
SSRG International Journal of Computer Science and Engineering Volume 10 Issue 6, 43-53, June 2023

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V10I6P106 © 2023 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Demystifying Databases: Exploring their Use Cases

Pankaj Gupta1, Prakashkumar Patel2

 1Principal Data Engineer, Discover Financial Services, USA.

2Salesforce Inc, Carmel, USA

Received: 29 April 2023 Revised: 04 June 2023 Accepted: 16 June 2023 Published: 30 June 2023

Abstract - This article provides a comprehensive overview of various types of available databases and their corresponding

use cases. The primary objective of publishing this paper is to examine the different types of databases that exist, the reasons

behind their development, and the specific use cases they serve. Databases play a critical role in facilitating the efficient

organization and effective management of data in a wide range of applications. The article begins by highlighting the

significance of databases in modern data-driven environments and their essential role in ensuring effective data organization

and management. It emphasizes the need for a deep understanding of different database types' unique characteristics and

intended purposes to address specific requirements effectively. Therefore, it is essential to have a deep understanding of the

unique characteristics and intended purposes of different database types to make well-informed decisions during the process

of designing and implementing database solutions.

Keywords - Bigdata, RDBMS, NoSQL, SaaS, SQL, Cloud, Graph, Blockchain, Time series.

1. Introduction
Databases have long been essential components of

organizations, providing substantial benefits since their

inception. Their proper implementation, tailored to specific

use cases for online transaction processing (OLTP) and

online analytical processing (OLAP), has fuelled remarkable

growth for numerous enterprises. However, in the face of

rapidly evolving technologies and the digital transformation

era, traditional relational database management systems

(RDBMS) are encountering challenges, particularly in

accommodating new use cases involving unstructured data.

To overcome these challenges and meet evolving needs,

a multitude of databases have emerged, each designed to

address specific requirements and leverage technological

advancements. This article aims to explore the diverse

landscape of these databases, delving into their distinctive

characteristics, capabilities, and applications. By gaining a

comprehensive understanding of the available options,

organizations can make informed decisions when selecting

databases that align with their specific use cases and

effectively handle the demands of modern data management.

In this article, we will examine various types of

databases, including both traditional RDBMS and newer

alternatives such as NoSQL, graph, time-series, columnar,

and document databases. Each of these database types

possesses unique features and strengths that make them

suitable for specific use cases. By exploring the key attributes

and intended purposes of these databases, readers will gain

insights into which options best align with their data

management needs.

By shedding light on the diverse database types available

and their corresponding use cases, this article aims to equip

readers with the knowledge necessary to make informed

decisions when selecting and implementing database

solutions. In an era where data is abundant, and its effective

management is crucial for organizational success, staying

abreast of the evolving database landscape is paramount. By

embracing the right database technologies and architectures,

organizations can unlock the full potential of their data assets

and thrive in the digital age.

2. What is a Database?
[1] Data is a collection of a distinct small unit of

information. The word 'Data' originated from the word

'datum', which means 'single piece of information.' It is the

plural of the word datum. It can be used in a variety of forms

like text, numbers, media, bytes, etc. It can be stored in pieces

of paper or electronic memory.

A database is an organized data collection that can be

easily accessed and managed [2]. The main purpose of the

database is to operate a large amount of information by

storing, retrieving, and managing data. You can organize data

into tables, rows, and columns and index it to make it easier

to find relevant information.

http://www.internationaljournalssrg.org/

Pankaj Gupta & Prakashkumar Patel / IJCSE, 10(6), 43-53, 2023

44

2.1. Evolution of Databases

2.1.1. File-Based

File-based databases were first introduced around 1968.

In this type of database, data was stored and managed within

a flat file structure. One notable advantage of file-based

databases was the availability of different access methods,

including sequential, indexed, and random access. These

access methods provided flexibility in retrieving and

manipulating data based on specific requirements. However,

working with file-based databases required extensive

programming using third-generation languages like COBOL

or BASIC. Developers had to write complex code to handle

data storage, retrieval, and maintenance tasks. Despite their

limitations and the need for manual programming, file-based

databases played a significant role in early data management

systems.

