t),

which transforms the discrete problem into a linear

regression problem. Equation 12 is rewritten as follows:

min
Bs

t ,Wt
‖Bs

t -(Wt)
T
Xs

t ‖
F

2

+λ
t‖Wt‖F

2 (13)

According to Equations 8, 11, and 13, the overall

objective function is defined as follows:

min
Bs

t ,Be
t ,Wt,Vt

‖(H̃
s

t
)
T
-(Ls

t)
T
Vt‖

F

2

+ ‖(H̃
e

t
)
T

 -(Le
t)

T
Vt‖

F

2

+

‖(Bs
t)

T
Be

t -kS't‖
F

2

+φt ‖Bs
t -

(Wt)
T
Xs

t ‖
F

2

+μt‖Vt‖F
2 +λ

t‖Wt‖F
2 (14)

Where φt is the balance coefficient, S't=(L̃s

t
)
T
L̃e

t
.

3.4. Optimization

Due to the constraints of the binary codes in Equation

14, the objective function is non-convex which makes the

objective variables hard to optimize. This paper updates the

objective variables using an alternating iterative

optimization algorithm. We can fix other variables when

updating a variable until the objective function converges in

each round. The optimization process is as follows:

3.4.1. Updating Vt

When updating Vt, we can consider H̃s

t
, H̃e

t
, Le

t and Ls
t

as a fixed variable, the objective function (14) is redefined

as follows:

min
Vt

‖(H̃
s

t
)
T
-(Ls

t)
T
Vt‖

2

+ ‖(H̃
e

t
)
T

-(L
e

t
)
T
Vt‖

2

+μt‖Vt‖2 (15)

We directly solve the variable Vt using the least square

regression method. The solution is defined as follows:

Vt=(L
s

t
(Ls

t)
T
+Le

t (Le
t)

T
+μtI1)

-1

(Ls
t (H̃s

t
)
T
+Le

t (H̃e

t
)
T
) (16)

Where I1∈Rc×c is an identity matrix.

3.4.2. Updating Wt

Fixing the variables Bs
t and Be

t , the objective function

(14) is redefined as follows：

min
Wt

φt ‖Bs
t -(Wt)

T
Xs

t ‖
F

2

+λ
t‖Wt‖

F

2
 (17)

Therefore, the closed solution for Wt can be obtained

as：

Wt=φt(φtXs
t Xs

t)
T
+λ

t
I2)

-1

Xs
t (Bs

t)
T
 (18)

Where I2∈Rd×d is an identity matrix.

3.4.3. Updating Be
t

Fixing the variables Wt and Bs
t , the objective function

14 is redefined as follows：

min
Be

t
‖(Bs

t)
T
Be

t -kS't‖
F

2

 (19)

The squared Frobenius norm replaces with the L1

norm.[17, 39] Equation 19 can be rewritten as follow:

min
Be

t
‖(Bs

t)
T
 Be

t -kS't‖
1

 (20)

Solving for Equation 20 yields the closed solution of

Be
t as follows:

Be
t =sgn(Bs

t S't) (21)

3.4.4. Updating Bs
t

Fixing the variables Wt and Be
t , the objective function

14 is redefined as follows：

min
Bs

t
‖(Bs

t)
T
 Be

t -kS't‖
F

2

+φt ‖Bs
t -(Wt)

T
Xs

t ‖
F

2

 (22)

By simplifying Equation 22 as the tr(.) operation of the

matrix, Equation 22 can be rewritten as follow:

min
Bs

t
‖(Be

t)
T
 Bs

t ‖
F

2

+ ‖kS't‖
F

2

-2tr(kS't(Be
t)

T
Bs

t) +φt(‖Bs
t ‖F

2 +

‖(Wt)
T
Xs

t ‖
F

2

-2tr((Xs
t)

T
WtBs

t)) (23)

Nannan Wu et al. / IJCSE, 10(1), 1-16, 2023

8

Where tr(.) is the trace norm. By removing the constant

term unrelated to Bs
t , Equation 23 can be rewritten as follow

min
Bs

t
‖(Be

t)
T
Bs

t ‖
F

2

-2tr(CTBs

t
) (24)

Where C=kBe
t (S't)

T

+φt(Wt)
T
.

