
SSRG International Journal of Computer Science and Engineering Volume 10 Issue 11, 49-62, November 2023

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V10I11P107 © 2023 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Developing a New Software Library for Super

Calculations on Infinity Numbers while Providing

Infinite Persistent Precision in the Technical Context of P

versus NP whereas Programming on Artificial

Intelligence

Yassine Larbaoui

Department of Electrical Engineering, University Hassan 1er, Settat, Morocco.

1Corresponding Author : yassine.larbaoui.uh1@gmail.com

Received: 21 September 2023 Revised: 29 October 2023 Accepted: 12 November 2023 Published: 30 November 2023

Abstract - This paper presents a new computation software library, which we developed for super arithmetic calculations and

massive binary operations on infinity numbers that require more than 64 bits to be expressed by manifesting the possibility of

expressing these numbers on infinite quantities of virtual bites reassembled in subgroups while providing infinite persistent

precision. Then, we integrated this library into an application, which we named Super Infinity Calculator. We reinforced this

software library with an Artificial Intelligence entity, which we programmed to manage the used hardware resources of

processors and data storing memories during the executed calculations to handle infinity numbers while executing calculations

on them in a short time. This Artificial Intelligence entity is incharge of forwarding computation on infinite subgroups of virtual

bites in parallel and recursively when necessary while monitoring their results. The programmed functionalities of this Artificial

Intelligence entity play a principal role in supporting the execution of computation calculations on super numbers with lengths

exceeding Gigabytes and Terabytes while providing infinite persistent precision for each digit of them, including the ones after

the floating point. As a result, these developed software resources allow us to shift various super calculations on infinity numbers

from NP to P by executing them in the linear dimension of time instead of consuming exponential time.

Keywords - Artificial Intelligence, Infinite persistent precision, Parallel computation, P Versus NP, Super computational

calculations, Super infinity number.

1. Introduction
Throughout history, human beings have always been

seeking improvements that may allow them to simplify

activities or have certain gains at levels that may be of interest

to their existence or their ways of life, such as time, space, and

ownership. Then, the computation age came, starting by

manufacturing the first computer machine [1] in the forties of

19𝑡ℎ century, which led to revolutionizing all aspects of

humane life and science.

It all started with the conception of a model of a machine,

which was a theoretical computation model developed by

Turing in 1936 [2]. He based his model on how he perceived

mathematical thinking. As digital computers were developed

in the forties and fifties of the nineteenth century, the Turing

machine proved itself to be the convenient theoretical model

for computation at that time.

Quickly, though, it was discovered that the basic Turing

machine model fails to account for the needed amount of time

or memory by a computer, which was a critical issue over the

years. The key idea to measure time and space as a function of

the input length came in 1960 by Hartmanis and Stearns,

which gave birth to computation complexity [3].

After decades of development, there were still many

published articles with content inspired by the Turing

machine. As an example, in 2010, Ya.D. Sergeyev and A.

Garro presented a refinement of the theory of computation

based on the model of the Turing machine in terms of

computational calculation [4].

Computer machines have massively evolved in shape and

capacities over more than 80 years of technological evolution,

starting from the forties of 19𝑡ℎ century until our nowadays.

http://www.internationaljournalssrg.org/

Yassine Larbaoui / IJCSE, 10(11), 49-62, 2023

50

These evolvements have been always leaned on improvements

of relevant resources of hardware and software, which lead

computers to support the conduction of enormous

mathematical calculations and binary bitwise operations in

parallel and at gigantic rates of execution for each process.

Even though computer processing capacities have

reached outstanding pics [5], conducting computation

calculations on infinity numbers with lengths exceeding

Gigabytes and Terabytes is still problematic because numbers

are based on defined lengths in the computational concept of

processing. For example, in the technical aspect of

computation using programming languages of C++, Java and

Python, numbers are structured according to specific objects

with defined maximum lengths, such as Integers, Doubles and

BigIntegers. In contrast, massive numbers with infinite

lengths are expressed by approximation with precision

limitations and needed time for processing. However, there are

improvements in computational calculations where the

lengths of resulted numbers may depend only on the size of

RAM memory (Random Access Memory).

Theoretically, BigIntegers are featured to support

massive numbers limited by the size of RAM. However, a

BigInteger has official limits of (𝑀𝑎𝑥 =

2(𝐼𝑛𝑡𝑒𝑔𝑒𝑟.𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒) − 1; 𝑀𝑖𝑛 = −2(𝐼𝑛𝑡𝑒𝑔𝑒𝑟.𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒)) while

being physically limited by the RAM size of Java Virtual

Machine (JVM).

There is a methodology allowing the execution of

numerical computations with finite, infinite, and infinitesimal

numbers [6, 7, 8] on a type of computer named “the Infinity

Computer” [9]. This methodology allows writing down these

numbers by using a finite amount of symbols. This

methodology [7,8] evolves the ideas of Cantor and Levi-Civita

in a more applied way. It introduces infinite integers that

possess both cardinal and ordinal properties as usual finite

numbers, which are also used nowadays in programming

languages and software frameworks to handle high numbers

with finite values.

This methodology is based on a concept of number

approximation named “Arithmetic of Infinity”, introduced by

Y.D. Sergeyev aimed to devise a new coherent computation

environment able to handle finite, infinite, and infinitesimal

quantities and execute arithmetic operations with them. This

concept is based on a positional numeral system with an

infinite radix called “grossone”, which represents the number

of elements of the set of natural numbers ℕ [11, 12].

This methodology is limited by precision lengths for

digits displayed even on Infinity Computer because instead of

displaying infinity numbers, they display only approximated

expressions them presented on finite lengths of digits and

symbols. Therefore, this methodology is a shortcut enabling

the display of massive numbers by expressing them on limited

lengths of bytes. This is due to sacrificing the precision of

preceding digits with inferior densities to express digits with

superior densities [7, 8, 10].

Integer objects are expressed on 32 bites, supporting 232

possible values of different integer numbers, whereas Double

objects are expressed on 64 bites, supporting 264 possible

values of different double numbers. Then, the BigInteger

object was developed to manifest the possibility of expressing

higher values limited by RAM size, whereas approximation

methodologies were developed to handle massive numbers by

presenting them on limited lengths of bites [13, 14].

Therefore, expressing infinity numbers of integers and

doubles on infinite lengths of bytes exceeding Gigabytes and

Terabytes and executing calculations on them was still

problematic for us before developing our software. This

problem was principally due to the dependencies on the

supported lengths of bites by computers for the execution of

calculations, the dependencies on the RAM size, and the need

to have Infinity Computers handle massive numbers in short

times while providing high levels of approximation precision.

There has been a lot of research on how to support

computational calculations on numbers that may need to be

expressed on more than 64 bites [15, 16], such as by using

grosson [17, 18], which led to significant improvements in the

supported lengths of numbers during these computational

calculations and during digital display of results. However,

these improvements did not manifest the mathematical fancy

of supporting calculations on infinity numbers that may be

expressed on Gigabytes and even on Terabytes with infinite

persistent precision and in less time while using ordinary

computers.

Furthermore, many of these improvements are based on

favoring digits of high density during calculations and

numbers displaying to users while neglecting digits with lower

densities starting from specific limits [19] to handle

processing on further numbers with higher lengths. Therefore,

these improvements may not give an absolute precision for

each digit of a resulting number during these calculations and

during digital display if the length of this number exceeds

defined limits.

Compared to ordinary computers, Super Computers [20]

and Infinity Computers [21] are enabling to handle massive

numbers of infinity by either processing them entirely or

presenting them in the form of high-level approximations in

terms of used amounts of digits for their expressions and their

visual display. In addition, they execute necessary processing

operations on these numbers in extremely short times.

Nevertheless, they may still need to sacrifice the precision of

low-density digits when numbers exceed the limits of their

supported lengths of bites in order to process further quantities

of bites and display them to users.

Yassine Larbaoui / IJCSE, 10(11), 49-62, 2023

51

Even though supporting computational calculation on

numbers with high lengths on account of precision enables

approximated results, this precision is actually crucial in many

fields that rely on mathematical calculations, such as Numbers

Theory [2], Quantum Mechanic [23], etc. For example, this

precision is crucial to identifying infinity prime numbers that

may be expressed on high lengths of bits or factorizing

numbers consisting of millions of digits in the function of

prime numbers, whereas this mathematical precision is a vital

key to calculating paths of nanoparticles while being moving

in vast spaces such as the case in Atlas experiment [24].