 Files Files Files
 Fig 1. File-based Databases.

2.2. Hierarchical Data Model

The era between 1968 and 1980 witnessed the

dominance of the Hierarchical Database model. During this

period, one of the prominent hierarchical database systems

was the first DBMS introduced by IBM, known as IMS

(Information Management System). This model organized

data in a tree-like structure, with parent-child relationships

between data entities. The hierarchical database model

provided efficient navigation and data retrieval, especially for

applications requiring strict hierarchical relationships.[4]

Fig. 2 Hierarchical data model

In the above-given figure, we have few students and few

courses enrol, and a course can be assigned to a single student

only. However, a student can enrol in any number of courses

and with this, the relationship becomes one-to-many. We can

represent the given hierarchical model like the below

relational tables:

Faculty Table

Name Dept Course Taught

Rishi CSE CA

Lalit CSE SE

Student Table

Name Course Enrol Grade

Raj CA 2.0

Steve SE 3.0

Pankaj SE 4.0
Fig. 3 Explanation of hierarchical model

2.3. Relational Data Model

[4] The relational data model organizes data into tables

consisting of rows and columns. Each table represents a

specific entity or concept, and the columns define the

attributes or characteristics of the entity. Relationships

between tables are established through keys, facilitating the

retrieval and manipulation of data across multiple tables.

One of the key advantages of the relational data model is

its ability to ensure data integrity and consistency. Through

the use of constraints, such as primary keys, foreign keys, and

referential integrity, the model enforces rules that maintain

the integrity of the data stored within the tables.

Fig. 4 Representing relational data model

In addition, the relational model provides a standardized

query language known as SQL (Structured Query Language),

which allows users to retrieve, manipulate, and analyse data

C:\Root
dir.

DOCS

APPS

DOS

Root Node

Pankaj Gupta & Prakashkumar Patel / IJCSE, 10(6), 43-53, 2023

45

from a relational database using a set of declarative

commands.

The simplicity and power of the relational model make

it a preferred choice for organizations of all sizes and types,

serving a wide range of information needs. Relational

databases are utilized for tracking inventories, processing e-

commerce transactions, managing vast amounts of mission-

critical customer information, and much more. A relational

database can be considered for any scenario where data points

are interconnected and require secure, rule-based, and

consistent management.

Relational databases have existed since the 1970s, and

their advantages have ensured their continued dominance as

the most widely accepted model for databases. While

advancements and other types of databases have emerged

over time, the relational model's significance remains

unparalleled. The following sections will delve into these

other database types and discuss their respective

contributions and use cases.

3. Types of databases and their use cases
3.1. Relational Databases

[9] Relational databases are designed to organize data

using tables. These tables are structured containers that

enforce a specific schema onto their stored records. Each

column in a table is defined with a name and a data type,

specifying the kind of data it can hold. On the other hand,

each row in a table represents a distinct record or data item

containing values corresponding to each column.

Fig. 5 Representing relational database relationship

RDBMS (Relational Database Management Systems)

find extensive use in enterprise applications, e-commerce

platforms, financial systems, content management systems

(CMS), data warehousing, business intelligence (BI), online

transaction processing (OLTP), government and public

sector, healthcare systems, and more.

3.1.1 Benefits of Relational Databases

[10] They offer structured data management, efficient

querying, data integrity, and scalability. RDBMS are

employed for storing and managing customer data, orders,

inventory, financial transactions, content, consolidated data,

citizen records, medical data, and various administrative

functions. Their flexibility, reliability, and support for

complex querying and reporting make them indispensable in

numerous industries where organized data handling and high-

performance data operations are critical.

Efficient Querying

Relational databases have a special language called SQL

that makes it easy for people to ask questions about the data

they have stored. With SQL, you can ask for specific

information, search for things that match certain criteria, and

combine information from different tables. It's like having a

powerful tool to find the exact data you need.

Wide Adoption and Ecosystem

Relational databases have been around for a long time

and are used by many people. This means there are lots of

tools, software, and resources available to help developers

work with these databases. It is like having a big toolbox full

of tools that make it easier to build and manage your

database.

