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Abstract - When new data streaming arrives, traditional hashing methods should retrain the hashing functions based on all 

samples. That leads to high training time complexity. In contrast, the online hashing algorithm re-computes the hashing 

functions just based on the new arrival streaming data and has been widely applied in large-scale image retrieval tasks. 

However, differences exist in numbers and labels between new arrival and old datasets, which causes the data imbalance 

problem while establishing their similarity matrix. This paper proposes a novel supervised online hashing method, Label 

Projection, based on Hadamard Codes for Online Hashing (LHOH), which jointly employs the label projection and 

similarity preservation mechanism to solve the data imbalance problem. In addition, LHOH considers the Hadamard codes 

as the label projection target domains to avoid the problem of difficult discrete optimization of the objective function. Then, 

LHOH employs the label projection matrix as label weight values, which can solve the data imbalance problem while 

computing the similarity matrix between new arrival and old datasets and preserve the consistency of Hamming and 

semantic space similarity. To increase the distinguishability among the hash codes, LHOH designs triple supervision 

learning mechanisms, including assigning Hadamard codes, projecting labels, and embedding labels. To validate the 

performance of the proposed LHOH method, this paper sets up the approximate nearest neighbor (ANN) search comparative 

experiments on two widely used datasets. The final results show that LHOH outperforms six current state-of-the-art online 

methods.  

Keywords - Online hashing, Hadamard code, Label projection, Triple supervision, Image retrieval. 

1. Introduction 
With the development of Internet technology, massive 

multimedia data streaming such as images, videos, and 

audio are flooding into the network. And they are 

characterized by diversity, rapid growth, and large quantity. 

For large-scale multimedia data, it has become a prevalent 

issue for fast response the multimedia retrieval request in 

the computer vision field. 

 

Traditional hashing methods[1-5] map high-

dimensional floating-point data into compact binary codes 

and preserve their original similarity relationship in the 

Hamming space.[6-9] Hash-based approximate nearest 

neighbor (ANN) search methods have been widely used to 

respond to large-scale multimedia ANN search tasks[10-12] 

due to their less storage space and fast computation. 

However, traditional hashing methods learn the hash 

function offline and should re-compute the hashing 

functions based on all data when new multimedia data 

arrives. Unfortunately, the internet dataset rapidly increases, 

which leads to the high training time complexity of offline 

learning procedures. Online hashing algorithms learn 

hashing functions based only on new data streaming to solve 

the above problem. However, data streaming has the 

characteristics of uncertainty, real-time, and novelty, which 

makes it a challenge to update hash functions online with 

high quality. 

 
Recently, researchers proposed online hashing such as 

Online Kernel Hashing(OKH),[13] Adaptive Hashing 

(AdaptHash),[14] and Online Supervised Hashing 

(OSH)[15] to respond fast the real-time multimedia ANN 

search task. Online hashing often uses a sign function to 

map floating point data to binary codes. However, the sign 

function usually causes NP-hard problems. To avoid this 

problem, AdaptHash and Hadamard Codebook based on 

Online Hashing (HCOH)[16] transform the objective 

function solution space into an approximately continuous, 

which usually results in inefficient optimization.[17] With 

the development of discrete optimization in traditional 

hashing methods,[18] Some online hashing algorithms [17, 

19, 20] propose to update the objective function using a 

discrete iterative scheme, which builds the foundation for 

the discrete optimization of online hashing.  

 

In practical applications, the new and old datasets are 

significantly different in the quantity and content of the 

features. As a result, this causes a data imbalance problem 

and leads to asymmetric sparse semantic similarity 

matrices.[17] To solve the above problem, BSODH 

separately assigns different weight values to the similar and 

dissimilar sample pairs by utilizing two balancing factors. 

However, BSODH artificially sets the balancing factors, 

which may change the original distance between the new 
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and old datasets. LPOH maps labels to hash codes and 

considers the label projection matrix as weight values. 

Unfortunately, the target matrix is unknown, and the binary 

codes are discrete in LPOH. Its objective functions are hard 

to optimize. 

 

This paper proposes Label projection based on 

Hadamard codes for Online Hashing(LHOH), which jointly 

exploits label projection and similarity preservation 

mechanism to solve the data imbalance problem. LHOH 

offline generates Hadamard codes based on the data label 

and utilizes them as the target domain for the label 

projection. Then, we can directly obtain the closed solution 

of the label projection matrix using a least square regression 

method. Afterwards, the label projection matrix is utilized 

as the label weight value. We compute the semantic 

similarity matrix between the new and old datasets based on 

the weight labels. As a result, we resolve the data imbalance 

problem of the semantic similarity matrix. In addition, 

LHOH establishes a triple supervision mechanism in the 

three processes: Hadamard encoding, label projection, and 

similarity matrix learning. This process utilizes labels as 

supervision information that enhances the performance of 

semantic similarity preservation in Hamming space. 

2. Related Work  
Online hashing updates the hash functions according to 

new data streaming, which can obtain superior ANN search 

performance on old and new datasets. With the advantages 

of low training complexity, insufficient storage space 

occupation, and flexible application scenarios, more 

researchers have focused on online hashing. We roughly 

divide the online hashing algorithms into unsupervised and 

supervised methods based on whether using the label as 

supervision information.  

 

Unsupervised online hashing[21-23] learns hashing 

functions based on the intrinsic properties and regularity of 

the dataset. And the training process does not require 

supervised information, such as data labels. Sketching 

Hashing (SketchHash)[21] employ the frequent direction 

algorithm (FD)[24] to draw the sketch matrix of the data. 

