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Abstract - This paper presents a new computation software library, which we developed for super arithmetic calculations and 

massive binary operations on infinity numbers that require more than 64 bits to be expressed by manifesting the possibility of 

expressing these numbers on infinite quantities of virtual bites reassembled in subgroups while providing infinite persistent 

precision. Then, we integrated this library into an application, which we named Super Infinity Calculator. We reinforced this 

software library with an Artificial Intelligence entity, which we programmed to manage the used hardware resources of 

processors and data storing memories during the executed calculations to handle infinity numbers while executing calculations 

on them in a short time. This Artificial Intelligence entity is incharge of forwarding computation on infinite subgroups of virtual 

bites in parallel and recursively when necessary while monitoring their results. The programmed functionalities of this Artificial 

Intelligence entity play a principal role in supporting the execution of computation calculations on super numbers with lengths 

exceeding Gigabytes and Terabytes while providing infinite persistent precision for each digit of them, including the ones after 

the floating point. As a result, these developed software resources allow us to shift various super calculations on infinity numbers 

from NP to P by executing them in the linear dimension of time instead of consuming exponential time. 

Keywords - Artificial Intelligence, Infinite persistent precision, Parallel computation, P Versus NP, Super computational 

calculations, Super infinity number. 

1. Introduction 
Throughout history, human beings have always been 

seeking improvements that may allow them to simplify 

activities or have certain gains at levels that may be of interest 

to their existence or their ways of life, such as time, space, and 

ownership. Then, the computation age came, starting by 

manufacturing the first computer machine [1] in the forties of 

19𝑡ℎ century, which led to revolutionizing all aspects of 

humane life and science.  

 

It all started with the conception of a model of a machine, 

which was a theoretical computation model developed by 

Turing in 1936 [2]. He based his model on how he perceived 

mathematical thinking. As digital computers were developed 

in the forties and fifties of the nineteenth century, the Turing 

machine proved itself to be the convenient theoretical model 

for computation at that time. 

Quickly, though, it was discovered that the basic Turing 

machine model fails to account for the needed amount of time 

or memory by a computer, which was a critical issue over the 

years. The key idea to measure time and space as a function of 

the input length came in 1960 by Hartmanis and Stearns, 

which gave birth to computation complexity [3]. 

 

After decades of development, there were still many 

published articles with content inspired by the Turing 

machine. As an example, in 2010, Ya.D. Sergeyev and A. 

Garro presented a refinement of the theory of computation 

based on the model of the Turing machine in terms of 

computational calculation [4]. 

 

Computer machines have massively evolved in shape and 

capacities over more than 80 years of technological evolution, 

starting from the forties of 19𝑡ℎ century until our nowadays. 

http://www.internationaljournalssrg.org/
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These evolvements have been always leaned on improvements 

of relevant resources of hardware and software, which lead 

computers to support the conduction of enormous 

mathematical calculations and binary bitwise operations in 

parallel and at gigantic rates of execution for each process.  

 

Even though computer processing capacities have 

reached outstanding pics [5], conducting computation 

calculations on infinity numbers with lengths exceeding 

Gigabytes and Terabytes is still problematic because numbers 

are based on defined lengths in the computational concept of 

processing. For example, in the technical aspect of 

computation using programming languages of C++, Java and 

Python, numbers are structured according to specific objects 

with defined maximum lengths, such as Integers, Doubles and 

BigIntegers. In contrast, massive numbers with infinite 

lengths are expressed by approximation with precision 

limitations and needed time for processing. However, there are 

improvements in computational calculations where the 

lengths of resulted numbers may depend only on the size of 

RAM memory (Random Access Memory). 

 

Theoretically, BigIntegers are featured to support 

massive numbers limited by the size of RAM. However, a 

BigInteger has official limits of (𝑀𝑎𝑥 =

2(𝐼𝑛𝑡𝑒𝑔𝑒𝑟.𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒) − 1; 𝑀𝑖𝑛 = −2(𝐼𝑛𝑡𝑒𝑔𝑒𝑟.𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒)) while 

being physically limited by the RAM size of Java Virtual 

Machine (JVM). 

 

There is a methodology allowing the execution of 

numerical computations with finite, infinite, and infinitesimal 

numbers [6, 7, 8] on a type of computer named “the Infinity 

Computer” [9]. This methodology allows writing down these 

numbers by using a finite amount of symbols. This 

methodology [7,8] evolves the ideas of Cantor and Levi-Civita 

in a more applied way. It introduces infinite integers that 

possess both cardinal and ordinal properties as usual finite 

numbers, which are also used nowadays in programming 

languages and software frameworks to handle high numbers 

with finite values.  

 

This methodology is based on a concept of number 

approximation named “Arithmetic of Infinity”, introduced by 

Y.D. Sergeyev aimed to devise a new coherent computation 

environment able to handle finite, infinite, and infinitesimal 

quantities and execute arithmetic operations with them. This 

concept is based on a positional numeral system with an 

infinite radix called “grossone”, which represents the number 

of elements of the set of natural numbers ℕ [11, 12]. 

 

This methodology is limited by precision lengths for 

digits displayed even on Infinity Computer because instead of 

displaying infinity numbers, they display only approximated 

expressions them presented on finite lengths of digits and 

symbols. Therefore, this methodology is a shortcut enabling 

the display of massive numbers by expressing them on limited 

lengths of bytes. This is due to sacrificing the precision of 

preceding digits with inferior densities to express digits with 

superior densities [7, 8, 10]. 

 

Integer objects are expressed on 32 bites, supporting 232  

possible values of different integer numbers, whereas Double 

objects are expressed on 64 bites, supporting 264 possible 

values of different double numbers. Then, the BigInteger 

object was developed to manifest the possibility of expressing 

higher values limited by RAM size, whereas approximation 

methodologies were developed to handle massive numbers by 

presenting them on limited lengths of bites [13, 14].  

 

Therefore, expressing infinity numbers of integers and 

doubles on infinite lengths of bytes exceeding Gigabytes and 

Terabytes and executing calculations on them was still 

problematic for us before developing our software. This 

problem was principally due to the dependencies on the 

supported lengths of bites by computers for the execution of 

calculations, the dependencies on the RAM size, and the need 

to have Infinity Computers handle massive numbers in short 

times while providing high levels of approximation precision. 

 

There has been a lot of research on how to support 

computational calculations on numbers that may need to be 

expressed on more than 64 bites [15, 16], such as by using 

grosson [17, 18], which led to significant improvements in the 

supported lengths of numbers during these computational 

calculations and during digital display of results. However, 

these improvements did not manifest the mathematical fancy 

of supporting calculations on infinity numbers that may be 

expressed on Gigabytes and even on Terabytes with infinite 

persistent precision and in less time while using ordinary 

computers. 