Due to Bs
t is discrete, solving Bs

t is an NP-hard problem.

Inspired by the Discrete Cycle Coordinate Descent Method

(DCC) proposed in SDH,[1] this paper solves each line of

the binary codes Bs
t by fixing the other lines. We describe

the process as follows：

Firstly, let c̅i
t, b̅si

t
 and b̅ei

t
 be the i-th row of matrices C,

Bs
t and Be

t , respectively. C̅, B̅s
t
 and B̅e

t
 are the matrices

obtained by removing the i-th row from matrix C, Bs
t and

Be
t , respectively. Equation 24 is redefined as follows:

min
Bs

t
‖(B̅e

t
)
T
B̅s

t
‖

F

2

+ ‖(b̅ei

t
)
T

b̅si

t
‖

F

2

+2tr((B̅s
t
)
T
B̅e

t
(b̅ei

t
)
T
b̅si

t
)-

2tr(C̅
T
B̅s

t
)-2tr((c̅i

t)
T
b̅si

t
) c̅i

t (25)

Then, the constant term in Equation 25 is removed as

follows:

min
b̅si

t
tr(((B̅s

t
)
T
B̅e

t
(b̅ei

t
)
T
-(c̅i

t)
T
)b̅si

t
) (26)

Finally, the value of each line in Bs
t is computed as

follows:

b̅si

t
=sgn(c̅i

t-b̅ei

t
(B̅e

t
)
T
B̅s

t
) (27)

This paper uses an iterative alternating update method,

which updates the variables Vt, Wt, Be
t and Bs

t sequentially

until the objective function converges.

Algorithm 1 summarizes the main procedures of the

proposed BSODH.

Algorithm 1: Label projection based on Hadamard

codes for Online Hashing(LHOH)

Input：

Training dataset: X=[Xs
t ,Xe

t]∈Rd×n

Training dataset labels: L=[Ls
t ,Le

t]∈{1,0}
c×n

Hadamard codes matrix corresponding to training

dataset: H=[Hs
t ,He

t]∈{-1,1}m×n

Length of the hash codes: k

Parameters: φt, μt, λt

(1) Set the total number of streaming data batches T;

(2) According to Equation 4, the value of the

Hadamard codes matrix length is determined,

and the Hadamard codes matrix is constructed

offline;

(3) if m=k then

(4) W̃
T
 is an identity matrix;

(5) else

(6) W̃
T
 is a random Gaussian projection matrix;

(7) According to Equation 6, Hadamard codes are

aligned with hash codes.

(8) for t=1→T do

(9) Define the new data streaming generated in t-

batch as Xs
t .

(10) if t=1, then

(11) Initialize Wt, Bs
t , Be

t；

(12) else

(13) According to Equation 16, update Vt；

(14) According to Equation 10, compute S't；

(15) Initialize Bs
t；

(16) According to Equation 18, update Wt；

(17) According to Equation 21, update Be
t；

(18) repeat

(19) if i=1→k then

(20) According to Equation 27, update b̅si

t
；

(21) end for

(22) until(Convergence or reaching the maximum

number of iterations)

(23) end if

(24)end for

(25)Update X and B；

(26)Set W=Wt；

(27)Compute B=sgn(WTX)；

Output: W, B

4. Results
4.1. Datasets

This paper adopts three widely used public datasets,

including CIFAR-10, MNIST, and Places205.

The CIFAR-10 dataset consists of 60,000 samples

containing ten classes, and each sample is 4096 dimensional

CNN vectors.[40] Based on the paper,[17] we divide the

whole dataset into two parts: 59000 data as a retrieval set

and 10000 data as a test set. To suit the need for online

hashing, we divide the entire retrieval set into new and old

datasets. Among them, the new dataset contains 20,000

data. The new dataset arrives in batches of 2000 data each,

divided into ten batches.

The MNIST datatset[41] consists of 70,000

handwritten digital image data, where each data dimension

is 784 and contains ten classes. Among them, we extract 100

data from each class to form the test set, and the remaining

data are the retrieval set. The entire retrieval set includes old

and new datasets. The new dataset contains 20,000 samples.