SketchHash can obtain the key information of the samples, 

which solves the problem of excessive storage space 

occupation in large-scale image retrieval. To accelerate the 

rate of learning the hashing function, FasteR Online 

Sketching Hashing (FROSH)[22] utilizes the Subsampled 

Randomized Hadamard Transform (SRHT)[25] to 

compress the data, which further reduces the time 

complexity of SketchHash. Angular Quantization Online 

Hashing (AQOH)[23] preserves the original similarity 

relationship in Hamming space by minimizing the 

Hamming distance and cosine distance among the new and 

old datasets. As the unsupervised online hashing training 

does not involve the data label, it cannot preserve the 

original semantic similarity relationship. As a result, it has 

an inferior semantic ANN search performance.[26] 

 

The supervised online hashing[13-17, 19, 20, 26-29] 

utilize the label information to supervise the process of 

learning hash functions. Furthermore, supervised online 

hashing[14-16, 26, 43] utilizes the Stochastic Gradient 

Descent mechanism(SGD)[30] to optimize the objective 

function, which can save storage space. Online Kernel 

Hashing(OKH)[13] uses the Passive-Aggressive (PA) [31] 

strategy to optimize the hash model while retaining the key 

information from both new and old datasets. Adapt Hashing 

(AdaptHash)[14] defines hinge-like loss as reducing the 

distance of the similar data pairs and increasing the 

dissimilar data pairs, which can improve the ANN search 

performance. Based on information theory, Online Hashing 

with Mutual Information(MIHash)[26] considers mutual 

information between neighbors and non-neighbors to 

reduce the ambiguities of neighborhoods in the Hamming 

space. Online Supervised Hashing (OSH)[15] proposes a 

two-step learning approach. It is achieved by assigning 

Error Correcting Output Codes(ECOC)[32-34] to the data 

and then learning the hash function to adapt the anonymous 

labeled data in the online learning framework. Hadamard 

Codebook-based Online Hashing (HCOH)[16] takes the 

Hadamard matrix as an ECOC and assigns the Hadamard 

codes to the data based on label information. As a result, 

HCOH is robust to noise. Online selection hashing 

(OSelH)[27] proposes an online bit selection method to 

capture data features, ensuring a low correlation between 

hash functions. Hadamard Matrix Guided Online Hashing 

(HMOH)[43] considers the Hadamard matrix columns as 

the target codes. HMOH adopts the hash function as a 

binary classifier to minimize the quantization errors in the 

relaxation process. Fast Class-wise Updating for Online 

Hashing(FCOH)[29] compensates for the poor adaption and 

inefficiency of online hashing by rapidly updating the hash 

function in terms of the data classes and optimizing the 

objective function by a semi-relaxation method. 

 

While online hashing relies on traditional 

relaxation,[35, 36] the discrete space is converted to 

approximately continuous space, leading to inefficient 

optimization of the objective function. Online hashing[17, 

19, 20] employs a discrete iterative scheme for optimizing 

the objective function to address the above problem. 

Balanced Similarity for Online Discrete Hashing (BSODH) 

designs two balancing factors that balance new and old 

datasets' similarity matrices to solve the data imbalance 

problem.[17] Scalable Supervised Online Hashing(SSOH) 

introduces an intermediate variable to replace the hash 

codes of the old dataset, which both alleviates the data 

imbalance problem and teaches the semantic information of 

the hash codes.[20] To balance the semantic similarity 

matrix between new and old datasets, Label Projection 

Online Hashing for Balanced Similarity (LPOH) maps 

labels into hash codes and utilizes the label projection 

matrix to attribute different weight values to labels.[19] 

However, optimizing the objective function is difficult as 

LPOH is affected by the binary code discretization and the 

unknown label projection matrix. 

 

This paper proposes a novel supervised method to solve 

the data imbalance problem and maintain a similar 

relationship between new and old datasets. We term this 
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proposed method as a Label projection based on Hadamard 

codes for Online Hashing (LHOH). Figure 1 shows the 

LHOH consists of three major components: Hadamard 

codes, label projection, and similarity preservation. 1) First, 

we generate offline Hadamard matrices and then use 

Hadamard matric columns as Hadamard codes. Afterwards, 

as in (a) and (i), we assign Hadamard codes to the new and 

old data according to their label information. It is the first 

supervised learning process based on the label classes. 2) As 

in (b), (c), (f), and (h), this paper aligns the length of the 

Hadamard codes and the hash codes by employing the 

Locality Sensitive Hashing (LSH). We generate the label 

projection matrix V by projecting the labels into Hadamard 

codes. It is the second supervised learning process based on 

label information. Then, as in (d) and (g), we reconstruct the 

weight semantic similarity matrix by using the label 

projection matrix as the label weight values, which can 

avoid data imbalance. It is the third supervised learning 

process based on the label classes. 3) We set the semantic 

similarity preservation and codes error constraint to ensure 

the ANN search performance in the Hamming space. Of 

these, the semantic similarity preservation constraint 

ensures similarity relations between Hamming and original 

semantic space, which minimizes the error between the 

inner product of the hash codes and the semantic similarity 

matrix, as in (d), (e), and (g). As in (j) and (k), code error 

constraint preserves the characteristics of the data itself by 

minimizing the error between the hash code and the hash 

function of the new dataset. 

 

As described above, the contributions of the proposed 

LHOH method are as follows.  

• LHOH utilizes the Hadamard codes instead of hash 

codes as the label projection target domain. 

Furthermore, we consider the label projection matrix as 

label weight values, which can solve the data imbalance 

problem by balancing the similarity matrix between the 

new and old datasets. In addition, the label projection 

matrix can get a closed solution using the least square 

regression method, which facilitates the discrete 

iterative optimization of the objective function. 

• To solve the data imbalance problem, LHOH unites 

label projection and similarity preservation 

mechanisms. That maintains the Hamming and 

semantic space similarity. 

• Relationship and automatically balances the similarity 

matrix between the new and old datasets. 

• To enhance the distinguishability of different labels' 

hash codes, LHOH sequentially implements the triple 

supervision processes based on labels, which includes 

the Hadamard codes, label projection, and learning 

similarity matrix. As a result, this can increase the 

classification ability of hash codes. 

 

3. The Proposed Method 
3.1. Problem Definition 

Figure 2 shows the training and ANN search process 

based on online hashing. As new data streaming arrives, the 

online hashing will update the current hash function F(X) 

(a) and generate the hash code (b) in real time. At the same 

time, we can update the binary codes of the old dataset 

according to the hash function F(X), as shown in (c) and (d). 