In this paper, we present our developed software library

to support calculations on infinity numbers that need more

than 64 bits to be expressed by providing the possibility of

expressing these numbers on infinite amounts of virtual bites

reassembled in subgroups, which enables to express them on

Gigabytes and even on Terabytes while using ordinary

computers. This software library is based on two extendable

objects in terms of length, which we named respectfully

“SuperInfinityInterger” and “SuperInfinityDouble”.

When executing computational calculations on Infinity

numbers, allocated resource capacities of memory and

processors definitely play a major role in the success of

executed processes. Therefore, we have developed an

Artificial Intelligence entity to manage these resources,

conduct calculations in parallel and forward the results of

calculations recursively from one subgroup of virtual bites to

another.

These developed resources of software libraries and

Artificial Intelligence entities enable structuring numbers on

infinite lengths of bits, which means that they can structure

numbers with lengths of Gigabytes and Terabytes by relying

on the memory space of computers to store them. In addition,

these resources handle the computational processing of

calculations in parallel to speed up their execution.

Furthermore, they can structure the resulting numbers at the

end of calculations on thousands of Gigabytes. Therefore, the

only limitation that may be encountered by these developed

resources is the available memory space in used computers.

In order to overcome the memory space limitation of

computers, we programmed the Artificial Intelligence entity

to access outside resources of memory space by aggregation,

exploiting them during calculations.

We also programmed the Artificial Intelligence entity to

analyze variables of numbers and written codes for calculation

to find independencies between potential processes to execute

these calculations in parallel and minimize the time needed for

processing. Furthermore, the Artificial Intelligence entity is

programmed to reduce amounts of calculations exponentially

by detecting patterns of redundant calculations and

converging them into reduced processes without

redundancies. As a result, this Artificial Intelligence entity can

handle numbers with lengths of Gigabytes in seconds and

execute composed calculations on them in a few dozen

seconds when using ordinary computers.

The logic of developed objects of “SuperInfinityInteger”

and “SuperInfinityDouble” is based on expressing them in the

form of subgroups of virtual bites while relying on the

Artificial Intelligence entity to forward results from one

subgroup to others during arithmetic calculations and binary

bitwise operations without neglecting any digit of any number.

Therefore, the developed software library and Artificial

Intelligence entity provide an infinite persistent precision for

each digit of calculated results even when surpassing lengths

of Gigabytes and Terabytes. Furthermore, the Artificial

Intelligence entity is programmed to optimize calculations that

may need exponential time for processing by executing them

in linear time, which is manifested by shifting infinity

calculations from NP to P, detecting patterns of redundant

calculations, converging them into reduced processes and

executing these processes in linear time and parallel.

On the one hand, the presented software library and

Artificial Intelligence entity in this paper are currently

programmed to function on any ordinary computer with at

least one processor, 4 Gigabytes of RAM and 10 Gigabytes of

EEPROM (Electronically Erasable Programmable Read-Only

Memory). On the other hand, these resources can also function

in reduced environments with less space for RAM and

EEPROM while consuming seconds during calculations on

numbers expressed in Gigabytes. However, to support

numbers with lengths of Terabytes, there is a need to have

more storage space on EEPROM to be virtualized by the

Artificial Intelligence entity and then used along with RAM.

The technological trends of big data [26, 27] enable the

handling of massive amounts of information in terms of

storage and processing either by distributing these data on

systems or by processing them on a super-computer [28, 29].

However, in our results, we developed the Artificial

Intelligence entity to augment the processing capacities of

ordinary computers by virtualizing memory spaces of

EEPROM and using them along with RAM. We programmed

algorithms within this entity to handle big digits data as

infinity numbers. Then, we programmed this entity to

optimize the needed times for calculations (especially

multiplication, division, roots, exponentials, etc.) by shifting

infinity operations from NP to P in order to be executed only

in dozens of seconds at maximum when the lengths of input

variables and results exceed Gigabytes.

After developing this software library and reinforcing it

by developing the Artificial Intelligence entity, we integrated

them within an application, which we named Super Infinity

Calculator.

Yassine Larbaoui / IJCSE, 10(11), 49-62, 2023

52

𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝐴 = 𝑛𝑒𝑤 𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑃3, 𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑃2, 𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑃1) (1)

This paper is structured as follows: Section 2 presents the

developed software library. Section 3 presents the programed

Artificial Intelligence entity for super calculations on infinity

numbers. Section 4 presents the exploit of programmed AI

entity in the technical context of shifting infinity calculations

from NP to P. Section 5 presents the technical context of

shifting infinity operations with infinite quantities of

interdependencies from NP to P. Section 6 presents the

implementation of developed resources within Super Infinity

Calculator along with statistics of its processing capacities.

Finally, section 7 for conclusion.

2. Developed Software Library
2.1. Technical Description of Software Library

Our developed software library to support super

arithmetic calculations and binary bitwise operations on

infinity numbers is based on two new types of objects: the

“SuperInfinityInteger” object and the “SuperInfinityDouble”

object. We have programmed two versions of this software

library, one version in Java and another version in C++.

We have programmed these two objects to be extendable

in terms of length, where each one of them can be expressed

on infinite lengths of virtual bites reassembled into subgroups

of bits with flexible lengths.

Each one of these two objects is independent of

predefined limits of length, and their sizes are extendable to

exceed Gigabytes and Terabytes. Therefore, we developed an

Artificial Intelligence entity to manage the required memory

space by infinity numbers while supporting their storage on

EEPROM.

This Artificial Intelligence entity is responsible for

virtualizing memory spaces of EEPROM to be exploited

during calculations along with RAM to reinforce the

processing capacities of used computers.

2.2. Developed object of super infinity integer

We programmed the object of “SuperInfinityInteger” to

have consisted of three parts (variables), which are as shown

in (Eq 1). The first part on the right (𝑃1) is a BigInteger, the

second part in the middle (𝑃2) is a child-object with type

“SuperInfinityInteger”, and the third part (𝑃3) in the left is a

Boolean condition to determine whether the second part is null

or not. Therefore, instead of relying on defined lengths to

execute calculations and binary operations on a

“SuperInfinityInteger”, we rely on using the Boolean

condition to determine whether to forward calculations

furthermore to include the child-object or to stop operations at

the level of contained BigInteger.

We programmed two categories of the object

“SuperInfinityInteger”. The first category is a parent-object,

and the second is a child-object. The parent-object cannot be

a child-object of any “SuperInfinityInteger”, whereas a child-

object can be a child-object of a “SuperInfinityInteger” and at

the same time being a parent of another child-object.

Relying on these two categories, a “SuperInfinityInteger”

can be expressed as an infinite tree of nodes, as shown in (Fig.

1), where the first node is from the category parent-object and

the other nodes are from the category child-object.

2.3. Developed Object of Super Infinity Double

We programmed the object of “SuperInfinityDouble” to

have consisted of two parts, which are as shown in (Eq. 2).

The first part (𝑃1) in the right of the object of

“SuperInfinityDouble” is a “SuperInfinityInteger” expressed

after the floating point at the right side of zero, whereas the

second part (𝑃2). On the left of this object of

“SuperInfinityDouble” is a “SuperInfinityInteger” expressed

at the left side before the floating point.

2.4. Developed Infinity for Loop

We programmed an object named “InfintyForLoop”,

which is expressed as shown in (Eq. 3), in order to conduct

infinity loops that may be automatically distributed on parallel

segments initiated by “ParallelismAgent” and controlled by

“ResourceManagmentAgent” in the Artificial Intelligent

entity (Fig. 2). The cursor of the loop is named as

“𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐶𝑟)”.