Data Relationships and Joins

Relational databases excel at handling complex data

relationships. With the ability to define relationships between

tables using primary and foreign keys, databases can perform

efficiently joins to retrieve data from multiple tables,

enabling comprehensive data analysis and reporting.

RDBMS (Relational Database Management Systems)

are particularly well-suited for Online Transaction

Processing (OLTP), E-commerce Platforms, and

Enterprise Applications. However, they are also widely

applicable in many other scenarios where there is a need for

organized data management, reliable data integrity, complex

querying, and scalability. The flexibility and maturity of the

relational database ecosystem make them a dependable

choice for various industries and use cases.

3.2. Object-Oriented Databases

[11] An object-oriented database is a type of database

that is based on the principles of object-oriented

programming (OOP). In an object-oriented database, data is

organized and stored as objects, which are self-contained

units that contain both data and the operations or methods that

can be performed on that data. This allows for efficiently

representing and managing complex data structures and

relationships.

The object-oriented data model is a developed data

model. This model can store audio, video, and graphics files.

These consist of a data piece and the methods, which are the

Pankaj Gupta & Prakashkumar Patel / IJCSE, 10(6), 43-53, 2023

46

DBMS instructions. There are two kinds of object-oriented

databases, as follows:

A multimedia database stores media, such as images, that

a relational database cannot store.

A hypertext database allows for linking any object to any

other object. It helps to organize disparate data.

Fig. 6 Representing an object-oriented database model

3.2.1 Benefits of Object-Oriented Databases

Native Object Representation

[12] Object-oriented databases store and retrieve objects

directly, preserving their inherent structure, relationships,

and behaviour. This eliminates the requirement to map

objects to relational tables, enhancing performance and

decreasing complexity.

Complex Data Modelling

Object-oriented databases support complex data models,

allowing the representation of intricate relationships,

inheritance hierarchies, and complex data structures. This

flexibility enables developers to model real-world scenarios

more accurately and intuitively.

Persistence of Object Graphs

Object-oriented databases persist in entire object graphs,

including the relationships between objects. This means that

objects can be saved and retrieved as complete entities,

preserving their state and relationships over time, particularly

useful for complex data scenarios.

Object-oriented databases are often used in applications

that require the efficient management of complex data

structures and relationships, such as CAD/CAM systems,

geographic information systems, and document management

systems. They are also well suited for applications that

require integrating different data types and sources, such as

multimedia data or data from multiple sources. However,

object-oriented databases can be more difficult to learn and

use compared to other database models and may require

specialized expertise to set up and manage.

A few examples of object-oriented databases are:

1. MongoDB

2. Apache Cassandra

3. Object DB

4. ZODB (Zope Object Database)

3.3. NoSQL and Big Data Databases

 [13] NoSQL, also referred to as “not only SQL” or “non-

SQL”, is an approach to database design that enables storing

and querying data outside the traditional structures found

in relational databases. While it can still store data found

within relational database management systems (RDBMS), it

just stores it differently than RDBMS. The decision to use a

relational database versus a non-relational database is largely

contextual, and it varies depending on the use case.

Instead of the typical tabular structure of a relational

database, NoSQL databases house data within one data

structure, such as a JSON document. Since this non-relational

database design does not require a schema, it offers

rapid scalability to manage large, typically unstructured data

sets.

NoSQL is also a distributed database, meaning that

information is copied and stored on various servers, which

can be remote or local. This ensures the availability and

reliability of data. If some of the data goes offline, the rest of

the database can continue to run.

NoSQL provides other options for organizing data in

many ways. By offering diverse data structures, NoSQL can

be applied to data analytics, managing big data, social

networks, and mobile app development.

Fig. 7 Representing NoSQL databases

Object 1:Sales report Object 2 instance

Object 2:Sales activity

Key

Key

Key

Value

Value

Column-Family Key-Value

Value

Document Graph

Pankaj Gupta & Prakashkumar Patel / IJCSE, 10(6), 43-53, 2023

47

3.3.1. Benefits of No SQL Databases

Flexibility in Data Models

[14] NoSQL databases offer flexible data models that

handle unstructured, semi-structured, and evolving data.

They allow for schema-less or schema-flexible designs,

enabling developers to adapt to changing data requirements

quickly.