Finally, when retrieving the nearest neighbor, the query 

dataset must generate binary codes depending on the hash 

function F(X). Online hashing computes the Hamming 

distance relationship between hash codes to query nearest 

neighbor samples in the new and old datasets, as shown in 

(e) and (f). 

 

To ensure that the online hashing can achieve better 

nearest neighbor retrieval performance in Hamming space, 

the Hamming distance relationship between the new and old 

datasets should be consistent with their semantic 

relationships. During the training process, online hashing 

often establishes a semantic similarity matrix based on the 

label classes of the new and old datasets. However, there are 

significant differences in the number of samples and the 

label classes, which makes the established semantic 

similarity matrix sparse and asymmetric.  

 

 

 
Fig.  1 Framework diagram of the LHOH algorithm process. We can divide the framework diagram into three significant parts: Hadamard 

codes, label projection, and similarity preservation. Assign new and old dataset Hadamard codes as parts (a) and (i). In parts (b) and (h), the 

labels project to Hadamard codes for obtaining the projection matrix V for both new and old datasets. In similarity preservation, parts (d), (e), 

and (g) demonstrate the preservation of similarity between Hamming and semantic space; (j) and (k) illustrate the preservation of the 

characteristics for the new data streaming itself. 
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Fig. 2 Diagram of online hashing and nearest neighbor retrieval for online learning. Online hashing updates the hash function based on the new 

data streaming and generates binary codes for new and old datasets. 

 

 
Fig.  3 Diagram of the data imbalance problem. Different colors of data mean that they have other labels. 

 

 
Fig. 4 Diagram of the process of distributing Hadamard codes. Hadamard codes are colored to match the corresponding data colors. 

 



Nannan Wu et al. / IJCSE, 10(1), 1-16, 2023 

 

5 

The number of dissimilar pairs is more extensive than 

similar pairs, which leads to a data imbalance problem. 

When the label of the new dataset is different from the old 

dataset. The new dataset and all the old datasets constitute 

other sample pairs. It results from the old dataset having 

similar binary codes, thus reducing the distinguishability 

between the old datasets' binary codes and weakening ANN 

search performance within the Hamming space.  

 

Figure 3 illustrates the data imbalance problem, which 

minimizes the distinguishability of the binary codes. In 

Figure 3, we built the semantic similarity matrix (b) 

according to the similarity relationship between the labels 

of the new and old datasets (a). The similarity matrix has a 

value of 1 if the samples' labels are similar. Otherwise, the 

value is 0. There is a disparity between the new and old 

datasets, such as numbers and labels. Since the quantity of 

0 is greater than 1, the similarity matrix is unbalanced and 

asymmetric, resulting in a data imbalance problem. For 

example, the labels are different between the new data a and 

the old data e, f, and g. So, the values in the similarity matrix 

are all 0. Assuming that the binary code of a is [1,-1,-1,1,-

1,-1,-1,-1,-1], we maximize the Hamming distance between 

the new data a and the old data e, f, and g to preserve the 

original semantic similarity relationship between the 

samples in Hamming space. Then it will make the old data 

e, f, and g have the same binary codes [-1,1,1,-1,1,-1,1,-1], 

as shown in (c). Although the old data e, f, and g have 

different labels, they are less distinguishable from any 

sample with the same Hamming distance. 

 

In this paper, to simulate the real-time training process 

of online hashing, the entire samples dataset X is divided 

into old and new datasets： X=[Xs
t ,Xe

t ]∈Rd×n, where d 

denotes the dimensionality of the data features and n is the 

number of total samples.  Xs
t =[xs1

t ,……,xsnt

t ]∈Rd×nt 

denotes the feature vectors of the new dataset generated by 

t-batch, also called streaming data. And Ls
t =[ls1

t
,……,lsnt

t ]∈

{1,0}c×nt  is its label vector, where nt is the size of the t-

batch. The vector xsi
t  in Xs

t  means that the label of the i-th 

instance is lsi
t

. Hs
t =[hs1

t
,……,hsnt

t ]∈{-1,1}m×nt denotes 

Hadamard codes matrix consistent with Xs
t . 

Xe
t =[xe1

t ,……,xe(n-nt)
t ]∈Rd×(n-nt) denotes the feature vectors 

of the old dataset and Le
t =[le1

t
,……,le(n-nt)

t ]∈{1,0}c×(n-nt) 

denotes its label vector. The corresponding Hadamard codes 

matrix of the old dataset is He
t =[he1

t
,……,he(n-nt)

t ]∈

{-1,1}
m×(n-nt). L=[Ls

t ,Le
t ]∈{1,0}c×n is the entire sample 

dataset label, where c is the number of classes of the sample. 

H=[Hs
t ,He

t ]∈{-1,1}m×n denotes the corresponding 

Hadamard codes matrix of the dataset, where m is the length 

of the Hadamard codes matrix.  

 

The hash codes for the new and old datasets are 

B=[Bs
t ,Be

t ]∈{-1,1}
k×n

, where k denotes the length of the 

hash code. Bs
t =[bs1

t
,……,bsnt

t
]∈{-1,1}

k×nt denotes the hash 

codes of the new dataset  Xs
t . Be

t =[be1
t

,……,be(n-nt)
t

]∈

{-1,1}
k×(n-nt) denotes the hash codes of the old dataset Xe

t . 

Alternatively, the hash function generated based on the t-

batch dataset is defined as： 

B=F(X)=sgn((Wt)
T
X)    (1)  

 

Wt=[w1
t  ,……,wk

t ]∈Rd×k is the projection matrix from the 

t-batch dataset to the binary hash codes. Sign function 

sgn(x) returns +1 if the variable x > 0. Otherwise, it returns 

1. 

 

3.2. The Data Imbalance Problem 

Online hashing aims to update the hash function only 

based on the new data streaming in real-time and preserve 

the original semantic similarity relationship between the 

new and old datasets in Hamming space. However, the 

number and classes are different between the new and old 

datasets, which leads to the data imbalance problem of the 

semantic similarity matrix. As a result, the ANN search 

performance of online hashing is inferior. This paper takes 

Hadamard codes as the projection target domain of the 

semantic labels, which simplifies the solution of the label 

projection matrix to a least square problem. Furthermore, 

we use the label projection matrix as the semantic label 

weight to automatically balance the semantic similarity 

matrix. 