 

Furthermore, many of these improvements are based on 

favoring digits of high density during calculations and 

numbers displaying to users while neglecting digits with lower 

densities starting from specific limits [19] to handle 

processing on further numbers with higher lengths. Therefore, 

these improvements may not give an absolute precision for 

each digit of a resulting number during these calculations and 

during digital display if the length of this number exceeds 

defined limits. 

 

Compared to ordinary computers, Super Computers [20] 

and Infinity Computers [21] are enabling to handle massive 

numbers of infinity by either processing them entirely or 

presenting them in the form of high-level approximations in 

terms of used amounts of digits for their expressions and their 

visual display. In addition, they execute necessary processing 

operations on these numbers in extremely short times. 

Nevertheless, they may still need to sacrifice the precision of 

low-density digits when numbers exceed the limits of their 

supported lengths of bites in order to process further quantities 

of bites and display them to users. 
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Even though supporting computational calculation on 

numbers with high lengths on account of precision enables 

approximated results, this precision is actually crucial in many 

fields that rely on mathematical calculations, such as Numbers 

Theory [2], Quantum Mechanic [23], etc. For example, this 

precision is crucial to identifying infinity prime numbers that 

may be expressed on high lengths of bits or factorizing 

numbers consisting of millions of digits in the function of 

prime numbers, whereas this mathematical precision is a vital 

key to calculating paths of nanoparticles while being moving 

in vast spaces such as the case in Atlas experiment [24]. 

 

In this paper, we present our developed software library 

to support calculations on infinity numbers that need more 

than 64 bits to be expressed by providing the possibility of 

expressing these numbers on infinite amounts of virtual bites 

reassembled in subgroups, which enables to express them on 

Gigabytes and even on Terabytes while using ordinary 

computers. This software library is based on two extendable 

objects in terms of length, which we named respectfully 

“SuperInfinityInterger” and “SuperInfinityDouble”. 

 

When executing computational calculations on Infinity 

numbers, allocated resource capacities of memory and 

processors definitely play a major role in the success of 

executed processes. Therefore, we have developed an 

Artificial Intelligence entity to manage these resources, 

conduct calculations in parallel and forward the results of 

calculations recursively from one subgroup of virtual bites to 

another. 

 

These developed resources of software libraries and 

Artificial Intelligence entities enable structuring numbers on 

infinite lengths of bits, which means that they can structure 

numbers with lengths of Gigabytes and Terabytes by relying 

on the memory space of computers to store them. In addition, 

these resources handle the computational processing of 

calculations in parallel to speed up their execution. 

Furthermore, they can structure the resulting numbers at the 

end of calculations on thousands of Gigabytes. Therefore, the 

only limitation that may be encountered by these developed 

resources is the available memory space in used computers. 

 

In order to overcome the memory space limitation of 

computers, we programmed the Artificial Intelligence entity 

to access outside resources of memory space by aggregation, 

exploiting them during calculations. 

 

We also programmed the Artificial Intelligence entity to 

analyze variables of numbers and written codes for calculation 

to find independencies between potential processes to execute 

these calculations in parallel and minimize the time needed for 

processing. Furthermore, the Artificial Intelligence entity is 

programmed to reduce amounts of calculations exponentially 

by detecting patterns of redundant calculations and 

converging them into reduced processes without 

redundancies. As a result, this Artificial Intelligence entity can 

handle numbers with lengths of Gigabytes in seconds and 

execute composed calculations on them in a few dozen 

seconds when using ordinary computers. 

 

The logic of developed objects of “SuperInfinityInteger” 

and “SuperInfinityDouble” is based on expressing them in the 

form of subgroups of virtual bites while relying on the 

Artificial Intelligence entity to forward results from one 

subgroup to others during arithmetic calculations and binary 

bitwise operations without neglecting any digit of any number. 

Therefore, the developed software library and Artificial 

Intelligence entity provide an infinite persistent precision for 

each digit of calculated results even when surpassing lengths 

of Gigabytes and Terabytes. Furthermore, the Artificial 

Intelligence entity is programmed to optimize calculations that 

may need exponential time for processing by executing them 

in linear time, which is manifested by shifting infinity 

calculations from NP to P, detecting patterns of redundant 

calculations, converging them into reduced processes and 

executing these processes in linear time and parallel. 

 

On the one hand, the presented software library and 

Artificial Intelligence entity in this paper are currently 

programmed to function on any ordinary computer with at 

least one processor, 4 Gigabytes of RAM and 10 Gigabytes of 

EEPROM (Electronically Erasable Programmable Read-Only 

Memory). On the other hand, these resources can also function 

in reduced environments with less space for RAM and 

EEPROM while consuming seconds during calculations on 

numbers expressed in Gigabytes. However, to support 

numbers with lengths of Terabytes, there is a need to have 

more storage space on EEPROM to be virtualized by the 

Artificial Intelligence entity and then used along with RAM. 

 

The technological trends of big data [26, 27] enable the 

handling of massive amounts of information in terms of 

storage and processing either by distributing these data on 

systems or by processing them on a super-computer [28, 29]. 

However, in our results, we developed the Artificial 

Intelligence entity to augment the processing capacities of 

ordinary computers by virtualizing memory spaces of 

EEPROM and using them along with RAM. We programmed 

algorithms within this entity to handle big digits data as 

infinity numbers. Then, we programmed this entity to 

optimize the needed times for calculations (especially 

multiplication, division, roots, exponentials, etc.) by shifting 

infinity operations from NP to P in order to be executed only 

in dozens of seconds at maximum when the lengths of input 

variables and results exceed Gigabytes. 

 

After developing this software library and reinforcing it 

by developing the Artificial Intelligence entity, we integrated 

them within an application, which we named Super Infinity 

Calculator. 
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𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝐴 = 𝑛𝑒𝑤 𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑃3, 𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑃2, 𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑃1)    (1)

This paper is structured as follows: Section 2 presents the 

developed software library. Section 3 presents the programed 

Artificial Intelligence entity for super calculations on infinity 

numbers. Section 4 presents the exploit of programmed AI 

entity in the technical context of shifting infinity calculations 

from NP to P. Section 5 presents the technical context of 

shifting infinity operations with infinite quantities of 

interdependencies from NP to P. Section 6 presents the 

implementation of developed resources within Super Infinity 

Calculator along with statistics of its processing capacities. 

Finally, section 7 for conclusion. 