The new dataset arrives in batches of 2000 data each,

divided into ten batches.

Places205 has 250 million images containing 205

classes. We extract the image features by the AlexNet fc7

layer[42] and then downscale to 128 dimensions by PCA.

In this experiment, the entire Places205 extract datasets of

16 classes with a total of 204,715 images. Each class

extracts 100 images as the test set and the rest as the retrieval

set. The entire retrieval set contains old and new datasets.

Due to the large size of the Places205 dataset, we extract

40,000 data as new datasets for the retrieval set. The new

dataset arrives in batches of 4000 data each, divided into ten

batches.

Nannan Wu et al. / IJCSE, 10(1), 1-16, 2023

9

Table 1. The mAP and mAP@1000 results of various methods on CIFAR-10 with different code lengths.

Method mAP mAP@1000

16-bit 32-bit 48-bit 64-bit 128-bit 16-bit 32-bit 48-bit 64-bit 128-bit

OKH 0.1002 0.1664 0.2981 0.3301 0.3557 0.1063 0.2361 0.4315 0.4736 0.5164

AdaptHash 0.2546 0.2155 0.1964 0.1983 0.2191 0.3205 0.3527 0.3917 0.3811 0.3177

SketchHash 0.2932 0.3136 0.3373 - - 0.4129 0.4714 0.4984 - -

OSH 0.1242 0.1163 0.1221 0.1306 0.1349 0.1650 0.1596 0.1561 0.1412 0.1943

MIHash 0.6382 0.6301 0.6141 0.6009 0.5634 0.6575 0.6105 0.6827 0.6595 0.6248

BSODH 0.6402 0.6899 0.6748 0.6926 0.6992 0.7103 0.7327 0.7370 0.7403 0.7562

LHOH 0.6688 0.7025 0.6790 0.7185 0.7299 0.7208 0.7554 0.7494 0.7679 0.7811

Table 2. The mAP and mAP@1000 results of various methods on MNIST with different code lengths.

Method
mAP mAP@1000

16-bit 32-bit 48-bit 64-bit 128-bit 16-bit 32-bit 48-bit 64-bit 128-bit

OKH 0.1002 0.1802 0.3023 0.3334 0.3983 0.1103 0.4598 0.6025 0.6275 0.7229

AdaptHash 0.1938 0.2235 0.2047 0.2589 0.2228 0.3187 0.2513 0.3454 0.3143 0.3747

SketchHash 0.3331 0.3482 0.3766 - - 0.5696 0.6774 0.7187 - -

OSH 0.1431 0.1330 0.1287 0.1633 0.1671 0.1527 0.1832 0.1892 0.2213 0.2760

MIHash 0.6300 0.7099 0.6884 0.7333 0.7241 0.7579 0.8030 0.7970 0.8348 0.8450

BSODH 0.6589 0.7098 0.7229 0.7386 0.7392 0.7614 0.7837 0.8167 0.8297 0.8391

LHOH 0.6716 0.7158 0.7252 0.7548 0.7610 0.7638 0.8180 0.8201 0.8457 0.8614

Table 3. The mAP and mAP@1000 results of various methods on Places205 with different code lengths.

Method
mAP mAP@1000

16-bit 32-bit 48-bit 64-bit 128-bit 16-bit 32-bit 48-bit 64-bit 128-bit

OKH 0.0625 0.1353 0.3382 0.3962 0.4364 0.0679 0.3570 0.5628 0.6089 0.6590

AdaptHash 0.1731 0.2348 0.1484 0.1597 0.1851 0.3157 0.3711 0.2031 0.2552 0.2590

SketchHash 0.3303 0.3791 0.4007 - - 0.5352 0.6164 0.6511 - -

OSH 0.0914 0.0910 0.1064 0.1018 0.1118 0.1286 0.1684 0.1572 0.1849 03397

MIHash 0.5910 0.6259 0.6489 0.6933 0.6454 0.6821 0.7143 0.7240 0.7294 0.7370

BSODH 0.6226 0.6610 0.6787 0.6933 0.7096 0.7011 0.7332 0.7422 0.7631 0.7724

LHOH 0.6336 0.6874 0.6577 0.7054 0.7167 0.7068 0.7624 0.7498 0.7680 0.7855

Fig. 5 The Precision@H2 results of various methods on three datasets with different code lengths.