 

3.2.1. Hadamard codes 

To avoid the data imbalance problem in the semantic 

similarity matrix, we utilize the label projection weight 

matrix A to assign different weight values to the labels Ls 

and Le.[19] The semantic similarity preservation objective 

function is defined in Equation 2. Where Bs and Be denote 

the hash codes of the new and old datasets, respectively. A 

is the projection matrix mapping the semantic labels to the 

hash codes. 

min
Bs,Be, A

‖(Bs)
T
Be-k(ALs)

T
ALe‖

F

2
    (2) 

 

In Equation 2, Bs and Be are discrete binary codes. A 

is an unknown matrix, which makes it a challenge to 

optimize this objective function directly. This paper 

proposes a two-step mechanism to solve the above 

problem. The weight  

matrix A is solved first. Then the objective function is 

optimized. 

 

The projection matrix V∈Rc×k substitutes the label 

projection weight matrix A. We can pre-calculate the label 

projection matrix V, mapping the data label L to the 

Hadamard code H and using it as the label weight value. The 

projection matrix V minimizes the error between the 

projection target domain H and the projection value L. The 

function is defined in Equation 3. 

min
V

‖HT-LTV‖
F

2
    (3) 

 

To obtain the closed solution of the label projection 

matrix, we replace the hash code B with the Hadamard code 

H to be the target domain for the projection of the label L in 

the training dataset. The convergence of hash codes 

generated by the same label data, and the distinguishability 

generated by dissimilar is the goal of label projection to hash 
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codes. [2] In this paper, Hadamard codes pre-meet the 

projection target domain expectation. The same label data 

have consistent Hadamard codes, and dissimilar have 

distinguishable Hadamard codes. Therefore, Hadamard 

codes can be ideal target codes for label projection. In 

addition, Hadamard codes have the following advantages 

over hash codes. 1) We can obtain Hadamard codes from 

the Hadamard matrix columns.[37] It only has two values, 

including +1 and -1, which conform to binary codes' 

characteristics; 2) Hadamard codes satisfy orthogonality 

and equilibrium. Any code pairs have maximum and equal 

Hamming distance, which provides more substantial error 

correction. 

 

In this paper, the length of the Hadamard code H is 

m=2a(a=1,2,3,4…….) and the number of the label is c. To 

ensure that each label has a different Hadamard code H, the 

relationship between m and c should satisfy m≥c. In 

addition, the Hadamard code length m should be larger than 

the hash code length k, defined as m≥k. To satisfy all three 

conditions simultaneously, we define the process of 

selecting the Hadamard code length as in Equation 4. 

 

m= min{l|l=2a,l≥k,l≥c,a=1,2,3,4……}    (4) 

 

Inspired by HCOH and HMOH, Figure 4 shows the 

process of assigning Hadamard codes to the dataset, which 

consists of two main steps. 1) Pre-construct a Hadamard 

matrix of length m (a) and use the Hadamard matrix 

columns as Hadamard codes; 2) we assign Hadamard codes 

according to labels. This achieves the first supervised 

learning process based on label information. The 

distribution principle follows assigning the same Hadamard 

codes to the same label data and the difference to the 

dissimilar, as shown in Figure 4(b).  

 

3.2.2. Label Projection Matrix 

Following section 3.2.1, Hadamard codes are assigned 

to the data according to the label, generating the Hadamard 

codes matrix Hs and He for the new and old datasets. In 

addition, we convert the solution of the label projection 

matrix V into a least square problem, which implements the 

second supervised learning process based on label classes. 

Online hashing updates the hash function according to new 

streaming in real-time. When new streaming arrives in t-

batch, the new and old dataset label vectors Ls
t  and Le

t  

project onto their Hadamard codes Hs
t  and Hs

t . The formula 

is defined as follows： 

 

min
Vt

‖(H
s

t
)
T
-(L

s

t
)
T
Vt‖

F

2

+ ‖(H
e

t
)
T
-(L

e

t
)
T
Vt‖

F

2

+μt‖Vt‖F
2     (5) 

 

Vt∈Rc×k is the projection matrix which maps the label 

vectors of the new and old datasets onto the corresponding 

Hadamard codes matrix in t-batch. μt is the prevent 

overfitting coefficients in t-batch.  

 

This paper considers Hadamard codes instead of hash 

codes as the target domain for label projection. The 

Hadamard code length m should be the same as the hash 

code k. The pre-designed Hadamard code length may be 

longer than the hash code length, as in section 3.2.1. So it is 

necessary to align the Hadamard codes with hash codes. 

Locality Sensitive Hashing (LSH)[38] can reduce the 

Hadamard code length while preserving their similar 

structure.[16, 43] Therefore, we use the LSH to align m with 

k. The formula is defined as follows： 

H̃=sgn(W̃
T
H)    (6) 

 

When m>k, W̃
T
∈Rm×k is the random Gaussian 

projection matrix. m=k, W̃
T
∈Rm×k is the identity matrix. H 

is the Hadamard code assigned to the data, and H̃ denotes 

Hadamard code for the aligned hash code length. 

 

Combining Equations 5 and 6, the Equation for the 

projection of labels to Hadamard codes is redefined as 

follows: 

               min
Vt

‖(sgn(W̃
T
Hs

t ))
T

-(Ls
t )

T
Vt‖

F

2

+ ‖(sgn(W̃
T
He

t ))
T

-

                                                           (Le
t )

T
Vt‖

F

2

+ μt‖Vt‖F
2     (7) 

 

Let H̃s

t
= sgn(W̃

T
Hs

t ), H̃e

t
= sgn(W̃

T
He

t ). Equation 7 is 

rewritten as follows: 

 

min
Vt

‖(H̃
s

t
)
T
-(Ls

t )
T
Vt‖

F

2

+ ‖(H̃
e

t
)
T
-(Le

t )
T
Vt‖

F

2

+μt‖Vt‖F
2     (8) 

 

In contrast to LPOH, we project the labels to Hadamard 

codes and consider the label projection matrix as the label 

weight value. It can solve the data imbalance problem by 

balancing the semantic similarity matrix between the new 

and old datasets. This paper constructs semantic similarity 

matrices for new and old datasets by embedding labels to 

achieve the third supervised learning process based on label 

classes. It helps the hash codes generated from the same 

labels data to converge and the differences to be 

inconsistent. When the t-batch of new data streaming 

arrives, we can attribute weight values to the data labels 

using the label projection matrix V. (Vt)
T
Ls

t  and (Vt)
T
Le

t  

denote the weight labels of the new and the old datasets. The 

balanced semantic similarity matrix S't between the new and 

old datasets is defined as follows: 

 

S't= ((Vt)
T
Ls

t )
T

((Vt)
T
Le

t )    (9) 

 

Vt∈Rc×k is the projection matrix which maps the 

label vectors of the new and old datasets onto the 

corresponding Hadamard codes matrix in t-batch. 
 