2. Developed Software Library 
2.1. Technical Description of Software Library 

Our developed software library to support super 

arithmetic calculations and binary bitwise operations on 

infinity numbers is based on two new types of objects: the 

“SuperInfinityInteger” object and the “SuperInfinityDouble” 

object. We have programmed two versions of this software 

library, one version in Java and another version in C++. 

 

We have programmed these two objects to be extendable 

in terms of length, where each one of them can be expressed 

on infinite lengths of virtual bites reassembled into subgroups 

of bits with flexible lengths. 

 

Each one of these two objects is independent of 

predefined limits of length, and their sizes are extendable to 

exceed Gigabytes and Terabytes. Therefore, we developed an 

Artificial Intelligence entity to manage the required memory 

space by infinity numbers while supporting their storage on 

EEPROM. 

 

This Artificial Intelligence entity is responsible for 

virtualizing memory spaces of EEPROM to be exploited 

during calculations along with RAM to reinforce the 

processing capacities of used computers. 

 

2.2. Developed object of super infinity integer  

We programmed the object of “SuperInfinityInteger” to 

have consisted of three parts (variables), which are as shown 

in (Eq 1). The first part on the right (𝑃1) is a BigInteger, the 

second part in the middle (𝑃2) is a child-object with type 

“SuperInfinityInteger”, and the third part (𝑃3) in the left is a 

Boolean condition to determine whether the second part is null 

or not. Therefore, instead of relying on defined lengths to 

execute calculations and binary operations on a 

“SuperInfinityInteger”, we rely on using the Boolean 

condition to determine whether to forward calculations 

furthermore to include the child-object or to stop operations at 

the level of contained BigInteger. 

 

We programmed two categories of the object 

“SuperInfinityInteger”. The first category is a parent-object, 

and the second is a child-object. The parent-object cannot be 

a child-object of any “SuperInfinityInteger”, whereas a child-

object can be a child-object of a “SuperInfinityInteger” and at 

the same time being a parent of another child-object. 

 

Relying on these two categories, a “SuperInfinityInteger” 

can be expressed as an infinite tree of nodes, as shown in (Fig. 

1), where the first node is from the category parent-object and 

the other nodes are from the category child-object. 

 

2.3. Developed Object of Super Infinity Double 

We programmed the object of “SuperInfinityDouble” to 

have consisted of two parts, which are as shown in (Eq. 2). 

The first part (𝑃1) in the right of the object of 

“SuperInfinityDouble” is a “SuperInfinityInteger” expressed 

after the floating point at the right side of zero, whereas the 

second part (𝑃2). On the left of this object of 

“SuperInfinityDouble” is a “SuperInfinityInteger” expressed 

at the left side before the floating point. 

2.4. Developed Infinity for Loop 

We programmed an object named “InfintyForLoop”, 

which is expressed as shown in (Eq. 3), in order to conduct 

infinity loops that may be automatically distributed on parallel 

segments initiated by “ParallelismAgent” and controlled by 

“ResourceManagmentAgent” in the Artificial Intelligent 

entity (Fig. 2). The cursor of the loop is named as 

“𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐶𝑟)”. 

 

 

 

 

 

 

 

 

 

Fig. 1 Developed nodes tree structure for SuperInfinityIntegers 

Node 1 Node 2 Node 3 Node 4 Node N 

(B1, P1,2, P1,1) (B2, P2,2, P2,1) (B3, P3,2, P3,1) (B4, P4,2, P4,1) (BN, PN,2, PN,1) 

SuperInfinity Integer X 
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𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐹𝑜𝑟𝐿𝑜𝑜𝑝(𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝐴1, 𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝐴2, 𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝐴3, 𝑖𝑛𝑡 𝐴4, 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝐵)(2) 
 

  𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐷𝑜𝑢𝑏𝑙𝑒 𝐵 = 𝑛𝑒𝑤 𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐷𝑜𝑢𝑏𝑙𝑒(𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑃2, 𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑃1)       (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 2 Developed software library and developed agents of Artificial Intelligence to conduct computational operations on infinity numbers 

 

The 𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐴1) shown in (Eq. 3) defines 

the start value of the loop’s cursor where (𝐶𝑟 = 𝐴1). The 

𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐴2) defines the end value of the 

loop’s cursor where (𝐶𝑟 ≤  𝐴2). The 

𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐴3) defines the step of augmenting 

the value of the cursor where (𝐶𝑟 =  𝐶𝑟 . 𝐴𝑑𝑑𝑌𝐿(𝐴3)). The 

integer (𝐴4) defines the maximum segments of calculations to 

be conducted in parallel.  

 

The Boolean B defines whether to allow 

“ResourceManagmentAgent” to conduct automatic 

distributions of processes on resilient numbers of parallel 

segments that may exceed the value of (𝐴4) depending on the 

conducted analysis by “ParallelismAgent” and also depending 

on accessible resources of processors, RAM, virtualized 

memory, EEPROM and aggregated spaces of memory by 

“ResourceAggregationAgent” in the AI entity (Fig. 2). 

 

3. Programmed Artificial Intelligence Entity 
3.1. Technical Description of Artificial Intelligence Entity 

We programmed the Artificial Intelligence entity to 

conduct calculations in parallel on each of the two objects of 

“SuperInfinityInteger”.  

 

We also programmed this AI entity to be responsible for 

forwarding processes recursively from a parent-object to a 

child-object of “SuperInfinityInteger”. In addition, forwarding 

them from any child-object to its successive child-object.  

As a result, this Artificial Intelligence entity is responsible 

for conducting processes in parallel while forwarding the 

results of calculations and binary operations during 

computations. 

 

The programmed AI entity consists of multiple software 

agent entities responsible for managing calculations, 

optimizing the exploitation of hardware resources, and 

reducing the time of computation conduction by relying on 

parallelism while shifting calculations from the exponential 

dimension of execution time to the linear dimension. 

 

The Artificial Intelligence entity is responsible for the 

following functionalities: 

1) Optimizing the exploit of RAM. 

2) Virtualizing storage memory to be used along with RAM. 

3) Managing the exploit of integrated hardware resources. 

4) Managing the access and exploitation of external 

hardware resources such as hard drives and distributed 

computers over the network. (Distributed Computation) 

5) Conducting calculations in parallel (Parallel 

Computation). 

6) Detecting patterns of redundant calculations and 

converging them into unified segments of computation. 

7) Regrouping infinite numbers in the form of subgroups of 

bits. 

8) Storing subgroups of bits expressing infinite numbers as 

files during calculations. 
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9) Predicting the necessary time to execute segments of 

calculations. 

10) Compressing files of subgroups of bits representing 

infinite numbers when these numbers are not used during 

significant amounts of time. 