Fig. 1 Developed nodes tree structure for SuperInfinityIntegers

Node 1 Node 2 Node 3 Node 4 Node N

(B1, P1,2, P1,1) (B2, P2,2, P2,1) (B3, P3,2, P3,1) (B4, P4,2, P4,1) (BN, PN,2, PN,1)

SuperInfinity Integer X

Yassine Larbaoui / IJCSE, 10(11), 49-62, 2023

53

𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐹𝑜𝑟𝐿𝑜𝑜𝑝(𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝐴1, 𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝐴2, 𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝐴3, 𝑖𝑛𝑡 𝐴4, 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝐵)(2)

 𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐷𝑜𝑢𝑏𝑙𝑒 𝐵 = 𝑛𝑒𝑤 𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐷𝑜𝑢𝑏𝑙𝑒(𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑃2, 𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑃1) (3)

Fig. 2 Developed software library and developed agents of Artificial Intelligence to conduct computational operations on infinity numbers

The 𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐴1) shown in (Eq. 3) defines

the start value of the loop’s cursor where (𝐶𝑟 = 𝐴1). The

𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐴2) defines the end value of the

loop’s cursor where (𝐶𝑟 ≤ 𝐴2). The

𝑆𝑢𝑝𝑒𝑟𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐴3) defines the step of augmenting

the value of the cursor where (𝐶𝑟 = 𝐶𝑟 . 𝐴𝑑𝑑𝑌𝐿(𝐴3)). The

integer (𝐴4) defines the maximum segments of calculations to

be conducted in parallel.

The Boolean B defines whether to allow

“ResourceManagmentAgent” to conduct automatic

distributions of processes on resilient numbers of parallel

segments that may exceed the value of (𝐴4) depending on the

conducted analysis by “ParallelismAgent” and also depending

on accessible resources of processors, RAM, virtualized

memory, EEPROM and aggregated spaces of memory by

“ResourceAggregationAgent” in the AI entity (Fig. 2).

3. Programmed Artificial Intelligence Entity
3.1. Technical Description of Artificial Intelligence Entity

We programmed the Artificial Intelligence entity to

conduct calculations in parallel on each of the two objects of

“SuperInfinityInteger”.

We also programmed this AI entity to be responsible for

forwarding processes recursively from a parent-object to a

child-object of “SuperInfinityInteger”. In addition, forwarding

them from any child-object to its successive child-object.

As a result, this Artificial Intelligence entity is responsible

for conducting processes in parallel while forwarding the

results of calculations and binary operations during

computations.

The programmed AI entity consists of multiple software

agent entities responsible for managing calculations,

optimizing the exploitation of hardware resources, and

reducing the time of computation conduction by relying on

parallelism while shifting calculations from the exponential

dimension of execution time to the linear dimension.

The Artificial Intelligence entity is responsible for the

following functionalities:

1) Optimizing the exploit of RAM.

2) Virtualizing storage memory to be used along with RAM.

3) Managing the exploit of integrated hardware resources.

4) Managing the access and exploitation of external

hardware resources such as hard drives and distributed

computers over the network. (Distributed Computation)

5) Conducting calculations in parallel (Parallel

Computation).

6) Detecting patterns of redundant calculations and

converging them into unified segments of computation.

7) Regrouping infinite numbers in the form of subgroups of

bits.

8) Storing subgroups of bits expressing infinite numbers as

files during calculations.

Infinity Finesse Agent

Resource Management Agent

Memory Virtualization Agent

Super Infinity Agent

Super Infinity Integer

Super Infinity Double

Infinity For Loop

U
lt

ra
 D

o
u

b
le

 A
g

en
t

U
lt

ra
 I

n
fi

n
it

y
 A

g
en

t

In
fi

n
it

y
 A

p
p

ro
x

im
at

io
n

 A
g

en
t

P
ar

al
le

li
sm

 A
g

en
t

R
es

o
u

rc
e

A
g

g
re

g
at

io
n

 A
g

en
t

Super Double Agent

Binary Mapping Agent

Yassine Larbaoui / IJCSE, 10(11), 49-62, 2023

54

9) Predicting the necessary time to execute segments of

calculations.

10) Compressing files of subgroups of bits representing

infinite numbers when these numbers are not used during

significant amounts of time.

11) Switching from the mode of infinite persistent precision

to the mode of “grosson expressions” when there is no

more enough space in RAM and Virtualized memory.

The developed software library and developed agents of

Artificial Intelligence entities to conduct operations on infinity

numbers are shown in (Fig. 2).

3.2. Super Infinity Agent and Ultra Infinity Agent

The Artificial Intelligence entity is programmed to have

consisted of two types of agents: “SuperInfinityAgent” and

“UltraInfinityAgent”.

The developed “SuperInfinityAgent” is responsible for

fetching through the parent-object and child-objects of any

“SuperInfinityInteger”. In addition, any instant of

“SuperInfinityAgent” can be connected to any other instant of

the same type to conduct synchronous recursive operations of

comparison through parent-objects and child-objects of

“SuperInfinityIntegers”. Furthermore, we programmed the

“SuperInfinityAgent” to support the conduction of certain

arithmetic operations and binary operations on its handled

objects during its connections with other instants of

“SuperInfinityAgents”.

The “SuperInfinityAgent” is also programmed to be

incharge of deleting or copying any object of

“SuperInfintyIntegers” whereas being able to create new ones,

in the condition of handling one object of

“SuperInfintyInteger” at a time.

The developed “UltraInfinityAgent” is responsible for

initiating more than one “SuperInfinityAgent” in parallel to

handle simultaneous calculations and execute complex

processes of multiplication, division, roots, etc. These

calculations are complicated because they may generate

results expressed on either Gigabytes or Terabytes, depending

on the sizes of input numbers. Therefore, we programmed the

Artificial Intelligence entity to store any

“SuperInfinityInteger” on the EEPROM as files when its size

exceeds a specific limit instead of being expressed on RAM

and virtualized memory.

The Artificial Intelligence entity is programmed to store

any infinity number with a length exceeding Gigabytes in the

form of separated files on the EEPROM, where the size of

each file may exceed one Gigabyte, and then handle these files

during calculations recursively.

The programmed “SuperInfinityAgent” is incharge of

shown operations in Table 1, whereas the

“UltraInfinityAgent” is programmed to be incharge of shown

operations in Table 2.

The developed agent of “SuperInfinityAgent” is

responsible for creating “SuperInfinityInteger” objects from

either String variables, BigInteger variables, integer variables

or sequences of bytes. However, the results of operations are

expressed only as String variables, arrays of String variables

or sequences of bytes.

3.3. Resource Management Agent and Memory

Virtualization Agent

In order to optimize the exploit of computational

resources of RAM, EEPROM and processors, we

programmed the Artificial Intelligence entity to consist of

another agent, which we named

“ResourceManagmentAgent”. In addition, we programmed an

agent named “MemoryVirtualizationAgent”, the responsible

agent for virtualizing memory spaces of EEPROM and using

them along with the RAM.

The “ResourceManagementAgent” is responsible for

managing the distribution of calculations and binary

operations on processors, RAM, and virtualized memory

space in resilient manners that enable their executions to run

in parallel. In addition, this agent is responsible for transiting

the content of any “SuperInfinityInteger” from RAM to

EEPROM in order to be stored as files in the case where its

size exceeds 128 Megabytes. Furthermore, it is responsible for

storing all new infinity numbers as files instead of being held

on the RAM or the virtualized memory space, starting from

any moment the free space of RAM drops under 256

Megabytes.

This “ResourceManagementAgent” is also programmed

to store infinity numbers as compressed zip files to optimize

the use of memory space in cases where these numbers are not

used in further calculations for considered amounts of time.

Therefore, the “ResourceManagementAgent” is also

programmed to predict time amounts of processing based on

the involvement of variables and then decide whether to store

any of these infinity numbers as zip files or not.

3.4. Resource Parallelism Agent and Resource Aggregation

Agent

We programmed an agent named “ParallelismAgent”,

which is incharge of code analysis and processes analysis to

define the operations that may be executed in parallel due to

the independence of their involved variables from each other.

Then, this “ParallelismAgent” converges the outputs of

parallel processes to provide finalized results. In addition, this

agent detects redundant patterns of calculations and converges

them into reduced processes.

We programmed an agent named

“ResourceAggregationAgent” to define outside resources of

memory space that may be accessible by used computer in

order to exploit them by the “ResourceManagementAgent”,

such as USB, hard drive, different computers on local network

or accessible servers.

Yassine Larbaoui / IJCSE, 10(11), 49-62, 2023

55

Table 1. Operations handled by SuperInfinityAgent on SuperInfinityIntegers

Operations executed by SuperInfinityAgent Description

SuperInfinityInteger.NegativeLY() -X.