4.2. Baselines and Evaluated Metrics

We compare the proposed method with six more

advanced online hashing methods, including OKH,

AdaptHash, SketchHash, OSH, MIHash, and BSODH.

LHOH. In addition, the baselines are on the same datasets.

We adopt the four metrics to measure the performance of

nearest neighbor retrieval for each method.

The four metrics include the mean Average

Precision(mAP), mAP on the top-1,000 retrieved

items(mAP@1000), precision within a Hamming ball of

radius two centered on each query(Precision@H2), and

mean precision of the top-R retrieved neighbors

(Precision@K).

4.3. Overall Comparison with Baselines

LHOH and the baselines map the samples to the binary

codes with 16-bit, 32-bit, 48-bit, 64-bit, and 128-bit lengths,

respectively. They retrieve the nearest neighbor samples

based on Hamming distance.

4.3.1. mAP and mAP@1000

Table 1 shows the mAP and mAP@1000 results for

LHOH and the baselines on the CIFAR-10 datasets. Where

bold and underlining indicate the best and second-best

results, respectively. From Table 1, we can draw that the

proposed LHOH has the best ANN search performance.

When the hash code length is 16-bit, 32-bit, 48-bit, 64-bit,

and 128-bit, respectively, LHOH improves 2.86%, 1.26%,

Nannan Wu et al. / IJCSE, 10(1), 1-16, 2023

10

Fig. 6 The Precision@K results of various methods on CIFAR-10 with different code lengths.

Nannan Wu et al. / IJCSE, 10(1), 1-16, 2023

11

Fig. 7 The Precision@K results of various methods on MNIST with different code lengths.

Nannan Wu et al. / IJCSE, 10(1), 1-16, 2023

12

Fig. 8 The Precision@K results of various methods on Places205 with different code lengths.

Nannan Wu et al. / IJCSE, 10(1), 1-16, 2023

13

0.42%, 2.59%, and 3.07% over the second-best baseline

BSODH in terms of mAP evaluation metric. On the

mAP@1000 evaluation metric, LHOH improves over the

second-best baselines BSODH by 1.05%, 2.27%, 1.24%,

2.76%, and 2.49%, respectively.

In addition, Tables 2 and 3 show the mAP and

mAP@1000 results with different length hash codes on the

MNIST and Places205 datasets, respectively. Tables 2 and

3 show that LHOH has a superior ANN search performance

than the other baselines. When the hash code length is 128-

bit, compared to the second-best baseline, the proposed

LHOH achieves improvements of 2.18% and 1.64% on the

MNIST, respectively. When the hash code length is 32-bit,

the proposed LHOH improves by 2.64% and 2.92% on the

Places205 dataset.

Table 3 shows that the proposed LHOH performs

slightly worse than BSODH with 48-bit binary code.

Because LSH causes the length loss of Hadamard codes,

affecting the ability to describe samples with smaller feature

vector dimensions. That makes it challenging for different

samples.

4.3.2. Precision@H2

Figure 5 shows the Precision@H2 metrics on three

datasets, CIFAR-10, MNIST, and Places205. In Figure 5,

the Precision@H2 metric of LHOH outperforms the other

baseline methods on all three datasets. The figure shows that

the Precision@H2 of all methods decreases when the hash

code length reaches 128-bit. The possible reason is that the

precision search space becomes too large to learn with good

accuracy performance as the hash code grows.

The Precision@H2 retrieval precision results of all

experimental methods fluctuate with the change in the hash

code length. On the MNIST, OKH fluctuates the most, and

the proposed LHOH fluctuates the least with the best

experimental performance.

4.3.3. Precision@K

Figures 6, 7, and 8 show the Precision@K versus the

baseline methods on the CIFAR-10, MNIST, and Places205

datasets, respectively. Spanning ten neighbors

simultaneously, we set the neighbor search range to 1-100

in this experiment. That means we can get 11 experimental

results per bit in each method. Figures 6, 7, and 8 show that

the proposed LHOH is higher than other baseline methods

on different datasets. The experimental data fluctuate less

with a more stable retrieval performance.