Let L̃s

t
=(Vt)

T
Ls

t , L̃e

t
=(Vt)

T
Le

t . Equation 9 can be 

rewritten as follows: 

S't=(L̃s

t
)
T
L̃e

t
    (10) 

3.3. Similarity Preservation 

To ensure the semantic similarity of Hamming space is 

consistent with the original, we try to minimize the inner 

product of hash codes and the semantic similarity matrix 
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between the new and old datasets. As mentioned in Section 

3.1, the direct construction of the similarity matrix suffers 

from data imbalance. In Section 3.2, this paper projects the 

label L onto the Hadamard codes matrix H and utilizes the 

projection weight matrix V to balance its similarity matrix. 

Combining Equation 10, preserving the consistent 

similarity within the Hamming and original space is defined 

as follows： 

min
Bs

t ,Be
t

‖(Bs
t )

T
Be

t -kS't‖
F

2

    (11) 

 

Where Bs
t∈{-1,1}

k×nt is the hash codes obtained from 

the new dataset learning in t-batch, Be
t∈{-1,1}

k×(n-nt) is the 

hash codes obtained from the old dataset learning in t-batch, 

and S't∈{1,-1}
nt×(n-nt) is the balanced semantic similarity 

matrix of labels for the new and old datasets in t-batch. From 

Equation 11, the old dataset participates in the updating 

process of the hashing function. That ensures the generated 

online hash model can achieve a satisfied ANN search 

performance for both new and old datasets. 

 

To learn the structure of the new data features, we need 

to quantify the error of the hashing function and hash codes 

for new streaming data. According to Equation 1, the 

quantization between the hashing function and hash codes 

is defined as follows: 

min
Bs

t ,Wt
‖Bs

t -sgn(Wt)
T
Xs

t ‖
F

2

+λ
t‖Wt‖F 

2     (12) 

λ
t
 is the coefficient to avoid the overfitting problem in the t-

batch. 

 

Since sgn(.) is a discrete notation, optimizing Equation 

12 is an NP-hard problem. We consider a linear function 

(Wt)
T
Xs

t  instead of the discrete function sgn((Wt)
T
Xs

t ), 

which transforms the discrete problem into a linear 

regression problem. Equation 12 is rewritten as follows: 

 

min
Bs

t ,Wt
‖Bs

t -(Wt)
T
Xs

t ‖
F

2

+λ
t‖Wt‖F 

2     (13) 

 

According to Equations 8, 11, and 13, the overall 

objective function is defined as follows: 

 

min
Bs

t ,Be
t ,Wt,Vt

‖(H̃
s

t
)
T
-(Ls

t )
T
Vt‖

F

2

+ ‖( H̃
e

t
)
T

 -(Le
t )

T
Vt‖

F

2

+ 

‖(Bs
t )

T
Be

t -kS't‖
F

2

+φt ‖Bs
t -

(Wt)
T
Xs

t ‖
F

2

+μt‖Vt‖F
2 +λ

t‖Wt‖F 
2                                           (14) 

Where φt is the balance coefficient, S't=(L̃s

t
)
T
L̃e

t
. 

 
3.4. Optimization 

Due to the constraints of the binary codes in Equation 

14, the objective function is non-convex which makes the 

objective variables hard to optimize. This paper updates the 

objective variables using an alternating iterative 

optimization algorithm. We can fix other variables when 

updating a variable until the objective function converges in 

each round. The optimization process is as follows: 

3.4.1. Updating Vt 

When updating Vt, we can consider H̃s

t
, H̃e

t
, Le

t  and Ls
t  

as a fixed variable, the objective function (14) is redefined 

as follows: 

min
Vt

‖(H̃
s

t
)
T
-(Ls

t )
T
Vt‖

2

+ ‖( H̃
e

t
)
T

-(L
e

t
)
T
Vt‖

2

+μt‖Vt‖2    (15) 

 

We directly solve the variable Vt using the least square 

regression method. The solution is defined as follows: 

 

Vt=(L
s

t
(Ls

t )
T
+Le

t (Le
t )

T
+μtI1)

-1

(Ls
t (H̃s

t
)
T
+Le

t (H̃e

t
)
T
)    (16) 

 

Where I1∈Rc×c is an identity matrix. 

 

3.4.2. Updating Wt 

Fixing the variables Bs
t  and Be

t , the objective function 

(14) is redefined as follows： 

min
Wt

φt ‖Bs
t -(Wt)

T
Xs

t ‖
F

2

+λ
t‖Wt‖ 

F

2
    (17) 

 

Therefore, the closed solution for Wt can be obtained 

as： 

Wt=φt(φtXs
t Xs

t )
T
+λ

t
I2)

-1

Xs
t (Bs

t )
T
    (18) 

Where I2∈Rd×d is an identity matrix. 