SuperInfinityInteger.AddLY(SuperInfinityInteger Y) X+Y.

SuperInfinityInteger.SubtractLY(SuperInfinityInteger Y) X-Y.

SuperInfinityInteger.NOTLY(SuperInfinityInteger Y) Complement of X (NOT X).

SuperInfinityInteger.ANDLY(SuperInfinityInteger Y) X AND Y.

SuperInfinityInteger.ORLY(SuperInfinityInteger Y) X OR Y.

SuperInfinityInteger.XORLY(SuperInfinityInteger Y) X XOR Y.

SuperInfinityInteger.ANDNOTLY(SuperInfinityInteger Y) X AND(NOT Y).

SuperInfinityInteger.NOTXORLY(SuperInfinityInteger Y) NOT(X XOR Y).

SuperInfinityInteger.ShiftRightLY(SuperInfinityInteger N) Shifting bites of X to the right by N bites.

SuperInfinityInteger.ShiftLeftLY(SuperInfinityInteger N) Shifting bites of X to the left by N bites while keeping the

bite indicating that it is a signed infinity number at its

original place.

SuperInfinityInteger.ShiftLeftLY2(SuperInfinityInteger N) Shifting bites of X to the left by N bites without keeping the

bite indicating that it is a signed infinity number at its

original place.

SuperInfinityInteger.IsEqualLY(SuperInfinityInteger Y) Is (X==Y)

SuperInfinityInteger.MaxLY(SuperInfinityInteger Y) Maximum among X and Y.

SuperInfinityInteger.MinLY(SuperInfinityInteger Y) Minimum among X and Y.

SuperInfinityInteger.CompareToLY(SuperInfinityInteger Y) Comparison between X and Y. The result is 1 if 𝑋 > 𝑌. The

result is -1 if 𝑋 < 𝑌, whereas the result is 0 if X=Y.

SuperInfinityInteger.ValueOfStringLY(String s) Creating SuperInfinityInteger from String s.

SuperInfinityInteger.ValueOfStringArrayLY(String[][] S) Creating SuperInfinityInteger from String array S.

SuperInfinityInteger.ValueOfBigIntegerLY(BigInteger y) Creating SuperInfinityInteger from BigInteger y.

SuperInfinityInteger.ValueOfIntegerLY(int x) Creating SuperInfinityInteger from integer x.

SuperInfinityInteger.ValueOfBytesLY(Byte[] x) Creating SuperInfinityInteger from Bytes sequence.

SuperInfinityInteger.toStringLY() Converting SuperInfinityInteger to String.

SuperInfinityInteger.toStringArrayLY() Converting SuperInfinityInteger to a String Array of two

dimensions.

SuperInfinityInteger.toBytesLY() Converting SuperInfinityInteger to sequence of bytes.

SuperInfinityInteger.toBytesArrayLY() Converting SuperInfinityInteger to an array of sequences of

bytes.

SuperInfinityInteger.ZEROLY () Value zero in type of SuperInfinityInteger.

SuperInfinityInteger.ONELY() Value one in type of SuperInfinityInteger.

Table 2. Operations handled by UltraInfinityAgent on SuperInfinityIntegers

Operations executed by UltraInfinityAgent Description

SuperInfinityInteger.MultiplyLY(SuperInfinityInteger Y) X*Y.

SuperInfinityInteger.DivideLY(SuperInfinityInteger Y) X/Y without expressing values at the right of floating point

after zero.

SuperInfinityInteger.ModLY(SuperInfinityInteger Y) Returning X%Y.

SuperInfinityInteger.DivideLY2(SuperInfinityInteger Y) Returning two results A and B where A=X/Y and B=X%Y.

SuperInfinityInteger.PowLY(SuperInfinityInteger Y) 𝑋𝑌.

3.5. Infinity Approximation Agent

In the case of calculating (𝑋𝑌) using two infinity numbers,

X and Y, where the length of each one of them surpasses 1

Megabyte, the result Z may be expressed on more than 1024

Gigabytes, which may exceed the storage capacities of

ordinary computers even when using data compression

techniques. Therefore, we developed an agent named

“InfinityApproximationAgent” to express Z as (𝑍 = 𝑁 ∗ 𝑒𝑀)

where M is a “SuperInfinityInteger” and N has a length of

Gigabytes exceeding the length of X. As a result, Z is handled

by storing N and M on only a few Gigabytes instead of being

stored on more than a thousand Gigabytes.

Yassine Larbaoui / IJCSE, 10(11), 49-62, 2023

56

Table 3. Operations handled by SuperDoubleAgent on SuperInfinityDoubles while exploiting SuperInfinityAgents.

Operations executed by SuperDoubleAgent Description

SuperInfinityDouble.NegativeLY() -X.

SuperInfinityDouble.AddLY(SuperInfinityInteger Y) X+Y.

SuperInfinityDouble.AddLY2(SuperInfinityDouble DY) X+DY.

SuperInfinityDouble.SubtractLY(SuperInfinityInteger Y) X-Y.

SuperInfinityDouble.SubtractLY2(SuperInfinityDouble DY) X-DY.

SuperInfinityDouble.IsEqualLY(SuperInfinityDouble DY) Is (X==DY)

SuperInfinityDouble.MaxLY(SuperInfinityInteger Y) Maximum among X and Y.

SuperInfinityDouble.MaxLY2(SuperInfinityDouble DY) Maximum among X and DY.

SuperInfinityDouble.MinLY(SuperInfinityInteger Y) Minimum among X and Y.

SuperInfinityDouble.MinLY2(SuperInfinityDouble DY) Minimum among X and DY.

SuperInfinityDouble.CompareToLY(SuperInfinityInteger Y) Comparison between X and Y. The result is 1 if

X>Y. The result is -1 if X<Y, whereas the result is

0 if X=Y.

SuperInfinityDouble.CompareToLY2(SuperInfinityDouble DY) Comparison between X and DY. The result is 1 if

𝑋 > 𝐷𝑌. The result is -1 if 𝑋 < 𝐷𝑌, whereas the

result is 0 if X=DY.

SuperInfinityDouble.ValueOfStringLY(String s) Creating SuperInfinityDouble from String s.

SuperInfinityDouble.ValueOfStringArrayLY(String[][] S) Creating SuperInfinityDouble from String array S.

SuperInfinityDouble.ValueOfDoubleLY(double dy) Creating SuperInfinityDouble from double dy.

SuperInfinityDouble.ValueOfSuperIntegerLY(SuperInfinityInteger X) Creating SuperInfinityDouble from

SuperInfinityInteger X.

SuperInfinityDouble.ValueOfBytesLY(Byte[] x) Creating SuperInfinityDouble from Bytes sequence.

SuperInfinityDouble.toStringLY() Converting SuperInfinityDouble to String.

SuperInfinityDouble.toStringArrayLY() Converting SuperInfinityDouble to String array.

SuperInfinityDouble.toBytesLY() Converting SuperInfinityDouble to sequence of

bytes.

SuperInfinityDouble.toBytesArrayLY() Converting SuperInfinityDouble to array of

sequences of bytes.

We also rely on executing this concept of approximation

on the results of complicated operations that include different

arithmetic calculations where these results are expected to

surpass capacities of RAM, virtualized memory, EEPROM

and aggregated spaces of memory.

The “InfinityApproximationAgent” works in coherence

with “ResourceManagmentAgent” and

“ResourceAggregationAgent” to optimize the exploit of

processors, RAM, virtualized memory, EEPROM and other

accessible resources of memory space.

Therefore, in case when have sufficient resources to

conduct the necessary calculations and store infinity numbers,

the “InfinityAproximationAgent” does not modify involved

variables, and we continue having an infinite persistent

precision for each digit of involved infinity numbers,

including the digits at the right side of floating point.

3.6. Super Double Agent and Ultra Double Agent

In order to handle the programmed object of

“SuperInfintyDouble”, we developed two different agents

within the Artificial Intelligence entity: “SuperDoubleAgent”

and “UltraDoubleAgent”.