When the hash code length is greater than or equal to

32-bit, Figure 6 shows that LHOH performs much better

than the other baseline methods on the CIFAR-10 dataset.

In Figures 7 and 8, when the hash code length becomes 48-

bit, the ANN search performance of LHOH is more

negligible than the baseline methods. LSH needs to be used

to align Hadamard codes with the hash codes. When the

hash codes length is 48-bit, offline generated Hadamard

codes length is 64-bit. That results in the loss of the

Hadamard code length.

However, LHOH performs better than other methods,

such as BSODH and MIHash.

Figures 6, 7, and 8 show the Precision@K performance

on the three different datasets. The ANN search

performance improvement of LHOH is most remarkable in

the CIFAR-10 dataset and less in the Places205 dataset.

CIFAR-10 and MNIST have high and low dimensional data

in this experiment, which affects the samples'

expressiveness. Further, it results from achieving different

ANN search performances on CIFAR-10 and MNIST.

In summary, we select whatever the value of the hash

codes length or the datasets of CIFAR-10, MNIST, and

Places205. The proposed LHOH is valid by its excellent

performance in mAP, mAP@1000, Precision@H2, and

Precision@K evaluation metrics.

4.4. Parameter sensitivity analysis

In this section, we discuss the influence of the

parameters μt, φt, and λt on the ANN search performance.

We set the ANN search experiments on the CIFAR-10,

MINIST, and Places205 datasets. Simultaneously, we use

mAP as the performance evaluation criterion with a 64-bit

length and set the value range of all parameters μt, φt, and λt

to [0.1,1].

4.4.1. Influence of μt

μt can prevent overfitting by adjusting the corresponding

label projection matrix "V" . Figures 9 (a), (b), and (c)

show the mAP performances on CIFAR-10, MINIST, and

Places205 with different μt values, respectively. From

Figure 9, we choose the ideal parameter μt=[0.3, 0.3, 0.4]

for the CIFAR-10, MINIST, and Places205 datasets

4.4.2. Influence of φt

φt is the balance parameter that adjusts the error

between the hash code generated by the new dataset and its

hashing function. Figures 10 (d), (e), and (f) show the mAP

results of parameter φt on three datasets, CIFAR-10,

MINIST, and Places205, respectively. From Figure 10, we

can set parameter φt =[0.6, 0.3, 0.8] for CIFAR-10,

MINIST, and Places205 datasets.

4.4.3. Influence of λt

λt adjusts the projection matrix W to prevent

overfitting. Figure 11 (g), (h), and (i) show the mAP results

of parameter λt on the three experimental datasets CIFAR-

10, MINIST, and Places205, respectively. As demonstrated

in Figure 11, the most desirable developments in the above

three datasets are for parameters λt =[0.2,0.5,0.7].

Nannan Wu et al. / IJCSE, 10(1), 1-16, 2023

14

Fig. 8 Influence of parameter μt on the CIFAR-10, MNIST, and Places205 datasets.

Fig. 9 Influence of parameter φt on the CIFAR-10, MNIST, and Places205 datasets.

Fig. 10 Influence of parameter λt on the CIFAR-10, MNIST and Places205 datasets.

5. Conclusion
To solve the data imbalance problem, this paper

proposes a novel supervised online hashing method, Label

projection based on Hadamard codes for Online Hashing

(LHOH), which jointly utilizes label projection and

similarity preservation mechanism. The proposed LHOH

uses Hadamard codes instead of hash codes as the target

domain for label projection. As a result, we can quickly

obtain a closed solution of the label projection matrix using

the least squares regression method. Then, we solve the data

imbalance problem of the similarity matrix between the old

and new datasets by assigning label weight values through

the label projection matrix. LHOH not only balances and

maintains a similar relationship between new and old

datasets but also makes full use of the label classes. To

enhance the classification capability of online hash models,

LHOH achieves triple supervision based on label classes by

assigning Hadamard codes, label projection to the

Hadamard codes matrix, and label embedding to similarity

matrix learning, respectively. We conduct extensive

experiments on three widely used datasets, CIFAR-10,

MNIST, and Places205. The experimental results show that

LHOH is superior to six current state-of-the-art online

methods.