Big Data and Unstructured Data Support

NoSQL databases are well-suited for handling big data

and unstructured data types, such as text, documents, graphs,

and time-series data. They provide efficient storage and

retrieval mechanisms for these data formats.

Distributed Computing

NoSQL databases often have built-in support for

distributed computing frameworks, allowing them to

integrate with technologies like Apache Hadoop or Apache

Spark. This enables large-scale data processing and analytics

across distributed environments.

NoSQL databases are well-suited for various scenarios

where there is a need to manage large amounts of constantly

changing data that does not have a fixed structure. They are

commonly used in applications like social media platforms,

content management systems, real-time analytics, Internet of

Things (IoT) applications, and distributed systems. NoSQL

databases provide enhanced flexibility, scalability, and

performance compared to traditional relational databases.

This means that developers can efficiently build and scale

applications that require effective handling of diverse and

evolving data sources.

3.4. Graph Database

Graph databases are purpose-built to store and navigate

relationships. Relationships are first-class citizens in graph

databases, and most of the value of graph databases is derived

from these relationships. Graph databases use nodes to store

data entities and edges to store relationships between entities.

An edge always has a start node, end node, type, and

direction; an edge can describe parent-child relationships,

actions, ownership, and the like. There is no limit to the

number and kind of relationships a node can have.

[15] A graph in a graph database can be traversed along

specific edge types or across the entire graph. In graph

databases, traversing the joins or relationships is very fast

because the relationships between nodes are not calculated at

query times but are persisted in the database. Graph databases

have advantages for use cases such as social networking,

recommendation engines, and fraud detection when you need

to create relationships between data and quickly query these

relationships.

The following graph shows an example of a social

network graph. Given the people (nodes) and their

relationships (edges), you can find out who the "friends of

friends" of a particular person are—for example, the friends

of Howard's friends.

Fig. 8 Representing a graph database model

Graph databases are designed to handle and represent

complex relationships between data elements. They excel at

managing interconnected data and are used in various use

cases.

3.4.1. Social Networks

Graph databases are well-suited for social networking

platforms, where relationships between users, friendships,

followers, and interactions must be efficiently stored and

traversed. Graph databases make identifying connections,

recommending friends, and analysing social network patterns

easy.

3.4.2. Recommendation Systems

Graph databases power recommendation engines by

modelling user preferences, item relationships, and user-item

interactions. They allow efficient querying and traversing of

the graph to provide personalized recommendations for

products, movies, music, articles, and more.

3.4.3. Fraud Detection

Graph databases are used for fraud detection systems,

where connections and patterns among users, transactions,

and behaviours need to be analysed in real-time. Graph

databases can identify suspicious patterns, detect fraud

networks, and provide insights into fraudulent activities.

3.4.4. Knowledge Graphs

Graph databases are employed in knowledge

management systems, where structured and unstructured data

from various sources are linked together to create a

comprehensive knowledge graph. This enables semantic

Friend

Friend Friend

Sam Annie

Doug Jack Mac

Harry Howa

rd

Pankaj Gupta & Prakashkumar Patel / IJCSE, 10(6), 43-53, 2023

48

search, intelligent recommendations, and the discovery of

relationships among concepts, entities, and information.

3.4.1 Benefits of Graph Databases

Relationship-Centric Data Model

Graph databases are designed to store and represent data

in terms of nodes (entities) and edges (relationships) between

those nodes. This relationship-centric model allows for

efficient storage and querying of complex relationships and

interconnected data.

Efficient Relationship Navigation

Graph databases excel at traversing relationships

between nodes. With their native ability to navigate

connections, they can quickly retrieve related data, making

queries that involve complex relationships more efficient and

performant.

Data Integrity and Consistency

Graph databases enforce referential integrity and

consistency through relationships. Changes made to nodes or

relationships are immediately reflected throughout the graph,

ensuring data integrity and eliminating the need for complex

join operations.

3.5 Time Series Databases

[16] A time series database (TSDB) is a database

optimized for time-stamped or time series data. Time series

data are simply measurements or events that are tracked,

monitored, down-sampled, and aggregated over time. This

could be server metrics, application performance monitoring,

network data, sensor data, events, clicks, trades in a market,

and many other types of analytics data.