The programmed “SuperDoubleAgent” is responsible for

handling one object of “SuperInfinityDouble” at a time by

initiating two instants of “SuperInfinityAgents”, where the

first instant is incharge of handling the right subobject of the

corresponding “SuperInfinityDouble” object. The second

instant is incharge of handling its left subobject (Eq. 2). At the

end of executed operations by the first created instant, the

“SuperDoubleAgent” is responsible for forwarding relevant

results of its operations to the second created instant if they

are of interest to the requested operations on the left side of

corresponding object of “SuperInfinityDouble”.

The programmed “UltraDoubleAgent” is responsible for

handling two objects of “SuperInfinityDoubles” at a time,

“SuperInfinityDouble” X and “SuperInfinityDouble” Y, by

initiating four parallel instants of “UltraInfinityAgents” to

execute its shown operations in Table 4. The first instance is

incharge of handling operations between the right subobject of

“SuperInfinityDouble” X and the right subobject of

“SuperInfinityDouble” Y. The second instant is incharge of

handling operations between the right subobject of

“SuperInfinityDouble” X and the left subobject of

“SuperInfinityDouble” Y. The Third instant is incharge of

handling operations between the left subobject of

Yassine Larbaoui / IJCSE, 10(11), 49-62, 2023

57

“SuperInfinityDouble” X and the right subobject of

“SuperInfinityDouble” Y. The fourth instant is incharge of

handling operations between the left subobject of

“SuperInfinityDouble” X and the left subobject of

“SuperInfinityDouble” Y.

At the end of executed operations by these initiated

instants by “UltraDoubleAgent”, this agent initiates four

objects of “SuperInfintyDoubles” to contain the results of

these preceding instants of “UltraInfinityAgents”. Then, the

“UltraDoubleAgent” initiates two instants of

“SuperDoubleAgents” to handle these four objects of

“SuperInfintyDoubles” by executing necessary operations on

them.

The programmed “SuperDoubleAgent” is incharge of

shown operations in Table 3, whereas the

“UltraDoubleAgent” is programmed to be incharge of shown

operations in Table 4.

Table 4. Operations handled by UltraDoubleAgent on SuperInfinityDoubles while exploiting UltraInfinityAgents and SuperInfinityAgents.

Operations executed by UltraDoubleAgent Description

SuperInfinityDouble.MultiplyLY(SuperInfinityInteger Y) X*Y.

SuperInfinityDouble.MultiplyLY2(SuperInfinityDouble DY) X*DY.

SuperInfinityDouble.InverseLY() 1/X whereas expressing the value at the right of floating

point after zero if it exists.

SuperInfinityDouble.DivideLY(SuperInfinityInteger Y) X/Y whereas expressing the value at the right of floating

point after zero if it exists.

SuperInfinityDouble.DivideLY2(SuperInfinityDouble DY) X/DY whereas expressing the value at the right of floating

point after zero if it exists.

SuperInfinityDouble.PowLY(SuperInfinityInteger Y) 𝑋𝑌.

SuperInfinityDouble.SqrtLY(SuperInfinityInteger Y) √𝑋
𝑌

.

𝑋 = 2; 𝑌 = 2512 + 2256 + 2140 + 232; 𝑍 = 𝑋𝑌; 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠_𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝐹𝑎𝑐𝑡𝑜𝑟 = 515/𝑌 = 3,84𝑒−152 (4)

𝑌 = ∑ 𝛤(𝑌,𝑖)

{𝑖=𝑁}

{𝑖=0}

 (5)

𝛤(𝑌,𝑖) = 𝑌 𝐴𝑁𝐷 2𝑖 (6)

𝑋 = 2; 𝑌 = 2256 + 2128 + 232; 𝑍 = 𝑋𝑌; 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠_𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝐹𝑎𝑐𝑡𝑜𝑟 = 418/𝑌 = 3,6𝑒−75 (7)

3.7. Infinity Finesse Agent

The results of calculations and binary operations on

infinity numbers may have many digits with the value zero at

the left edges of “SuperInfinityIntegers” or the right edges of

“SuperInfinityDoubles” after floating point, which is a waste

of memory space. Therefore, we programmed an agent named

“InfinityFinesseAgent” within the Artificial Intelligence

entity to be responsible for eliminating these digits with value

zero and optimizing the used memory space by each infinity

number.

3.8. Binary Mapping Agent

We programmed an agent named

“BinaryMappingAgent” to express infinity numbers as

subgroups of virtual bites and use each subgroup to guide the

conduction of composed arithmetic calculations such as the

processes of SuperInfinityInteger.MultiplyLY(Y),

SuperInfinityInteger.PowLY(Y),

SuperInfinityDouble.MultiplyLY(Y),

SuperInfinityDouble.PowLY(Y), etc.

This “BinaryMappingAgent” can reduce an ordinary total

amount of calculations T to be only 3,47𝑇𝑒−18. Furthermore,

this agent is relied on to reduce massive amounts of

calculations exponentially to reach reduction levels under the

value 3,47𝑒−18, which shifts infinity calculations from NP to

P.

4. The Exploit of Programmed AI Entity in the

Technical Context of P Versus NP
The programmed Artificial Intelligence entity relies on

parallel computation to conduct calculations quickly. In

addition, it relies on shifting arithmetic operations and binary

operations from the exponential dimension of execution time

(𝑇𝑁) to the linear dimension of time (𝑁 ∗ 𝑙𝑛(𝑇)) by relying on

the Binary Mapping Agent, Parallelism Agent and Resource

Management Agent, which are programmed in the technical

context of shifting infinity calculations from NP to P.

Furthermore, this AI entity detects patterns of redundant

calculations and then converges them into unified segments to

avoid overloading during resource exploits whereas

minimizing consumed time in total.

Yassine Larbaoui / IJCSE, 10(11), 49-62, 2023

58

As an example of the use of the “BinaryMappingAgent”

to shift operations from the exponential dimension of time

execution to the linear dimension, we suppose the case when

having two numbers (𝑋 = 2) and (𝑌 = 264) whereas we seek

to calculate (𝑍 = 𝑋𝑌). Instead of conducting the

multiplication process over a total amount of (264) processes,

the “BinaryMappingAgent” guides the calculation process to

be conducted only over 64 processes by multiplying the result

of each process by itself in the following multiplication

process. As a result, we reduce the total amount of calculations

massively, which may be quantified as follows:

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠_𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝐹𝑎𝑐𝑡𝑜𝑟 = 64/264 = 3,47𝑒−18.

As another example of the use of the

“BinaryMappingAgent”, we suppose the case of having two

numbers (𝑋 = 2) and (𝑌 = 2256 + 2128 + 232) whereas we

seek to calculate (𝑍 = 𝑋𝑌), and we suppose (𝑦1 = 2256),

(𝑦2 = 2128) and (𝑦3 = 232). Instead of conducting the

multiplication process over a total amount equals Y, the

calculations are distributed on 3 parallel segments where the

first segment calculates (𝑋𝑦1) over 256 processes of

multiplication, the second segment calculates (𝑋𝑦2) over 128

processes of multiplication, and the third segment calculates

(𝑋𝑦3) over 32 processes of multiplication. In parallel with

these three segments, a fourth segment is initiated to calculate

((𝑋𝑦1) ∗ (𝑋𝑦2) ∗ (𝑋𝑦3)) over two processes of multiplication.

As a result, there are only 418 conducted processes of

multiplication instead of conducting an amount of Y

multiplications, which induce a reduction that may be

expressed as shown in (Eq. 4).

The “BinaryMappingAgent” relies on the mathematical

operator (Γ) shown in (Eq. 6), which we programmed to

concretize the binary mapping of infinity numbers

mathematically.

By using the operator (Γ) on Y, the

“BinaryMappingAgent” expresses the value of Y as shown in

(Eq. 7), where (𝑁) is a "SuperInfinityInteger". Therefore, the

parallelism agent launches multiple processes to calculate

(𝑋𝑌) where each process with index (𝑗) calculates (Γ(𝑌,𝑖)).

However, the role of the parallelism agent does not stop only

on executing processes in parallel but also includes detecting

repeated patterns of calculations among parallel processes that

may be categorized as redundancies.