Acknowledgments
 The authors express their gratitude to the institutions

that supported this research: Shandong University of

Technology (SDUT) and Jilin University (JLU).

Nannan Wu et al. / IJCSE, 10(1), 1-16, 2023

15

References
[1] Fumin Shen et al., “Supervised Discrete Hashing,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 37-45, 2015.

Crossref, https://doi.org/10.1109/cvpr.2015.7298598

[2] Jie Gui et al., “Fast Supervised Discrete Hashing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 2,

pp. 490-496, 2017. Crossref, https://doi.org/10.1109/tpami.2017.2678475

[3] Xin Luo, Ye Wu, and Xin-Shun Xu, “Scalable Supervised Discrete Hashing for Large-Scale Search,” Proceedings of the 2018 World

Wide Web Conference, pp. 1603-1612, 2018. Crossref, https://doi.org/10.1145/3178876.3186072

[4] Wei Liu et al., “Hashing With Graphs,” Proceedings of the 28th International Conference on Machine Learning, vol. 12, no. 3, 2011.

[5] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang, “Semi-Supervised Hashing for Large-Scale Search,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 34, no. 12, pp. 2393-2406, 2012. Crossref, https://doi.org/10.1109/tpami.2012.48

[6] Jae-Pil Heo et al., “Spherical Hashing: Binary Code Embedding with Hyperspheres,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 37, no. 11, pp. 2304-2316, 2015. Crossref, https://doi.org/10.1109/tpami.2015.2408363

[7] Mengyang Yu, Li Liu, and Ling Shao, “Structure-Preserving Binary Representations for RGB-D Action Recognition,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 8, pp. 1651-1664, 2015. Crossref,

https://doi.org/10.1109/tpami.2015.2491925

[8] Wengang Zhou et al., “Scalable Feature Matching by Dual Cascaded Scalar Quantization for Image Retrieval,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 38, no. 1, pp. 159-171, 2016. Crossref,

https://doi.org/10.1109/tpami.2015.2430329

[9] Hong Liu et al., “Towards Optimal Binary Code Learning Via Ordinal Embedding,” in Thirtieth AAAI Conference on Artificial

Intelligence, vol. 30, no. 1, pp. 1258-1265, 2016. Crossref, https://doi.org/10.1609/aaai.v30i1.10167

[10] Xianlong Liu et al., “Multi-View Complementary Hash Tables for Nearest Neighbor Search,” in Proceedings of the IEEE

International Conference on Computer Vision, pp. 1107-1115, 2015. Crossref, Https://Doi.Org/10.1109/ICCV.2015.132

[11] Li Liu, Mengyang Yu, and Ling Shao, “Multiview Alignment Hashing for Efficient Image Search,” IEEE Transactions on Image

Processing, vol. 24, no. 3, pp. 956-966, 2015. Crossref, Https://Doi.Org/10.1109/TIP.2015.2390975

[12] Fumin Shen et al., “Asymmetric Binary Coding for Image Search,” IEEE Transactions on Multimedia, vol. 19, no. 9, pp. 2022-2032,

2017. Crossref, https://doi.org/10.1109/tmm.2017.2699863

[13] Long-Kai Huang, Qiang Yang, Wei-Shi Zheng, "Online Hashing," Proceedings of the Twenty-Third International Joint Conference

on Artificial Intelligence, pp. 1422-1428, 2013.

[14] Fatih Cakir, and Stan Sclaroff, “Adaptive Hashing for Fast Similarity Search,” 2015 IEEE International Conference on Computer

Vision (ICCV), pp. 1044-1052, 2015. Crossref, https://doi.org/10.1109/iccv.2015.125

[15] Fatih Cakir, Sarah Adel Bargal, and Stan Sclaroff, “Online Supervised Hashing,” Computer Vision and Image Understanding, vol.