 

3.4.3. Updating Be
t  

Fixing the variables Wt and Bs
t , the objective function 

14  is redefined as follows： 

min
Be

t
‖(Bs

t )
T
Be

t -kS't‖
F

2

    (19) 

 

The squared Frobenius norm replaces with the L1 

norm.[17, 39] Equation 19 can be rewritten as follow: 

 

min
Be

t
‖(Bs

t )
T
 Be

t -kS't‖
1

    (20) 

 

Solving for Equation 20 yields the closed solution of 

Be
t  as follows: 

Be
t =sgn(Bs

t S't)    (21) 

 

3.4.4. Updating Bs
t  

Fixing the variables Wt and Be
t , the objective function 

14 is redefined as follows： 

 

min
Bs

t
‖(Bs

t )
T
 Be

t -kS't‖
F

2

+φt ‖Bs
t -(Wt)

T
Xs

t ‖
F

2

    (22) 

 

By simplifying Equation 22 as the tr(.) operation of the 

matrix, Equation 22 can be rewritten as follow: 

 

min
Bs

t
‖(Be

t )
T
 Bs

t ‖
F

2

+ ‖kS't‖
F

2

-2tr(kS't(Be
t )

T
Bs

t ) +φt(‖Bs
t ‖F

2 + 

‖(Wt)
T
Xs

t ‖
F

2

-2tr((Xs
t )

T
WtBs

t ))    (23) 
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Where tr(.) is the trace norm. By removing the constant 

term unrelated to Bs
t , Equation 23 can be rewritten as follow 

min
Bs

t
‖(Be

t )
T
Bs

t ‖
F

2

-2tr(CTBs

t
)    (24) 

Where C=kBe
t (S't)

T

+φt(Wt)
T
. 

 

Due to Bs
t  is discrete, solving Bs

t  is an NP-hard problem. 

Inspired by the Discrete Cycle Coordinate Descent Method 

(DCC) proposed in SDH,[1] this paper solves each line of 

the binary codes Bs
t  by fixing the other lines. We describe 

the process as follows： 

 

Firstly, let c̅i
t, b̅si

t
 and b̅ei

t
 be the i-th row of matrices C, 

Bs
t  and Be

t , respectively. C̅, B̅s
t
 and B̅e

t
 are the matrices 

obtained by removing the i-th row from matrix C, Bs
t  and 

Be
t , respectively. Equation 24 is redefined as follows: 

 

min
Bs

t
‖(B̅e

t
)
T
B̅s

t
‖

F

2

+ ‖(b̅ei

t
)
T

b̅si

t
‖

F

2

+2tr((B̅s
t
)
T
B̅e

t
(b̅ei

t
)
T
b̅si

t
)- 

2tr(C̅
T
B̅s

t
)-2tr((c̅i

t)
T
b̅si

t
) c̅i

t     (25) 

 

Then, the constant term in Equation 25 is removed as 

follows: 

min
b̅si

t
tr(((B̅s

t
)
T
B̅e

t
(b̅ei

t
)
T
-(c̅i

t)
T
)b̅si

t
)     (26) 

Finally, the value of each line in Bs
t  is computed as 

follows: 

b̅si

t
=sgn(c̅i

t-b̅ei

t
(B̅e

t
)
T
B̅s

t
)    (27) 

 

This paper uses an iterative alternating update method, 

which updates the variables Vt, Wt, Be
t  and Bs

t  sequentially 

until the objective function converges. 
 

Algorithm 1 summarizes the main procedures of the 

proposed BSODH. 
 

Algorithm 1: Label projection based on Hadamard 

codes for Online Hashing(LHOH) 

Input： 

Training dataset: X=[Xs
t ,Xe

t ]∈Rd×n 

Training dataset labels: L=[Ls
t ,Le

t ]∈{1,0}
c×n

 

Hadamard codes matrix corresponding to training 

dataset: H=[Hs
t ,He

t ]∈{-1,1}m×n 

Length of the hash codes: k 

Parameters: φt, μt, λt 

(1) Set the total number of streaming data batches T; 

(2) According to Equation 4, the value of the 

Hadamard codes matrix length is determined, 

and the Hadamard codes matrix is constructed 

offline; 

(3) if m=k then 

(4)   W̃
T
 is an identity matrix; 

(5) else 

(6)   W̃
T
 is a random Gaussian projection matrix; 

(7) According to Equation 6, Hadamard codes are 

aligned with hash codes. 

(8) for t=1→T do 

(9)   Define the new data streaming generated in t-

batch as Xs
t . 

(10)  if t=1, then 

(11)    Initialize Wt, Bs
t , Be

t； 

(12)   else 

(13)    According to Equation 16, update Vt； 

(14)    According to Equation 10, compute S't； 

(15)    Initialize Bs
t； 

(16)    According to Equation 18, update Wt；  

(17)    According to Equation 21, update Be
t； 

(18)    repeat 

(19)    if i=1→k then  

(20)      According to Equation 27, update b̅si

t
； 

(21)      end for 

(22)    until(Convergence or reaching the maximum 

number of iterations) 

(23)  end if 

(24)end for 

(25)Update X and B； 

(26)Set W=Wt； 

(27)Compute  B=sgn(WTX)； 

Output: W, B 

 

4. Results  
4.1. Datasets 

This paper adopts three widely used public datasets, 

including CIFAR-10, MNIST, and Places205. 

 

The CIFAR-10 dataset consists of 60,000 samples 

containing ten classes, and each sample is 4096 dimensional 

CNN vectors.[40] Based on the paper,[17] we divide the 

whole dataset into two parts: 59000 data as a retrieval set 

and 10000 data as a test set. To suit the need for online 

hashing, we divide the entire retrieval set into new and old 

datasets. Among them, the new dataset contains 20,000 

data. The new dataset arrives in batches of 2000 data each, 

divided into ten batches. 

 

The MNIST datatset[41] consists of 70,000 

handwritten digital image data, where each data dimension 

is 784 and contains ten classes. Among them, we extract 100 

data from each class to form the test set, and the remaining 

data are the retrieval set. The entire retrieval set includes old 

and new datasets. The new dataset contains 20,000 samples. 

The new dataset arrives in batches of 2000 data each, 

divided into ten batches. 

 

Places205 has 250 million images containing 205 

classes. We extract the image features by the AlexNet fc7 

layer[42] and then downscale to 128 dimensions by PCA. 

In this experiment, the entire Places205 extract datasets of 

16 classes with a total of 204,715 images. Each class 

extracts 100 images as the test set and the rest as the retrieval 

set. The entire retrieval set contains old and new datasets. 