As a simple example of redundancies reduction by

“ParallelismAgent” and “ResourceManagementAgent”, we

suppose the case of having two numbers (𝑋 = 2) and (𝑌 =
2512 + 2256 + 2140 + 232) whereas we seek to calculate (𝑍 =
𝑋𝑌), and we suppose (𝑦1 = 2512), (𝑦2 = 2256), (𝑦3 = 2140)

and (𝑦4 = 232). By relying on “BinaryMappingAgent” and

“ParallelismAgent”, the calculations are distributed on 4

parallel segments. The first segment calculates (𝑋𝑦1) over 512

processes of multiplication, the second segment calculates

(𝑋𝑦2) over 256 processes of multiplication, the third segment

calculates (𝑋𝑦3) over 140 processes of multiplication, and the

fourth segment calculates (𝑋𝑦4) over 32 processes of

multiplication.

However, the “ParallelismAgent” interferes by detecting

that there are redundancies of calculation among (𝑋𝑦1), (𝑋𝑦2),

(𝑋𝑦3) and (𝑋𝑦4). Therefore, “ResourceManagementAgent”

holds their processes in order to not consume processing

resources, and then “ParallelismAgent” converges their

calculations into a fifth segment calculating (𝑋𝑦1) and

extracting the values of (𝑋𝑦2), (𝑋𝑦3) and (𝑋𝑦4) during this

process to be provided to their corresponding segments. A

sixth segment of calculation, in parallel with others, is

incharge of calculating (𝑋𝑦1) ∗ (𝑋𝑦2) ∗ (𝑋𝑦3) ∗ (𝑋𝑦4) over 3

processes of multiplication. As a result, there are only 515

conducted processes of multiplication instead of conducting

an amount of Y multiplications, which induce a reduction that

may be expressed as shown in (Eq. 7).

The “ParallelismAgent” is programmed to detect multiple

redundancies of calculation among parallel processes with

multiple variables exceeding the previous case of having only

X and Y. After redundancies detection, “ParallelismAgent” is

responsible for the following processes: holding the

calculations of these redundancies with collaboration with

“ResourceManagementAgent” in order to not consume

processing resources, converging these redundant calculations

into simplified processes and then providing results to other

processes where redundancies were detected.

The principle of relying on the use of “ParallelismAgent”

along with “ResourceManagementAgent” is to optimize the

performance of the Binary Mapping Agent during the

conduction of massive calculations by transferring their

executions from exponential dimensions to linear dimensions.

Therefore, instead of executing infinity calculations over

exponential amounts of time [30, 31], they are developed to

be executed over linear time, shifting them from NP to P.

As a result, the developed AI entity is capable of shifting

infinity calculations from NP to P. However, currently, it can

handle only infinity calculations with redundancies and

common operation patterns where there is no “infinite quantity

of interdependencies” between variables and processes.

5. Technical Context of P versus NP for Infinity

Operations while having Infinite Quantities of

Interdependencies
The developed techniques in the presented AI entity are a

showcase on adapting infinity calculations from NP to P, in

condition of having redundant operations, having common

patterns between variables and processes, and relying on

parallel computations. However, when encountering infinite

quantities of interdependencies between variables and

Yassine Larbaoui / IJCSE, 10(11), 49-62, 2023

59

processes, the complexity can augment itself from the

dimension of 𝑎(𝑏)(𝑐)
 to the dimension 𝑎(𝑏)(𝑐𝑑)

 and even higher

levels of nested exponentials.

As an example of the complexity of having infinite

quantities of interdependencies, the case when having an

infinite matrix map of variables where each variable is

dependent on too many neighbours of variables, such as the

case of having an infinite structure of Sudoku.

When having infinity operations characterised by infinite

quantities of interdependencies, we should re-express the

operations at the mathematical level to neutralize these

interdependencies into independencies as much as possible

while merging operations and formulas. Then, we should re-

express the problem at the algorithmic level of computation

while relying on parallel computation, distributed

computation, redundancies elimination, and pattern

converging.

As a result, in order to be able to shift all infinity

operations that include having infinite quantities of

interdependencies between variables and processes, we

identified 12 technical axes as shown in Table 5.

Table 5. Identified technical axes to shift infinity operations and infinite quantities of interdependencies from NP to P.

ID Axe Description

1 Capacities of RAM. Available memory space of RAM.

2 Capacities of GPU and DPU. Available GPU and DPU.

3 Capacities of processors. Available number of processors.

4 Capacities of frequency. Available frequency of processing.

5 Capacities of storage and memory

virtualization.

Available memory spaces of storage and access rate to virtualized

memory.

6 Capacities of parallel computation. Maximum limit of possible parallel processes to execute.

7 Capacities of distributed computation. Distributing computation processes over processers, computers, networks

and cloud services.

8 Capacities of eliminating redundant operations. Eliminating redundant operations that are based on using the same

operators or the same logic of calculation.

9 Capacities of eliminating redundant variables. Eliminating redundant variables to free memory space while sharing

access to one original version of each variable among processes.

10 Capacities of converging common patterns of

processing into unified segments.

Detecting common patterns of processing and converging them into

unified segments to free hardware resources and minimize consumed

time.

11 Capacities to re-express operations on infinite

quantities of interdependencies between

variables.

Re-express operations when having infinite matrix structures of variables

with infinite quantities of interdependencies between variables, in order to

reduce the quantity of processes.

12 Capacities to re-express operations on infinite

quantities of interdependencies between

processes.

Re-express operations when having infinite matrix structures of processes

with infinite quantities of interdependencies between processes, in order

to reduce the quantity of processes.

Table 6. Examples showing precisions of calculation and digits display when using developed software library and Artificial Intelligence entity.
Variable Integer Value Total amount of digits

X 1123 654889568 789993399 999999789 777789336 954789999 999986333 331112225

548879666 321455666 698788963 333211111 236547899 963334445 568799833

356498999 654478965 554789666 321477897 777777899 963214586 599632144

789666325 558558884 444999321

220

Y 9 999999988 882222000 000000003 336458123 641112223 654782222 111145632

221111000 000236488 000222369 800004478 522233311 999998452 200000006

333331112 225548879 666321455 666698788 963333211 111236547 899963334

445568799 833356498 999654478 965554789 666321477 897777777 899963214

111122220 000003336 999888844 789666325 558558884 444999321

307

Z=X*Y 11236 548883195 354323159 677126404 140180177 597994453 531409142 029266691

252217065 355607950 617099685 527952949 207582997 514334618 961753124

363192431 106380573 311045065 764721117 424179846 861361296 593235819

987808212 573468584 980973642 601083931 593908178 075613216 495340694

336502583 196362740 654492997 097272808 998073831 767413253 607534807

543814687 643171283 891013531 426980095 638811153 193027549 547047138

065579033 957394139 204032845 664617307 499119910 261788269 726723297

712640222 628919743 618532752 252898232 689830016 048801732 275572754

435059923 690461041

527

Yassine Larbaoui / IJCSE, 10(11), 49-62, 2023

60

6. Implementation of Super Infinity Calculator

and Statistics of its Use
We integrated the developed software library and

Artificial Intelligence entity within an application to be used

for super arithmetic calculations and binary operations on

infinity numbers. We named this application as Super Infinity

Calculator. It is as shown in Fig. 3. We integrated a command

user interface in this application to support code writing of

complex operations on “SuperInfinityIntegers” and

“SuperInfinityDoubles” while being able to use the

programmed “InfintyForLoop” and other usual computational

variables such as integers, doubles, strings, chars, etc.

Fig. 3 Developed Application of Super Infinity Calculator

Table 7. Statistics of consumed times in Nanoseconds by Super Infinity Calculator during arithmetic operation (𝑿𝒀).

Operation Average Consumed Time in Nanoseconds Total Amount of digits Length of Result in bits

2(1 000 000 000) 500 000 nS 300 010 300 2 400 082 400

2(2 000 000 000) 1 000 000 nS 600 020 600 4 800 164 800

2(3 000 000 000) 2 020 000 nS 900 030 900 7 200 247 200

2(4 000 000 000) 3 040 000 nS 1 200 041 200 9 600 329 600

2(5 000 000 000) 4 070 000 nS 1 500 051 500 12 000 412 000

2(6 000 000 000) 5 120 000 nS 1 800 061 800 14 400 494 400

2(7 000 000 000) 6 180 000 nS 2 100 072 100 16 800 576 800

2(8 000 000 000) 7 270 000 nS 2 400 082 400 19 200 659 200

2(9 000 000 000) 8 420 000 nS 2 700 092 700 21 600 741 600

2(10 000 000 000) 9 660 000 nS 3 000 103 000 24 000 824 000

We used this programmed application to conduct

calculations on infinity numbers resulting from composed

arithmetic calculations to prove the potentials of our

developed objects of “SuperInfinityIntegers” and

“SuperInfinityDoubles”. Table 6 presents examples of using

the Super Infinity Calculator to highlight the precision of

provided calculations and digits display, using variables with

high values.