156, pp. 162-173, 2017. Crossref, https://doi.org/10.1016/j.cviu.2016.10.009

[16] Mingbao Lin et al., “Supervised Online Hashing via Hadamard Codebook Learning,” Proceedings of the 26th ACM International

Conference on Multimedia, pp. 1635-1643, 2018. Crossref, https://doi.org/10.1145/3240508.3240519

[17] Mingbao Lin et al., “Towards Optimal Discrete Online Hashing with Balanced Similarity,” in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 33, no. 01, pp. 8722-8729, 2019. Crossref, https://doi.org/10.1609/aaai.v33i01.33018722

[18] Qing-Yuan Jiang, and Wu -Jun Li, “Asymmetric Deep Supervised Hashing,” Proceedings of the Thirty-Second AAAI Conference on

Artificial Intelligence, vol. 32, no. 1, pp. 3342-3349, 2018. Crossref, http://dx.doi.org/10.1609/aaai.v32i1.11814

[19] Y. Fang, H. Zhang, and L. Liu, "Label Projection Online Hashing for Balanced Similarity," Journal of Visual Communication and

Image Representation, vol. 80, pp. 103314, 2021. Crossref, https://doi.org/10.1016/j.jvcir.2021.103314

[20] Yuzhi Fang, and Li Liu, “Scalable Supervised Online Hashing for Image Retrieval,” Journal of Computational Design and

Engineering, vol. 8, no. 5, pp. 1391-1406, 2021. Crossref, https://doi.org/10.1093/jcde/qwab052

[21] Cong Leng et al., “Online Sketching Hashing,” Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2503-2511, 2015. Crossref, https://doi.org/10.1109/cvpr.2015.7298865

[22] Xixian Chen, Irwin King, and Michael R. Lyu, “FROSH: Faster Online Sketching Hashing,” in UAI, pp. 1-10, 2017.

[23] Yuzhi Fang, and Li Liu, “Angular Quantization Online Hashing for Image Retrieval,” IEEE Access, vol. 10, pp. 72577-72589, 2022.

Crossref, https://doi.org/10.1109/access.2021.3095367

[24] Edo Liberty, “Simple and Deterministic Matrix Sketching,” Proceedings of the 19th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 581-588, 2013. Crossref, https://doi.org/10.1145/2487575.2487623

[25] Yichao Lu et al., “Faster Ridge Regression via the Subsampled Randomized Hadamard Transform,” Advances in Neural Information

Processing Systems, vol. 26, pp. 369-377, 2013.

[26] Fatih Cakir et al., “Mihash: Online Hashing With Mutual Information,” in Proceedings of the IEEE International Conference on

Computer Vision, pp. 437-445, 2017. Crosssref, https://doi.ieeecomputersociety.org/10.1109/iccv.2017.55

[27] Zhenyu Weng, and Yuesheng Zhu, “Online Hashing With Bit Selection for Image Retrieval,” IEEE Transactions on Multimedia, vol.

23, pp. 1868-1881, 2021. Crossref, https://doi.org/10.1109/tmm.2020.3004962

[28] R C. Veena, and S H. Brahmananda, “A Significant Detection of APT Using MD5 Hash Signature and Machine Learning Approach,”

International Journal of Engineering Trends and Technology, vol. 70, no. 4, pp. 95-106, 2022. Crossref,

https://doi.org/10.14445/22315381/ijett-v70i4p208

https://doi.org/10.1109/cvpr.2015.7298598
https://doi.org/10.1109/tpami.2017.2678475
https://doi.org/10.1145/3178876.3186072
https://doi.org/10.1109/tpami.2012.48
https://doi.org/10.1109/tpami.2015.2408363
https://doi.org/10.1609/aaai.v30i1.10167
https://doi.org/10.1109/ICCV.2015.132
https://doi.org/10.1109/TIP.2015.2390975
https://doi.org/10.1109/tmm.2017.2699863
https://doi.org/10.1109/iccv.2015.125
https://doi.org/10.1016/j.cviu.2016.10.009
https://doi.org/10.1145/3240508.3240519
https://doi.org/10.1609/aaai.v33i01.33018722
http://dx.doi.org/10.1609/aaai.v32i1.11814
https://doi.org/10.1016/j.jvcir.2021.103314
https://doi.org/10.1093/jcde/qwab052
https://doi.org/10.1109/cvpr.2015.7298865
https://doi.org/10.1109/access.2021.3095367
https://doi.org/10.1145/2487575.2487623
https://doi.ieeecomputersociety.org/10.1109/iccv.2017.55
https://doi.org/10.1109/tmm.2020.3004962

Nannan Wu et al. / IJCSE, 10(1), 1-16, 2023

16

[29] Mingbaea Lin et al., “Fast Class-Wise Updating for Online Hashing,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 44, no. 5, pp. 2453-2467, 2022. Crossref, https://doi.org/10.1109/tpami.2020.3042193

[30] Leon Bottou, “Large-Scale Machine Learning with Stochastic Gradient Descent,” in Proceedings of COMPSTAT'2010: Springer, pp.