A time series database is built specifically for handling

time-stamped metrics and events or measurements. A TSDB

is optimized for measuring change over time. Properties that

make time series data very different from other data

workloads are data lifecycle management, summarization,

and large-range scans of many records.

In most definitions, time-series data, often referred to as

time-stamped data, is a sequence of values indexed in time

order. Time stamping refers to data collected at various times,

where each value is time stamped. These data points are

usually gathered from the same source and are used to

measure progress over time.

You can use relational or NoSQL databases to crunch

time-series data, but purpose-built time-series databases are

tailored to exploit the unique features of time-series data.

This implies that time-series databases ingest at a faster rate,

query more quickly and compress data more efficiently.

Furthermore, time-series databases include special analytical

capabilities and management features not found in most

relational or NoSQL databases.

This list is not exhaustive, but here are some advantages

you might get from using a time-series database.

• Time-series databases can handle high-velocity data

very well.

• Time-series databases are purpose-built for storing time-

series data, making them more efficient in storage and

querying.

• Time-series databases often have built-in analytics and

management features designed specifically for time-

series data.

• Many time-series databases are open source, which

means they’re free to use.

• There are also some disadvantages that you should be

aware of before using a time-series database:

• Time-series databases are often more complex to set up

and manage than relational or NoSQL databases.

• There are relatively few time-series databases to choose

from, so you might not have as much flexibility in

choosing a platform that meets your specific needs.

• Time-series data can be very large, so you’ll need

enough storage capacity to accommodate your data.

• Use cases for time-series databases:

• Monitoring software systems and bare-metal hardware

systems.

• Continually capturing metrics from Internet of Things

(IoT) devices.

• Financial trading systems.

• Recording stock prices over time.

• Asset-tracking applications.

A few examples of time series databases are: -

• InfluxDB.

• Kdb+

• Prometheus.

• Graphite.

• TimescaleDB.

• DolphinDB.

• RRDTool.

• OpenTSDB.

3.6. Blockchain Databases

[17] A blockchain database is like a digital ledger shared

across many computers. Each block in the chain holds a

bunch of transactions, with a special code proving the

transactions are real. Once a block is added to the chain, it

can't be changed or removed, which keeps the data safe and

reliable.

What's special about a blockchain database is that it

doesn't have a central authority controlling it. Instead, it is

spread out among different computers, and everyone who has

a copy gets to help decide how it works.

Pankaj Gupta & Prakashkumar Patel / IJCSE, 10(6), 43-53, 2023

49

People love blockchain because it's secure, transparent,

and can't be messed with easily. It's used for things like digital

money, keeping track of products in a supply chain, and even

voting systems. It's a cool way to store and transfer data

without having to trust just one person or company.

3.6.1. Benefits of Blockchain Database

Decentralized Control

In general, blockchains enable multiple parties to share

information without the need for a central administrator. As

mentioned earlier, the consensus mechanism plays a crucial

role in decision-making within blockchains. However,

databases serve a completely different purpose. Databases

typically require a central administration because there are

situations where consensus may not be reliable. In certain

cases, the expertise or judgment of a single individual may

prove to be more effective than the collective wisdom of a

large group.

Fig. 9 Representing a difference between centralised vs blockchain

database

Fig.10 Block creation in a blockchain database

History of Itself

Centralized databases are designed to store and retrieve

current information without maintaining a record of past

transactions. However, blockchains operate differently. They

not only store real-time information but also have the

capability to trace and retain the history of previous

transactions. Blockchains create databases that act as

growing archives, maintaining a comprehensive and

unalterable record of their transaction history. This feature

allows for transparency, accountability, and the ability to

verify and audit past activities within the blockchain network.

As a result, blockchains provide a robust and reliable means

of storing and accessing information while preserving a

complete and traceable transaction history.

Performance

[7] Blockchains, although commonly used as reliable

systems for recording transactions and serving as transaction

platforms, are perceived to have a similar level of speed as

traditional databases when it comes to digital transaction

technology. Undoubtedly, improvements in the performance

and nature of blockchain technology are anticipated, but

databases have also made significant strides in performance

over the course of several decades.