11) Switching from the mode of infinite persistent precision 

to the mode of “grosson expressions” when there is no 

more enough space in RAM and Virtualized memory. 

The developed software library and developed agents of 

Artificial Intelligence entities to conduct operations on infinity 

numbers are shown in (Fig. 2). 

 

3.2. Super Infinity Agent and Ultra Infinity Agent 

The Artificial Intelligence entity is programmed to have 

consisted of two types of agents: “SuperInfinityAgent” and 

“UltraInfinityAgent”. 

The developed “SuperInfinityAgent” is responsible for 

fetching through the parent-object and child-objects of any 

“SuperInfinityInteger”. In addition, any instant of 

“SuperInfinityAgent” can be connected to any other instant of 

the same type to conduct synchronous recursive operations of 

comparison through parent-objects and child-objects of 

“SuperInfinityIntegers”. Furthermore, we programmed the 

“SuperInfinityAgent” to support the conduction of certain 

arithmetic operations and binary operations on its handled 

objects during its connections with other instants of 

“SuperInfinityAgents”. 
 

The “SuperInfinityAgent” is also programmed to be 

incharge of deleting or copying any object of 

“SuperInfintyIntegers” whereas being able to create new ones, 

in the condition of handling one object of 

“SuperInfintyInteger” at a time. 
 

The developed “UltraInfinityAgent” is responsible for 

initiating more than one “SuperInfinityAgent” in parallel to 

handle simultaneous calculations and execute complex 

processes of multiplication, division, roots, etc. These 

calculations are complicated because they may generate 

results expressed on either Gigabytes or Terabytes, depending 

on the sizes of input numbers. Therefore, we programmed the 

Artificial Intelligence entity to store any 

“SuperInfinityInteger” on the EEPROM as files when its size 

exceeds a specific limit instead of being expressed on RAM 

and virtualized memory. 
 

The Artificial Intelligence entity is programmed to store 

any infinity number with a length exceeding Gigabytes in the 

form of separated files on the EEPROM, where the size of 

each file may exceed one Gigabyte, and then handle these files 

during calculations recursively. 
 

The programmed “SuperInfinityAgent” is incharge of 

shown operations in Table 1, whereas the 

“UltraInfinityAgent” is programmed to be incharge of shown 

operations in Table 2.  

The developed agent of “SuperInfinityAgent” is 

responsible for creating “SuperInfinityInteger” objects from 

either String variables, BigInteger variables, integer variables 

or sequences of bytes. However, the results of operations are 

expressed only as String variables, arrays of String variables 

or sequences of bytes. 
 

3.3. Resource Management Agent and Memory 

Virtualization Agent  

In order to optimize the exploit of computational 

resources of RAM, EEPROM and processors, we 

programmed the Artificial Intelligence entity to consist of 

another agent, which we named 

“ResourceManagmentAgent”. In addition, we programmed an 

agent named “MemoryVirtualizationAgent”, the responsible 

agent for virtualizing memory spaces of EEPROM and using 

them along with the RAM. 
 

The “ResourceManagementAgent” is responsible for 

managing the distribution of calculations and binary 

operations on processors, RAM, and virtualized memory 

space in resilient manners that enable their executions to run 

in parallel. In addition, this agent is responsible for transiting 

the content of any “SuperInfinityInteger” from RAM to 

EEPROM in order to be stored as files in the case where its 

size exceeds 128 Megabytes. Furthermore, it is responsible for 

storing all new infinity numbers as files instead of being held 

on the RAM or the virtualized memory space, starting from 

any moment the free space of RAM drops under 256 

Megabytes. 
 

This “ResourceManagementAgent” is also programmed 

to store infinity numbers as compressed zip files to optimize 

the use of memory space in cases where these numbers are not 

used in further calculations for considered amounts of time. 

Therefore, the “ResourceManagementAgent” is also 

programmed to predict time amounts of processing based on 

the involvement of variables and then decide whether to store 

any of these infinity numbers as zip files or not. 
 

3.4. Resource Parallelism Agent and Resource Aggregation 

Agent  

We programmed an agent named “ParallelismAgent”, 

which is incharge of code analysis and processes analysis to 

define the operations that may be executed in parallel due to 

the independence of their involved variables from each other. 

Then, this “ParallelismAgent” converges the outputs of 

parallel processes to provide finalized results. In addition, this 

agent detects redundant patterns of calculations and converges 

them into reduced processes. 
 

We programmed an agent named 

“ResourceAggregationAgent” to define outside resources of 

memory space that may be accessible by used computer in 

order to exploit them by the “ResourceManagementAgent”, 

such as USB, hard drive, different computers on local network 

or accessible servers. 
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Table 1. Operations handled by SuperInfinityAgent on SuperInfinityIntegers 

Operations executed by SuperInfinityAgent Description 

SuperInfinityInteger.NegativeLY() -X. 

SuperInfinityInteger.AddLY(SuperInfinityInteger Y) X+Y. 

SuperInfinityInteger.SubtractLY(SuperInfinityInteger Y) X-Y. 

SuperInfinityInteger.NOTLY(SuperInfinityInteger Y) Complement of X (NOT X). 

SuperInfinityInteger.ANDLY(SuperInfinityInteger Y) X AND Y. 

SuperInfinityInteger.ORLY(SuperInfinityInteger Y) X OR Y. 

SuperInfinityInteger.XORLY(SuperInfinityInteger Y)  X XOR Y. 

SuperInfinityInteger.ANDNOTLY(SuperInfinityInteger Y) X AND(NOT Y). 

SuperInfinityInteger.NOTXORLY(SuperInfinityInteger Y) NOT(X XOR Y). 

SuperInfinityInteger.ShiftRightLY(SuperInfinityInteger N) Shifting bites of X to the right by N bites. 

SuperInfinityInteger.ShiftLeftLY(SuperInfinityInteger N) Shifting bites of X to the left by N bites while keeping the 

bite indicating that it is a signed infinity number at its 

original place. 

SuperInfinityInteger.ShiftLeftLY2(SuperInfinityInteger N) Shifting bites of X to the left by N bites without keeping the 

bite indicating that it is a signed infinity number at its 

original place. 

SuperInfinityInteger.IsEqualLY(SuperInfinityInteger Y) Is (X==Y) 

SuperInfinityInteger.MaxLY(SuperInfinityInteger Y) Maximum among X and Y. 

SuperInfinityInteger.MinLY(SuperInfinityInteger Y) Minimum among X and Y. 

SuperInfinityInteger.CompareToLY(SuperInfinityInteger Y)  Comparison between X and Y. The result is 1 if 𝑋 > 𝑌. The 

result is -1 if 𝑋 < 𝑌, whereas the result is 0 if X=Y. 