177-186, 2010. Crossref, https://doi.org/10.1007/978-3-7908-2604-3_16

[31] Koby Crammer et al., “Online Passive Aggressive Algorithms,” Journal of Machine Learning Research, vol. 7, pp. 551-585 2006.

[32] Robert E. Schapire, “Using Output Codes to Boost Multiclass Learning Problems,” Proceedings of the Fourteenth International

Conference on Machine Learning, vol. 97, pp. 313-321, 1997.

[33] J. Kittler et al., “Face Verification Using Error Correcting Output Codes,” Proceedings of the 2001 IEEE Computer Society Conference

on Computer Vision and Pattern Recogonition 2001, vol. 1, pp. 7555-7560, 2001. Crossref,

https://Doi.Org/10.1109/CVPR.2001.990552

[34] Jiayan Jiang, and Zhuowen Tu, “Efficient Scale Space Auto-Context for Image Segmentation and Labeling,” in 2009 IEEE Conference

on Computer Vision and Pattern Recognition, pp. 1810-1817, 2009. Crossref, https://doi.org/10.1109/cvpr.2009.5206761

[35] Hong Liu et al., “Ordinal Constraint Binary Coding for Approximate Nearest Neighbor Search,” IEEE Transactions on Pattern

Analysis & Machine Intelligence, vol. 41, no. 4, pp. 941-955, 2018. Crossref, https://doi.org/10.1109/tpami.2018.2819978

[36] Hong Liu et al., “Dense Auto-Encoder Hashing for Robust Cross-Modality Retrieval,” Proceedings of the 26th ACM International

Conference on Multimedia, pp. 1589-1597, 2018. Crossref, https://doi.org/10.1145/3240508.3240684

[37] A. Hedayat, and W. D. Wallis, “Hadamard Matrices and Their Applications,” The Annals of Statistics, vol. 6, no. 6, pp. 1184-1238,

1978. Crossref, https://doi.org/10.1214/aos/1176344370

[38] Aristides Gionis, Piotr Indyk, and Rajeev Motwani, “Similarity Search in High Dimensions Via Hashing,” Proceedings of the 25th

International Conference on Very Large Data Bases, vol. 99, no. 6, pp. 518-529, 1999.

[39] Wang-Cheng Kang, Wu-Jun Li, and Zhi-Hua Zhou, “Column Sampling Based Discrete Supervised Hashing,” Proceedings of the

Thirtieth AAAI Conference on Artificial Intelligence, vol. 30, no. 1, pp. 1230-1236, 2016. Crossref,

https://doi.org/10.1609/aaai.v30i1.10176

[40] Karen Simonyan, and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” in International

Conference on Learning Representations, 2015.

[41] Y. Lecun et al., “Gradient-Based Learning Applied to Document Recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-

2324, 1998. Crossref, https://doi.org/10.1109/5.726791

[42] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, “Image net Classification With Deep Convolutional Neural Networks,”

Advances in Neural Information Processing Systems, vol. 60, no. 6, pp. 84-90, 2017. Crossref, https://doi.org/10.1145/3065386

[43] Mingbao Lin et al., “Hadamard Matrix Guided Online Hashing,” International Journal of Computer Vision, vol. 128, no. 8, pp. 2279-

2306, 2020. Crosssref, https://doi.org/10.1007/s11263-020-01332-z

https://doi.org/10.1109/tpami.2020.3042193
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1109/tpami.2018.2819978
https://doi.org/10.1145/3240508.3240684
https://doi.org/10.1214/aos/1176344370
https://doi.org/10.1609/aaai.v30i1.10176
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/3065386