Due to the large size of the Places205 dataset, we extract 

40,000 data as new datasets for the retrieval set. The new 

dataset arrives in batches of 4000 data each, divided into ten 

batches. 
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Table 1. The mAP and mAP@1000 results of various methods on CIFAR-10 with different code lengths. 

Method mAP mAP@1000 

16-bit 32-bit 48-bit 64-bit 128-bit 16-bit 32-bit 48-bit 64-bit 128-bit 

OKH 0.1002 0.1664 0.2981 0.3301 0.3557 0.1063 0.2361 0.4315 0.4736 0.5164 

AdaptHash 0.2546 0.2155 0.1964 0.1983 0.2191 0.3205 0.3527 0.3917 0.3811 0.3177 

SketchHash 0.2932 0.3136 0.3373 - - 0.4129 0.4714 0.4984 - - 

OSH 0.1242 0.1163 0.1221 0.1306 0.1349 0.1650 0.1596 0.1561 0.1412 0.1943 

MIHash 0.6382 0.6301 0.6141 0.6009 0.5634 0.6575 0.6105 0.6827 0.6595 0.6248 

BSODH 0.6402 0.6899 0.6748 0.6926 0.6992 0.7103 0.7327 0.7370 0.7403 0.7562 

LHOH 0.6688 0.7025 0.6790 0.7185 0.7299 0.7208 0.7554 0.7494 0.7679 0.7811 
 

Table 2. The mAP and mAP@1000 results of various methods on MNIST with different code lengths. 

Method 
mAP mAP@1000 

16-bit 32-bit 48-bit 64-bit 128-bit 16-bit 32-bit 48-bit 64-bit 128-bit 

OKH 0.1002 0.1802 0.3023 0.3334 0.3983 0.1103 0.4598 0.6025 0.6275 0.7229 

AdaptHash 0.1938 0.2235 0.2047 0.2589 0.2228 0.3187 0.2513 0.3454 0.3143 0.3747 

SketchHash 0.3331 0.3482 0.3766 - - 0.5696 0.6774 0.7187 - - 

OSH 0.1431 0.1330 0.1287 0.1633 0.1671 0.1527 0.1832 0.1892 0.2213 0.2760 

MIHash 0.6300 0.7099 0.6884 0.7333 0.7241 0.7579 0.8030 0.7970 0.8348 0.8450 

BSODH 0.6589 0.7098 0.7229 0.7386 0.7392 0.7614 0.7837 0.8167 0.8297 0.8391 

LHOH 0.6716 0.7158 0.7252 0.7548 0.7610 0.7638 0.8180 0.8201 0.8457 0.8614 
 

Table 3. The mAP and mAP@1000 results of various methods on Places205 with different code lengths. 

Method 
mAP mAP@1000 

16-bit 32-bit 48-bit 64-bit 128-bit 16-bit 32-bit 48-bit 64-bit 128-bit 

OKH 0.0625 0.1353 0.3382 0.3962 0.4364 0.0679 0.3570 0.5628 0.6089 0.6590 

AdaptHash 0.1731 0.2348 0.1484 0.1597 0.1851 0.3157 0.3711 0.2031 0.2552 0.2590 

SketchHash 0.3303 0.3791 0.4007 - - 0.5352 0.6164 0.6511 - - 

OSH 0.0914 0.0910 0.1064 0.1018 0.1118 0.1286 0.1684 0.1572 0.1849 03397 

MIHash 0.5910 0.6259 0.6489 0.6933 0.6454 0.6821 0.7143 0.7240 0.7294 0.7370 

BSODH 0.6226 0.6610 0.6787 0.6933 0.7096 0.7011 0.7332 0.7422 0.7631 0.7724 

LHOH 0.6336 0.6874 0.6577 0.7054 0.7167 0.7068 0.7624 0.7498 0.7680 0.7855 

 
Fig. 5 The Precision@H2 results of various methods on three datasets with different code lengths. 

 

4.2. Baselines and Evaluated Metrics 

We compare the proposed method with six more 

advanced online hashing methods, including OKH, 

AdaptHash, SketchHash, OSH, MIHash, and BSODH. 

LHOH. In addition, the baselines are on the same datasets. 

We adopt the four metrics to measure the performance of 

nearest neighbor retrieval for each method. 

 

The four metrics include the mean Average 

Precision(mAP), mAP on the top-1,000 retrieved 

items(mAP@1000), precision within a Hamming ball of 

radius two centered on each query(Precision@H2), and 

mean precision of the top-R retrieved neighbors 

(Precision@K). 

4.3. Overall Comparison with Baselines 

LHOH and the baselines map the samples to the binary 

codes with 16-bit, 32-bit, 48-bit, 64-bit, and 128-bit lengths, 

respectively. They retrieve the nearest neighbor samples 

based on Hamming distance.  
 

4.3.1. mAP and mAP@1000 

Table 1 shows the mAP and mAP@1000 results for 

LHOH and the baselines on the CIFAR-10 datasets. Where 

bold and underlining indicate the best and second-best 

results, respectively. From Table 1, we can draw that the 

proposed LHOH has the best ANN search performance. 

When the hash code length is 16-bit, 32-bit, 48-bit, 64-bit, 

and 128-bit, respectively, LHOH improves 2.86%, 1.26%,  
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Fig. 6 The Precision@K results of various methods on CIFAR-10 with different code lengths. 
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Fig. 7 The Precision@K results of various methods on MNIST with different code lengths. 
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Fig. 8 The Precision@K results of various methods on Places205 with different code lengths. 
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0.42%, 2.59%, and 3.07% over the second-best baseline 

BSODH in terms of mAP evaluation metric. On the 

mAP@1000 evaluation metric, LHOH improves over the 

second-best baselines BSODH by 1.05%, 2.27%, 1.24%, 

2.76%, and 2.49%, respectively. 
 