Yassine Larbaoui / IJCSE, 10(11), 49-62, 2023

61

Recently, we deployed the Super Infinity Calculator on a

virtual machine with one processor, 4 Gigabytes of RAM, 10

Gigabytes of EEPROM and 2,84 GHz of processing frequency

in order to provide statistics of needed time to execute

calculations on infinity numbers while providing infinite

persistent precision for each digit of these numbers. The

results of these statistics are shown in Table 7.

We used the limited capacities of virtual machines to

provide a general vision of the performance of the developed

software library and Artificial Intelligence entity on limited

hardware devices and ordinary computers. Using integer

variables in programming languages enables calculations to

support (232) values, whereas using BigInteger variables may

enable calculations to reach high values depending on the

available size of RAM while having official limits of (𝑀𝑎𝑥 =

2(𝐼𝑛𝑡𝑒𝑔𝑒𝑟.𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒) − 1; 𝑀𝑖𝑛 = −2(𝐼𝑛𝑡𝑒𝑔𝑒𝑟.𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒)).

Therefore, we used the Super Infinity Calculator to

conduct operations surpassing the limitations of integers and

BigIntegers.

7. Conclusion
The presented software library and Artificial Intelligence

entity in this paper can conduct arithmetic calculations and

binary bitwise operations on infinity numbers with lengths

exceeding Gigabytes and Terabytes in short times while

reinforcing processing capacities of used computers by

virtualizing memory spaces of EEPROM to be used along

with the RAM. In addition, these presented resources provide

infinite persistent precision for each digit of involved numbers

even when exceeding lengths of Gigabytes where the

Artificial Intelligence entity may store the results in outside

memory spaces if RAM, virtualized space of memory and

EEPROM were satirized. Furthermore, these software and AI

resources rely on parallel computation, distributed

computation and shifting calculations from the exponential

dimension of execution time to the linear dimension.

Therefore, this software library and Artificial Intelligence

entity enable computers to reach supreme levels of exploit in

terms of computational calculations and binary operations on

infinity numbers while providing infinite persistent precision

for each digit during calculations and values display, including

the digits after floating point.

References
[1] M. Friedewald, “The First Computers-History and Architectures [Review],” IEEE Annals of the History of Computing, vol. 23, no. 2, pp.

75-76, 2001. [CrossRef] [Google Scholar] [Publisher Link]

[2] Akira Maruoka, Concise Guide to Computation Theory, Springer, London, pp. 205–421, 2011. [CrossRef] [Google Scholar] [Publisher

Link]

[3] J. Hartmanis, and R.E. Stearns, “On the Computational Complexity of Algorithms,” Transactions of the American Mathematical Society,

vol. 117, no. 1, pp. 285-285, 1965. [Google Scholar] [Publisher Link]

[4] Yaroslav D. Sergeyev, and Garro Alfredo, “Observability of Turing Machines: A Refinement of the Theory of Computation,” Informatica,

vol. 21, no. 3, pp. 425–454, 2010. [Google Scholar] [Publisher Link]

[5] Sven Ove Hansson, “Technology and Mathematics,” Philosophy & Technology, Springer, vol. 33, pp. 117–13, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[6] Yaroslav D. Sergeyev, Arithmetic of Infinity, Edizioni Orizzonti Meridionali, vol. 103, pp.51-57, 2003. [Publisher Link]

[7] Yaroslav D. Sergeyev, “A New Applied Approach for Executing Computations with Infinite and Infinitesimal Quantities,” Informatica,

vol. 19, no. 4, pp. 567–59, 2008. [Google Scholar] [Publisher Link]

[8] Yaroslav D. Sergeyev, “Methodology of Numerical Computations with Infinities and Infinitesimals,” Rendiconti del Seminario

Matematico dell’Universit e del Politecnico di Torino, vol. 68, no. 2, pp. 95–113, 2010.] [Google Scholar] [Publisher Link]

[9] Yaroslav D. Sergeyev, “Computer System for Storing Infinite, Infinitesimal, and finite Quantities and Executing Arithmetical Operations

with Them,” EU patent 1728149, issued 03.06.2009; RF patent 2395111, issued 20.07.2010; USA patent 7,860,914 issued 28.12.2010.

[Google Scholar] [Publisher Link]

[10] Yaroslav D. Sergeyev, “Numerical Point of View on Calculus for Functions Assuming Finite, Infinite and Infinitesimal Values Over

Finite, Infinite, and Infinitesimal Domains,” Nonlinear Analysis Series A: Theory, Methods & Applications, vol. 71, no. 12, pp. 1688–

1707, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[11] Gabriele Lolli, “Infinitesimals and Infinites in the History of Mathematics: A Brief Survey,” Applied Mathematics and Computation, vol.

218, no. 16, pp. 7979–7988, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[12] M. Margenstern, “Using Grossone to Count the Number of Elements of Infinite Sets and the Connection with Bijections,” P-Adic Numbers,

Ultrametric Analysis and Applications, vol. 3, no. 2, pp. 196–204, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[13] Louis D’Alotto, “Cellular Automata Using Infinite Computations,” Applied Mathematics and Computation, vol. 218, no. 16, pp. 8077–

8082, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[14] Sonia De Cosmis, and Renato De Leone, “The Use of Grossone in Mathematical Programming and Operations Research,” Applied

Mathematics and Computation, vol. 218, no. 16, pp. 8029–8038, 2012. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/MAHC.2001.929915
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+first+computers-history+and+architectures+%5BReview%5D%2C%E2%80%9D+&btnG=
https://ieeexplore.ieee.org/abstract/document/929915
https://doi.org/10.1007/978-0-85729-535-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Turing+Machine%2C+in%3A+Concise+Guide+to+Computation+Theory&btnG=
https://link.springer.com/book/10.1007/978-0-85729-535-4
https://link.springer.com/book/10.1007/978-0-85729-535-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+Computational+Complexity+of+Algorithms&btnG=
https://www.ams.org/journals/tran/1965-117-00/S0002-9947-1965-0170805-7/?active=current
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Observability+of+Turing+Machines%3A+a+re%EF%AC%81nement+of+the+theory+of+computation&btnG=
https://content.iospress.com/articles/informatica/info21-3-09
https://doi.org/10.1007/s13347-019-00348-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Technology+and+Mathematics%2C%E2%80%9D+Philosophy+%26+Technology&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Technology+and+Mathematics%2C%E2%80%9D+Philosophy+%26+Technology&btnG=
https://link.springer.com/article/10.1007/s13347-019-00348-9
https://www.amazon.in/Arithmetic-Infinity-Yaroslav-D-Sergeyev/dp/8889064013
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+applied+approach+for+executing+computations+with+in%EF%AC%81nite+and+in%EF%AC%81nitesimal+quantities&btnG=
https://content.iospress.com/articles/informatica/inf19-4-07
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lagrange+Lecture%3A+Methodology+of+numerical+computations+with+in%EF%AC%81nities+and+in%EF%AC%81nitesimals&btnG=
http://www.seminariomatematico.polito.it/rendiconti/68-2/95.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Computer+system+for+storing+in%EF%AC%81nite%2C+in%EF%AC%81nitesimal%2C+and+%EF%AC%81nite+quantities+and+executing+arithmetical+operations+with+them%2C%E2%80%9D+&btnG=
https://patents.google.com/patent/US7860914B2/en
https://doi.org/10.1016/j.na.2009.02.030
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Numerical+point+of+view+on+Calculus+for+functions+assuming+%EF%AC%81nite%2C+in%EF%AC%81nite+Nonlinear+Analysis+Series+A%3A+Theory%2C&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0362546X09002946
https://doi.org/10.1016/j.amc.2011.08.092
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=In%EF%AC%81nitesimals+and+in%EF%AC%81nites+in+the+history+of+Mathematics%3A+A+brief+survey%2C%E2%80%9D+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0096300311011337
https://doi.org/10.1134/S2070046611030034
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Using+Grossone+to+count+the+number+of+elements+of+in%EF%AC%81nite+sets+and+the+connection+with+bijections%2C+p-Adic+Numbers%2C%E2%80%9D+&btnG=
https://link.springer.com/article/10.1134/S2070046611030034
https://doi.org/10.1016/j.amc.2011.10.065
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cellular+automata+using+in%EF%AC%81nite+computations&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0096300311013117
https://doi.org/10.1016/j.amc.2011.07.042
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+use+of+Grossone+in+Mathematical+Programming+and+Operations+Research&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0096300311009891