SuperInfinityInteger.ValueOfStringLY(String s) Creating SuperInfinityInteger from String s. 

SuperInfinityInteger.ValueOfStringArrayLY(String[][] S) Creating SuperInfinityInteger from String array S. 

SuperInfinityInteger.ValueOfBigIntegerLY(BigInteger y) Creating SuperInfinityInteger from BigInteger y. 

SuperInfinityInteger.ValueOfIntegerLY(int x)  Creating SuperInfinityInteger from integer x. 

SuperInfinityInteger.ValueOfBytesLY(Byte[] x) Creating SuperInfinityInteger from Bytes sequence. 

SuperInfinityInteger.toStringLY()  Converting SuperInfinityInteger to String. 

SuperInfinityInteger.toStringArrayLY() Converting SuperInfinityInteger to a String Array of two 

dimensions. 

SuperInfinityInteger.toBytesLY() Converting SuperInfinityInteger to sequence of bytes. 

SuperInfinityInteger.toBytesArrayLY() Converting SuperInfinityInteger to an array of sequences of 

bytes. 

SuperInfinityInteger.ZEROLY () Value zero in type of SuperInfinityInteger. 

SuperInfinityInteger.ONELY() Value one in type of SuperInfinityInteger. 
 

Table 2. Operations handled by UltraInfinityAgent on SuperInfinityIntegers 

Operations executed by UltraInfinityAgent Description 

SuperInfinityInteger.MultiplyLY(SuperInfinityInteger Y) X*Y. 

SuperInfinityInteger.DivideLY(SuperInfinityInteger Y)  X/Y without expressing values at the right of floating point 

after zero. 

SuperInfinityInteger.ModLY(SuperInfinityInteger Y) Returning X%Y. 

SuperInfinityInteger.DivideLY2(SuperInfinityInteger Y) Returning two results A and B where A=X/Y and B=X%Y. 

SuperInfinityInteger.PowLY(SuperInfinityInteger Y)  𝑋𝑌. 

 

3.5. Infinity Approximation Agent 

In the case of calculating (𝑋𝑌) using two infinity numbers, 

X and Y, where the length of each one of them surpasses 1 

Megabyte, the result Z may be expressed on more than 1024 

Gigabytes, which may exceed the storage capacities of 

ordinary computers even when using data compression 

techniques. Therefore, we developed an agent named 

“InfinityApproximationAgent” to express Z as (𝑍 = 𝑁 ∗ 𝑒𝑀) 

where M is a “SuperInfinityInteger” and N has a length of 

Gigabytes exceeding the length of X. As a result, Z is handled 

by storing N and M on only a few Gigabytes instead of being 

stored on more than a thousand Gigabytes.  
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Table 3. Operations handled by SuperDoubleAgent on SuperInfinityDoubles while exploiting SuperInfinityAgents. 

Operations executed by SuperDoubleAgent Description 

SuperInfinityDouble.NegativeLY() -X. 

SuperInfinityDouble.AddLY(SuperInfinityInteger Y) X+Y. 

SuperInfinityDouble.AddLY2(SuperInfinityDouble DY) X+DY. 

SuperInfinityDouble.SubtractLY(SuperInfinityInteger Y) X-Y. 

SuperInfinityDouble.SubtractLY2(SuperInfinityDouble DY) X-DY. 

SuperInfinityDouble.IsEqualLY(SuperInfinityDouble DY)  Is (X==DY) 

SuperInfinityDouble.MaxLY(SuperInfinityInteger Y) Maximum among X and Y. 

SuperInfinityDouble.MaxLY2(SuperInfinityDouble DY) Maximum among X and DY. 

SuperInfinityDouble.MinLY(SuperInfinityInteger Y) Minimum among X and Y. 

SuperInfinityDouble.MinLY2(SuperInfinityDouble DY) Minimum among X and DY. 

SuperInfinityDouble.CompareToLY(SuperInfinityInteger Y) Comparison between X and Y. The result is 1 if 

X>Y. The result is -1 if X<Y, whereas the result is 

0 if X=Y. 

SuperInfinityDouble.CompareToLY2(SuperInfinityDouble DY) Comparison between X and DY. The result is 1 if 

𝑋 > 𝐷𝑌. The result is -1 if 𝑋 < 𝐷𝑌, whereas the 

result is 0 if X=DY. 

SuperInfinityDouble.ValueOfStringLY(String s) Creating SuperInfinityDouble from String s. 

SuperInfinityDouble.ValueOfStringArrayLY(String[][] S) Creating SuperInfinityDouble from String array S. 

SuperInfinityDouble.ValueOfDoubleLY(double dy)  Creating SuperInfinityDouble from double dy. 

SuperInfinityDouble.ValueOfSuperIntegerLY(SuperInfinityInteger X) Creating SuperInfinityDouble from 

SuperInfinityInteger X. 

SuperInfinityDouble.ValueOfBytesLY(Byte[] x) Creating SuperInfinityDouble from Bytes sequence. 

SuperInfinityDouble.toStringLY()  Converting SuperInfinityDouble to String. 

SuperInfinityDouble.toStringArrayLY()  Converting SuperInfinityDouble to String array. 

SuperInfinityDouble.toBytesLY()  Converting SuperInfinityDouble to sequence of 

bytes. 

SuperInfinityDouble.toBytesArrayLY() Converting SuperInfinityDouble to array of 

sequences of bytes. 
 

We also rely on executing this concept of approximation 

on the results of complicated operations that include different 

arithmetic calculations where these results are expected to 

surpass capacities of RAM, virtualized memory, EEPROM 

and aggregated spaces of memory. 

 

The “InfinityApproximationAgent” works in coherence 

with “ResourceManagmentAgent” and 

“ResourceAggregationAgent” to optimize the exploit of 

processors, RAM, virtualized memory, EEPROM and other 

accessible resources of memory space.  

 

Therefore, in case when have sufficient resources to 

conduct the necessary calculations and store infinity numbers, 

the “InfinityAproximationAgent” does not modify involved 

variables, and we continue having an infinite persistent 

precision for each digit of involved infinity numbers, 

including the digits at the right side of floating point. 

 

3.6. Super Double Agent and Ultra Double Agent 

In order to handle the programmed object of 

“SuperInfintyDouble”, we developed two different agents 

within the Artificial Intelligence entity: “SuperDoubleAgent” 

and “UltraDoubleAgent”. 