In addition, Tables 2 and 3 show the mAP and 

mAP@1000 results with different length hash codes on the 

MNIST and Places205 datasets, respectively. Tables 2 and 

3 show that LHOH has a superior ANN search performance 

than the other baselines. When the hash code length is 128-

bit, compared to the second-best baseline, the proposed 

LHOH achieves improvements of 2.18% and 1.64% on the 

MNIST, respectively. When the hash code length is 32-bit, 

the proposed LHOH improves by 2.64% and 2.92% on the 

Places205 dataset. 
 

Table 3 shows that the proposed LHOH performs 

slightly worse than BSODH with 48-bit binary code. 

Because LSH causes the length loss of Hadamard codes, 

affecting the ability to describe samples with smaller feature 

vector dimensions. That makes it challenging for different 

samples. 

 

4.3.2. Precision@H2 

Figure 5 shows the Precision@H2 metrics on three 

datasets, CIFAR-10, MNIST, and Places205. In Figure 5, 

the Precision@H2 metric of LHOH outperforms the other 

baseline methods on all three datasets. The figure shows that 

the Precision@H2 of all methods decreases when the hash 

code length reaches 128-bit. The possible reason is that the 

precision search space becomes too large to learn with good 

accuracy performance as the hash code grows.  

 

The Precision@H2 retrieval precision results of all 

experimental methods fluctuate with the change in the hash 

code length. On the MNIST, OKH fluctuates the most, and 

the proposed LHOH fluctuates the least with the best 

experimental performance. 

 

4.3.3. Precision@K 

Figures 6, 7, and 8 show the Precision@K versus the 

baseline methods on the CIFAR-10, MNIST, and Places205 

datasets, respectively. Spanning ten neighbors 

simultaneously, we set the neighbor search range to 1-100 

in this experiment. That means we can get 11 experimental 

results per bit in each method. Figures 6, 7, and 8 show that 

the proposed LHOH is higher than other baseline methods 

on different datasets. The experimental data fluctuate less 

with a more stable retrieval performance. 

 

When the hash code length is greater than or equal to 

32-bit, Figure 6 shows that LHOH performs much better 

than the other baseline methods on the CIFAR-10 dataset. 

In Figures 7 and 8, when the hash code length becomes 48-

bit, the ANN search performance of LHOH is more 

negligible than the baseline methods. LSH needs to be used 

to align Hadamard codes with the hash codes. When the 

hash codes length is 48-bit, offline generated Hadamard 

codes length is 64-bit. That results in the loss of the 

Hadamard code length. 

 

However, LHOH performs better than other methods, 

such as BSODH and MIHash. 

 

Figures 6, 7, and 8 show the Precision@K performance 

on the three different datasets. The ANN search 

performance improvement of LHOH is most remarkable in 

the CIFAR-10 dataset and less in the Places205 dataset. 

CIFAR-10 and MNIST have high and low dimensional data 

in this experiment, which affects the samples' 

expressiveness. Further, it results from achieving different 

ANN search performances on CIFAR-10 and MNIST.  

 

In summary, we select whatever the value of the hash 

codes length or the datasets of CIFAR-10, MNIST, and 

Places205. The proposed LHOH is valid by its excellent 

performance in mAP, mAP@1000, Precision@H2, and 

Precision@K evaluation metrics. 

 

4.4. Parameter sensitivity analysis 

In this section, we discuss the influence of the 

parameters μt, φt, and λt on the ANN search performance. 

We set the ANN search experiments on the CIFAR-10, 

MINIST, and Places205 datasets. Simultaneously, we use 

mAP as the performance evaluation criterion with a 64-bit 

length and set the value range of all parameters μt, φt, and λt 

to [0.1,1]. 

 

4.4.1. Influence of μt 

μt can prevent overfitting by adjusting the corresponding 

label projection matrix "V" . Figures 9 (a), (b), and (c) 

show the mAP performances on CIFAR-10, MINIST, and 

Places205 with different μt values, respectively. From 

Figure 9, we choose the ideal parameter μt=[0.3, 0.3, 0.4] 

for the CIFAR-10, MINIST, and Places205 datasets 

 

4.4.2. Influence of φt 

φt is the balance parameter that adjusts the error 

between the hash code generated by the new dataset and its 

hashing function. Figures 10 (d), (e), and (f) show the mAP 

results of parameter φt on three datasets, CIFAR-10, 

MINIST, and Places205, respectively. From Figure 10, we 

can set parameter φt =[0.6, 0.3, 0.8] for CIFAR-10, 

MINIST, and Places205 datasets. 

 

4.4.3. Influence of λt 

λt adjusts the projection matrix W to prevent 

overfitting. Figure 11 (g), (h), and (i) show the mAP results 

of parameter λt on the three experimental datasets CIFAR-

10, MINIST, and Places205, respectively. As demonstrated 

in Figure 11, the most desirable developments in the above 

three datasets are for parameters λt =[0.2,0.5,0.7].
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Fig. 8 Influence of parameter μt on the CIFAR-10, MNIST, and Places205 datasets. 

 
Fig. 9 Influence of parameter φt on the CIFAR-10, MNIST, and Places205 datasets. 

 
Fig. 10 Influence of parameter λt on the CIFAR-10, MNIST and Places205 datasets. 

 

5. Conclusion 
To solve the data imbalance problem, this paper 

proposes a novel supervised online hashing method, Label 

projection based on Hadamard codes for Online Hashing 

(LHOH), which jointly utilizes label projection and 

similarity preservation mechanism. The proposed LHOH 

uses Hadamard codes instead of hash codes as the target 

domain for label projection. As a result, we can quickly 

obtain a closed solution of the label projection matrix using 

the least squares regression method. Then, we solve the data 

imbalance problem of the similarity matrix between the old 

and new datasets by assigning label weight values through 

the label projection matrix. LHOH not only balances and 

maintains a similar relationship between new and old 

datasets but also makes full use of the label classes. To 

enhance the classification capability of online hash models, 

LHOH achieves triple supervision based on label classes by 

assigning Hadamard codes, label projection to the 

Hadamard codes matrix, and label embedding to similarity 

matrix learning, respectively. We conduct extensive 

experiments on three widely used datasets, CIFAR-10, 

MNIST, and Places205. The experimental results show that 

LHOH is superior to six current state-of-the-art online 

methods. 
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