Yassine Larbaoui / IJCSE, 10(11), 49-62, 2023

62

[15] D.I. Iudin, Ya. D. Sergeyev, and M. Hayakawa, “Interpretation of Percolation in Terms of Infinity Computations,” Applied Mathematics

and Computation, vol. 218, no. 16, pp. 8099–8111, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[16] Yaroslav D. Sergeyev, and Alfredo Garro, “The Grossone Methodology Perspective on Turing Machines,” Automata, Universality,

Computation, vol. 12, pp. 139-169, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[17] Yaroslav D. Sergeyev, “Numerical Computations and Mathematical Modelling with Infinite and Infinitesimal Numbers,” Applied

Mathematics and Computation, vol. 29, pp. 177–195, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[18] Anatoly Zhigljavsky, “Computing Sums of Conditionally Convergent and Divergent Series Using the Concept of Grossone,” Applied

Mathematics and Computation, vol. 218, no. 16, pp. 8064–8076, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[19] Jean-Michel Muller et al., Handbook of Floating-Point Arithmetic, Birkhäuser Boston, 2010. [CrossRef] [Google Scholar] [Publisher

Link]

[20] Yaroslav D. Sergeyev, “Mathematical Foundations of the Infinity Computer,” Annales UMCS Informatica AI, vol. 4, pp. 20-33, 2006.

[CrossRef] [Google Scholar] [Publisher Link]

[21] Manish Agrawal, and Grandon Gill, “Infinity Computer Solutions: Ramping Up,” Journal of Information Technology Education

Discussion Cases, vol. 1, no. 1, pp. 1-22, 2012. [Google Scholar] [Publisher Link]

[22] R. Gioiosa, Resilience for Extreme Scale Computing, Rugged Embedded Systems, pp. 123-148, 2017. [Google Scholar]

[23] Andrej Dujella, Number Theory, University of Zagreb textbooks, 2019. [Google Scholar] [Publisher Link]

[24] David Sager, “Quantum Mechanics Model,” Quantum Mechanics and Nanoptics, 2019. [Google Scholar]

[25] George Panagiotopoulos et al., “The Underground Atlas Project: Can We Really Crowdsource the Underground Space?,” Procedia

Engineering, vol. 165, pp. 233-241, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[26] Stephen Bonner et al., “Exploring the Evolution of Big Data Technologies,” Software Architecture for Big Data and the Cloud, pp. 253-

283, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[27] D. Ramesh et al., “Python Based Implementation towards Cloud and Big Data Analytics for high Performance Applications,” Materials

Today: Proceeding, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[28] Krish Krishnan, Building Big Data Applications, Academic Press, 2020. [Google Scholar] [Publisher Link]

[29] Philipp Neumann, and Julian Kunkel, “High-Performance Techniques for Big Data Processing,” Knowledge Discovery in Big Data from

Astronomy and Earth Observation, pp. 137-158, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[30] Burt Kaliski, “Exponential Time,” Encyclopedia of Cryptography and Security, Springer, Boston, pp. 434, 2005. [CrossRef] [Google

Scholar] [Publisher Link]

[31] Vincent T’kindt, Lei Shang, and Federico Della Croce, “Exponential Time Algorithms for Just-in-Time Scheduling Problems with

Common due Date and Symmetric Weights,” Journal of Combinatorial Optimization, vol. 39, pp. 764–775, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

https://doi.org/10.1016/j.amc.2011.11.044
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Interpretation+of+percolation+in+terms+of+in%EF%AC%81nity+computations&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0096300311013877
https://doi.org/10.1007/978-3-319-09039-9_7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Grossone+Methodology+Perspective+on+Turing+Machines.%E2%80%9D+&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-09039-9_7
https://doi.org/10.1007/s12190-008-0123-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Numerical+computations+and+mathematical+modelling+with+in%EF%AC%81nite+and+in%EF%AC%81nitesimal+numbers%2C&btnG=
https://link.springer.com/article/10.1007/s12190-008-0123-7
https://doi.org/10.1016/j.amc.2011.12.034
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Computing+sums+of+conditionally+convergent+and+divergent+series+using+the+concept+of+grossone%2C&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0096300311015086
https://doi.org/10.1007/978-0-8176-4705-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Handbook+of+Floating-Point+Arithmetic&btnG=
https://link.springer.com/book/10.1007/978-0-8176-4705-6
https://link.springer.com/book/10.1007/978-0-8176-4705-6
http://dx.doi.org/10.17951/ai.2006.4.1.20-33
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mathematical+foundations+of+the+infinity+computer&btnG=
https://journals.umcs.pl/ai/article/view/3042
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Infinity+computer+solutions%3A+Ramping+up&btnG=
http://www.jite.org/documents/DCVol01/v01-04-Infinity.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resilience+for+extreme+scale+computing%2C+in%3A+Rugged+Embedded+Systems&btnG=
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=mFngUvgAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=mFngUvgAAAAJ:htyGaKyDgHMC
https://katalog.kgz.hr/pagesResults/bibliografskiZapis.aspx?¤tPage=1&searchById=1&sort=0&fid0=7&fv0=matematika+-+ud%C5%BEbenici&spid0=1&spv0=matematika&xm0=1&selectedId=1182001495
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=D.+J.+Sager+-+Quantum+Mechanics+Model&btnG=
https://doi.org/10.1016/j.proeng.2016.11.795
https://scholar.google.com/scholar?hl=en&as_sdt=2005&sciodt=0%2C5&cites=13202919483155293335&scipsc=&q=The+Underground+Atlas+Project%3A+Can+We+Really+Crowdsource+the+Underground+Space&btnG=
https://www.sciencedirect.com/science/article/pii/S187770581634156X
https://doi.org/10.1016/B978-0-12-805467-3.00014-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Exploring+the+Evolution+of+Big+Data+Technologies&btnG=
https://www.sciencedirect.com/science/article/abs/pii/B9780128054673000144
https://doi.org/10.1016/j.matpr.2021.03.319
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Python+based+implementation+towards+cloud+and+Big+Data+Analytics+for+high+performance+applications&btnG=
https://www.sciencedirect.com/science/article/pii/S2214785321023713
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Building+Big+Data+Applications&btnG=
https://www.google.co.in/books/edition/Building_Big_Data_Applications/lpq-DwAAQBAJ?hl=en&gbpv=1&dq=Infrastructure+and+technology,%E2%80%9D+in:+Building+Big+Data+Applications&printsec=frontcover
https://doi.org/10.1016/B978-0-12-819154-5.00017-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High-Performance+Techniques+for+Big+Data+Processing&btnG=
https://www.sciencedirect.com/science/article/abs/pii/B9780128191545000175
https://doi.org/10.1007/978-1-4419-5906-5_404
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=B.+Kaliski%2C+%E2%80%9CExponential+Time.%E2%80%9D++Encyclopedia+of+Cryptography+and+Security.+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=B.+Kaliski%2C+%E2%80%9CExponential+Time.%E2%80%9D++Encyclopedia+of+Cryptography+and+Security.+&btnG=
https://link.springer.com/referenceworkentry/10.1007/978-1-4419-5906-5_404
https://doi.org/10.1007/s10878-019-00512-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Exponential+time+algorithms+for+just-in-time+scheduling+problems+with+common+due+date+and+symmetric+weights%2C&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Exponential+time+algorithms+for+just-in-time+scheduling+problems+with+common+due+date+and+symmetric+weights%2C&btnG=
https://link.springer.com/article/10.1007/s10878-019-00512-z