The programmed “SuperDoubleAgent” is responsible for 

handling one object of “SuperInfinityDouble” at a time by 

initiating two instants of “SuperInfinityAgents”, where the 

first instant is incharge of handling the right subobject of the 

corresponding “SuperInfinityDouble” object. The second 

instant is incharge of handling its left subobject (Eq. 2). At the 

end of executed operations by the first created instant, the 

“SuperDoubleAgent” is responsible for forwarding relevant 

results of its operations to the second created instant if they 

are of interest to the requested operations on the left side of 

corresponding object of “SuperInfinityDouble”. 
 

The programmed “UltraDoubleAgent” is responsible for 

handling two objects of “SuperInfinityDoubles” at a time, 

“SuperInfinityDouble” X and “SuperInfinityDouble” Y, by 

initiating four parallel instants of “UltraInfinityAgents” to 

execute its shown operations in Table 4. The first instance is 

incharge of handling operations between the right subobject of 

“SuperInfinityDouble” X and the right subobject of 

“SuperInfinityDouble” Y. The second instant is incharge of 

handling operations between the right subobject of 

“SuperInfinityDouble” X and the left subobject of 

“SuperInfinityDouble” Y. The Third instant is incharge of 

handling operations between the left subobject of 
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“SuperInfinityDouble” X and the right subobject of 

“SuperInfinityDouble” Y. The fourth instant is incharge of 

handling operations between the left subobject of 

“SuperInfinityDouble” X and the left subobject of 

“SuperInfinityDouble” Y. 

At the end of executed operations by these initiated 

instants by “UltraDoubleAgent”, this agent initiates four 

objects of “SuperInfintyDoubles” to contain the results of 

these preceding instants of “UltraInfinityAgents”. Then, the 

“UltraDoubleAgent” initiates two instants of 

“SuperDoubleAgents” to handle these four objects of 

“SuperInfintyDoubles” by executing necessary operations on 

them. 

The programmed “SuperDoubleAgent” is incharge of 

shown operations in Table 3, whereas the 

“UltraDoubleAgent” is programmed to be incharge of shown 

operations in Table 4.

 
Table 4. Operations handled by UltraDoubleAgent on SuperInfinityDoubles while exploiting UltraInfinityAgents and SuperInfinityAgents. 

Operations executed by UltraDoubleAgent Description 

SuperInfinityDouble.MultiplyLY(SuperInfinityInteger Y) X*Y. 

SuperInfinityDouble.MultiplyLY2(SuperInfinityDouble DY) X*DY. 

SuperInfinityDouble.InverseLY() 1/X whereas expressing the value at the right of floating 

point after zero if it exists. 

SuperInfinityDouble.DivideLY(SuperInfinityInteger Y) X/Y whereas expressing the value at the right of floating 

point after zero if it exists. 

SuperInfinityDouble.DivideLY2(SuperInfinityDouble DY) X/DY whereas expressing the value at the right of floating 

point after zero if it exists. 

SuperInfinityDouble.PowLY(SuperInfinityInteger Y) 𝑋𝑌. 

SuperInfinityDouble.SqrtLY(SuperInfinityInteger Y) √𝑋
𝑌

. 

 

𝑋 = 2;  𝑌 = 2512 + 2256 + 2140 + 232;  𝑍 = 𝑋𝑌;  𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠_𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝐹𝑎𝑐𝑡𝑜𝑟 = 515/𝑌 = 3,84𝑒−152                    (4) 

 

𝑌 = ∑ 𝛤(𝑌,𝑖)

{𝑖=𝑁}

{𝑖=0}

                    (5) 

 

𝛤(𝑌,𝑖) = 𝑌 𝐴𝑁𝐷 2𝑖                    (6) 

 

𝑋 = 2;  𝑌 = 2256 + 2128 + 232;  𝑍 = 𝑋𝑌;  𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠_𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝐹𝑎𝑐𝑡𝑜𝑟 = 418/𝑌 = 3,6𝑒−75                     (7) 
 

3.7. Infinity Finesse Agent 

The results of calculations and binary operations on 

infinity numbers may have many digits with the value zero at 

the left edges of “SuperInfinityIntegers” or the right edges of 

“SuperInfinityDoubles” after floating point, which is a waste 

of memory space. Therefore, we programmed an agent named 

“InfinityFinesseAgent” within the Artificial Intelligence 

entity to be responsible for eliminating these digits with value 

zero and optimizing the used memory space by each infinity 

number. 

 

3.8. Binary Mapping Agent 

We programmed an agent named 

“BinaryMappingAgent” to express infinity numbers as 

subgroups of virtual bites and use each subgroup to guide the 

conduction of composed arithmetic calculations such as the 

processes of SuperInfinityInteger.MultiplyLY(Y), 

SuperInfinityInteger.PowLY(Y), 

SuperInfinityDouble.MultiplyLY(Y), 

SuperInfinityDouble.PowLY(Y), etc.  

This “BinaryMappingAgent” can reduce an ordinary total 

amount of calculations T to be only 3,47𝑇𝑒−18. Furthermore, 

this agent is relied on to reduce massive amounts of 

calculations exponentially to reach reduction levels under the 

value 3,47𝑒−18, which shifts infinity calculations from NP to 

P. 
 

4. The Exploit of Programmed AI Entity in the 

Technical Context of P Versus NP 
The programmed Artificial Intelligence entity relies on 

parallel computation to conduct calculations quickly. In 

addition, it relies on shifting arithmetic operations and binary 

operations from the exponential dimension of execution time 

(𝑇𝑁) to the linear dimension of time (𝑁 ∗ 𝑙𝑛(𝑇)) by relying on 

the Binary Mapping Agent, Parallelism Agent and Resource 

Management Agent, which are programmed in the technical 

context of shifting infinity calculations from NP to P. 

Furthermore, this AI entity detects patterns of redundant 

calculations and then converges them into unified segments to 

avoid overloading during resource exploits whereas 

minimizing consumed time in total. 
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As an example of the use of the “BinaryMappingAgent” 

to shift operations from the exponential dimension of time 

execution to the linear dimension, we suppose the case when 

having two numbers (𝑋 = 2) and (𝑌 = 264) whereas we seek 

to calculate (𝑍 = 𝑋𝑌). Instead of conducting the 

multiplication process over a total amount of (264) processes, 

the “BinaryMappingAgent” guides the calculation process to 

be conducted only over 64 processes by multiplying the result 

of each process by itself in the following multiplication 

process. As a result, we reduce the total amount of calculations 

massively, which may be quantified as follows: 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠_𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝐹𝑎𝑐𝑡𝑜𝑟 = 64/264  = 3,47𝑒−18. 

 

As another example of the use of the 

“BinaryMappingAgent”, we suppose the case of having two 

numbers (𝑋 = 2) and (𝑌 = 2256 + 2128 + 232) whereas we 

seek to calculate (𝑍 = 𝑋𝑌), and we suppose (𝑦1 = 2256), 

(𝑦2 = 2128) and (𝑦3 = 232). Instead of conducting the 

multiplication process over a total amount equals Y, the 

calculations are distributed on 3 parallel segments where the 

first segment calculates (𝑋𝑦1) over 256 processes of 

multiplication, the second segment calculates (𝑋𝑦2) over 128 

processes of multiplication, and the third segment calculates 

(𝑋𝑦3) over 32 processes of multiplication. In parallel with 

these three segments, a fourth segment is initiated to calculate 

((𝑋𝑦1 ) ∗ (𝑋𝑦2) ∗ (𝑋𝑦3)) over two processes of multiplication. 

As a result, there are only 418 conducted processes of 

multiplication instead of conducting an amount of Y 

multiplications, which induce a reduction that may be 

expressed as shown in (Eq. 4). 

 

The “BinaryMappingAgent” relies on the mathematical 

operator (Γ ) shown in (Eq. 6), which we programmed to 

concretize the binary mapping of infinity numbers 

mathematically.  

 

By using the operator (Γ) on Y, the 

“BinaryMappingAgent” expresses the value of Y as shown in 

(Eq. 7), where (𝑁) is a "SuperInfinityInteger". Therefore, the 

parallelism agent launches multiple processes to calculate 

(𝑋𝑌) where each process with index (𝑗) calculates (Γ(𝑌,𝑖)). 

However, the role of the parallelism agent does not stop only 

on executing processes in parallel but also includes detecting 

repeated patterns of calculations among parallel processes that 

may be categorized as redundancies. 

 

As a simple example of redundancies reduction by 

“ParallelismAgent” and “ResourceManagementAgent”, we 

suppose the case of having two numbers (𝑋 = 2) and (𝑌 =
2512 + 2256 + 2140 + 232) whereas we seek to calculate (𝑍 =
𝑋𝑌), and we suppose (𝑦1 = 2512), (𝑦2 = 2256), (𝑦3 = 2140) 

and (𝑦4 = 232). By relying on “BinaryMappingAgent” and 

“ParallelismAgent”, the calculations are distributed on 4 

parallel segments. The first segment calculates (𝑋𝑦1) over 512 

processes of multiplication, the second segment calculates 

(𝑋𝑦2) over 256 processes of multiplication, the third segment 

calculates (𝑋𝑦3 ) over 140 processes of multiplication, and the 

fourth segment calculates (𝑋𝑦4) over 32 processes of 

multiplication.  

 

However, the “ParallelismAgent” interferes by detecting 

that there are redundancies of calculation among (𝑋𝑦1), (𝑋𝑦2), 

(𝑋𝑦3)  and (𝑋𝑦4). Therefore, “ResourceManagementAgent” 

holds their processes in order to not consume processing 

resources, and then “ParallelismAgent” converges their 

calculations into a fifth segment calculating (𝑋𝑦1)  and 

extracting the values of (𝑋𝑦2), (𝑋𝑦3)  and (𝑋𝑦4)  during this 

process to be provided to their corresponding segments. A 

sixth segment of calculation, in parallel with others, is 

incharge of calculating (𝑋𝑦1) ∗ (𝑋𝑦2) ∗ (𝑋𝑦3) ∗ (𝑋𝑦4) over 3 

processes of multiplication. As a result, there are only 515 

conducted processes of multiplication instead of conducting 

an amount of Y multiplications, which induce a reduction that 

may be expressed as shown in (Eq. 7). 

 

The “ParallelismAgent” is programmed to detect multiple 

redundancies of calculation among parallel processes with 

multiple variables exceeding the previous case of having only 

X and Y. After redundancies detection, “ParallelismAgent” is 

responsible for the following processes: holding the 

calculations of these redundancies with collaboration with 

“ResourceManagementAgent” in order to not consume 

processing resources, converging these redundant calculations 

into simplified processes and then providing results to other 

processes where redundancies were detected. 

 

The principle of relying on the use of “ParallelismAgent” 

along with “ResourceManagementAgent” is to optimize the 

performance of the Binary Mapping Agent during the 

conduction of massive calculations by transferring their 

executions from exponential dimensions to linear dimensions. 

Therefore, instead of executing infinity calculations over 

exponential amounts of time [30, 31], they are developed to 

be executed over linear time, shifting them from NP to P. 

 

As a result, the developed AI entity is capable of shifting 

infinity calculations from NP to P. However, currently, it can 

handle only infinity calculations with redundancies and 

common operation patterns where there is no “infinite quantity 

of interdependencies” between variables and processes.  

 

5. Technical Context of P versus NP for Infinity 

Operations while having Infinite Quantities of 

Interdependencies 
The developed techniques in the presented AI entity are a 

showcase on adapting infinity calculations from NP to P, in 

condition of having redundant operations, having common 

patterns between variables and processes, and relying on 

parallel computations. However, when encountering infinite 

quantities of interdependencies between variables and 
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processes, the complexity can augment itself from the 

dimension of 𝑎(𝑏)(𝑐)
 to the dimension 𝑎(𝑏)(𝑐𝑑)

 and even higher 

levels of nested exponentials. 

 

As an example of the complexity of having infinite 

quantities of interdependencies, the case when having an 

infinite matrix map of variables where each variable is 

dependent on too many neighbours of variables, such as the 

case of having an infinite structure of Sudoku. 

 

When having infinity operations characterised by infinite 

quantities of interdependencies, we should re-express the 

operations at the mathematical level to neutralize these 

interdependencies into independencies as much as possible 

while merging operations and formulas. Then, we should re-

express the problem at the algorithmic level of computation 

while relying on parallel computation, distributed 

computation, redundancies elimination, and pattern 

converging. 

 

As a result, in order to be able to shift all infinity 

operations that include having infinite quantities of 

interdependencies between variables and processes, we 

identified 12 technical axes as shown in Table 5.

 
Table 5. Identified technical axes to shift infinity operations and infinite quantities of interdependencies from NP to P. 

ID Axe Description 

1 Capacities of RAM. Available memory space of RAM. 

2 Capacities of GPU and DPU. Available GPU and DPU. 

3 Capacities of processors. Available number of processors. 

4 Capacities of frequency. Available frequency of processing. 

5 Capacities of storage and memory 

virtualization. 

Available memory spaces of storage and access rate to virtualized 

memory. 

6 Capacities of parallel computation. Maximum limit of possible parallel processes to execute. 

7 Capacities of distributed computation. Distributing computation processes over processers, computers, networks 

and cloud services. 

8 Capacities of eliminating redundant operations. Eliminating redundant operations that are based on using the same 

operators or the same logic of calculation. 

9 Capacities of eliminating redundant variables. Eliminating redundant variables to free memory space while sharing 

access to one original version of each variable among processes. 

10 Capacities of converging common patterns of 

processing into unified segments. 

Detecting common patterns of processing and converging them into 

unified segments to free hardware resources and minimize consumed 

time. 

11 Capacities to re-express operations on infinite 

quantities of interdependencies between 

variables. 

Re-express operations when having infinite matrix structures of variables 

with infinite quantities of interdependencies between variables, in order to 

reduce the quantity of processes. 

12 Capacities to re-express operations on infinite 

quantities of interdependencies between 

processes. 

Re-express operations when having infinite matrix structures of processes 

with infinite quantities of interdependencies between processes, in order 

to reduce the quantity of processes. 
 

Table 6. Examples showing precisions of calculation and digits display when using developed software library and Artificial Intelligence entity. 
Variable Integer Value  Total amount of digits 

X 1123 654889568 789993399 999999789 777789336 954789999 999986333 331112225 

548879666 321455666 698788963 333211111 236547899 963334445 568799833 

356498999 654478965 554789666 321477897 777777899 963214586 599632144 

789666325 558558884 444999321 

220 

 

Y 9 999999988 882222000 000000003 336458123 641112223 654782222 111145632 

221111000 000236488 000222369 800004478 522233311 999998452 200000006 

333331112 225548879 666321455 666698788 963333211 111236547 899963334 

445568799 833356498 999654478 965554789 666321477 897777777 899963214 

111122220 000003336 999888844 789666325 558558884 444999321 

307 

Z=X*Y 11236 548883195 354323159 677126404 140180177 597994453 531409142 029266691 

252217065 355607950 617099685 527952949 207582997 514334618 961753124 

363192431 106380573 311045065 764721117 424179846 861361296 593235819 

987808212 573468584 980973642 601083931 593908178 075613216 495340694 

336502583 196362740 654492997 097272808 998073831 767413253 607534807 

543814687 643171283 891013531 426980095 638811153 193027549 547047138 

065579033 957394139 204032845 664617307 499119910 261788269 726723297 

712640222 628919743 618532752 252898232 689830016 048801732 275572754 

435059923 690461041 

527 
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6. Implementation of Super Infinity Calculator 

and Statistics of its Use 
We integrated the developed software library and 

Artificial Intelligence entity within an application to be used 

for super arithmetic calculations and binary operations on 

infinity numbers. We named this application as Super Infinity 

Calculator. It is as shown in Fig. 3. We integrated a command 

user interface in this application to support code writing of 

complex operations on “SuperInfinityIntegers” and 

“SuperInfinityDoubles” while being able to use the 

programmed “InfintyForLoop” and other usual computational 

variables such as integers, doubles, strings, chars, etc.

 

 
Fig. 3 Developed Application of Super Infinity Calculator 

 

Table 7. Statistics of consumed times in Nanoseconds by Super Infinity Calculator during arithmetic operation (𝑿𝒀).

Operation Average Consumed Time in Nanoseconds Total Amount of digits Length of Result in bits 

2(1 000 000 000) 500 000 nS 300 010 300 2 400 082 400 

2(2 000 000 000) 1 000 000 nS 600 020 600 4 800 164 800 

2(3 000 000 000) 2 020 000 nS 900 030 900 7 200 247 200 

2(4 000 000 000) 3 040 000 nS 1 200 041 200 9 600 329 600 

2(5 000 000 000) 4 070 000 nS 1 500 051 500 12 000 412 000 

2(6 000 000 000) 5 120 000 nS 1 800 061 800 14 400 494 400 

2(7 000 000 000) 6 180 000 nS 2 100 072 100 16 800 576 800 

2(8 000 000 000) 7 270 000 nS 2 400 082 400 19 200 659 200 

2(9 000 000 000) 8 420 000 nS 2 700 092 700 21 600 741 600 

2(10 000 000 000) 9 660 000 nS 3 000 103 000 24 000 824 000 

We used this programmed application to conduct 

calculations on infinity numbers resulting from composed 

arithmetic calculations to prove the potentials of our 

developed objects of “SuperInfinityIntegers” and 

“SuperInfinityDoubles”. Table 6 presents examples of using 

the Super Infinity Calculator to highlight the precision of 

provided calculations and digits display, using variables with 

high values.
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Recently, we deployed the Super Infinity Calculator on a 

virtual machine with one processor, 4 Gigabytes of RAM, 10 

Gigabytes of EEPROM and 2,84 GHz of processing frequency 

in order to provide statistics of needed time to execute 

calculations on infinity numbers while providing infinite 

persistent precision for each digit of these numbers. The 

results of these statistics are shown in Table 7. 

 

We used the limited capacities of virtual machines to 

provide a general vision of the performance of the developed 

software library and Artificial Intelligence entity on limited 

hardware devices and ordinary computers. Using integer 

variables in programming languages enables calculations to 

support (232) values, whereas using BigInteger variables may 

enable calculations to reach high values depending on the 

available size of RAM while having official limits of (𝑀𝑎𝑥 =

2(𝐼𝑛𝑡𝑒𝑔𝑒𝑟.𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒) − 1; 𝑀𝑖𝑛 = −2(𝐼𝑛𝑡𝑒𝑔𝑒𝑟.𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒)).  

 

Therefore, we used the Super Infinity Calculator to 

conduct operations surpassing the limitations of integers and 

BigIntegers. 

 

 

7. Conclusion 
The presented software library and Artificial Intelligence 

entity in this paper can conduct arithmetic calculations and 

binary bitwise operations on infinity numbers with lengths 

exceeding Gigabytes and Terabytes in short times while 

reinforcing processing capacities of used computers by 

virtualizing memory spaces of EEPROM to be used along 

with the RAM. In addition, these presented resources provide 

infinite persistent precision for each digit of involved numbers 

even when exceeding lengths of Gigabytes where the 

Artificial Intelligence entity may store the results in outside 

memory spaces if RAM, virtualized space of memory and 

EEPROM were satirized. Furthermore, these software and AI 

resources rely on parallel computation, distributed 

computation and shifting calculations from the exponential 

dimension of execution time to the linear dimension. 

Therefore, this software library and Artificial Intelligence 

entity enable computers to reach supreme levels of exploit in 

terms of computational calculations and binary operations on 

infinity numbers while providing infinite persistent precision 

for each digit during calculations and values display, including 

the digits after floating point. 
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