In terms of confidentiality, a permissioned blockchain,

similar to a centralized database, can exert control over both

write and read access. However, if confidentiality alone is the

primary objective, blockchains do not possess a distinct

advantage over centralized databases. The choice between

the two ultimately depends on the specific requirements and

objectives of the system in question.

Blockchain databases can be used in various applications

like Cryptocurrencies, voting Systems, decentralized

applications, Internet of Things.

A few blockchain-based databases are:

• BigchainDB

• Apache Cassandra

• ChainifyDB

• CovenantSQL

• Modex BCDB

• Postchain

• ProvenDB

3.7. Cloud Databases

[8] A cloud database is a database that is deployed,

delivered, and accessed in the cloud. Cloud databases

1 2 3 4 5

Every block created after the first block

contains the hash of the previous block's data,
Blocks store information validated by nodes

that are cryptographically secured.

A blockchain is a linked list that consists of pointers.

Pankaj Gupta & Prakashkumar Patel / IJCSE, 10(6), 43-53, 2023

50

organize and store structured, unstructured, and semi-

structured data like traditional on-premises databases.

However, they also provide many of the same benefits of

cloud computing, including speed, scalability, agility, and

reduced costs.

 Cloud databases, like their traditional on-premises

counterparts, can be categorized into two main types:

Relational databases and non-relational databases.

Relational cloud databases are structured databases

consisting of tables composed of columns and rows. They

enable the organization of data based on predefined

relationships, helping users understand the logical

connections between data points. These databases typically

employ a fixed data schema, and data manipulation and

retrieval can be performed using a structured query language

(SQL). Relational databases are known for their high

consistency, reliability, and suitability for handling large

volumes of structured data. Popular examples of relational

databases used in the cloud include SQL Server, Oracle,

MySQL, PostgreSQL, Spanner, and Cloud SQL.

Non-relational cloud databases, on the other hand, are

designed to store and manage unstructured data. This

includes various data types such as text from emails and

mobile messages, documents, surveys, rich media files, and

sensor data. Unlike relational databases, non-relational

databases do not adhere to a rigid schema structure and allow

for the storage and organization of information in any format,

irrespective of its structure. Examples of non-relational

databases commonly used in the cloud are MongoDB, Redis,

Cassandra, Hbase, and Cloud Bigtable.

3.7.1 Benefits of Cloud Database

Reduced Operational Overhead

Cloud databases eliminate the management and

maintenance of any physical infrastructure. Your cloud

provider is responsible for provisioning, updating, and

maintaining all the hardware, operating systems, and

database software.

Improved Agility and Scalability

You can launch a new cloud database or decommission

one in minutes. This allows you to test, operationalize, and

validate new ideas faster. Plus, cloud databases can

dynamically scale as your applications grow and deliver

consistent performance under high load.

Lower Total Cost of Ownership (TCO)

The cloud service provider owns and operates

infrastructure allowing teams to focus on building

applications. In addition, pay-as-you-go options lets you

provision what you need, when you need it, and scale up or

down depending on your usage.

Flexible Database Options

When selecting a cloud database, you have the option to

choose purpose-built databases that are specifically designed

to meet the unique requirements and performance demands

of your use case and applications.

Better Reliability

Cloud platforms, including cloud databases, come with a

host of built-in features designed to maintain constant

connectivity and fulfill SLAs, including high availability,

automated backups, and robust disaster recovery.

Below are a few popular cloud databases:

• Snowflake

• Amazon Web Services (AWS) Relational Database

Service (RDS)

• Microsoft Azure SQL Database

• Google Cloud SQL

• MongoDB Atlas

• Oracle Autonomous Database

Cloud databases are well-suited for Data Analytics and

Business Intelligence, Web and Mobile Applications, E-

commerce and Retail.

3.8. Document Databases

[5] Document databases store data in structured

documents, typically represented in formats such as

Extensible Markup Language (XML) or JSON. In many

ways, document databases can be seen as an evolution of key-

value stores. They share similarities with key-value stores,

allowing for nested key-value pairs, but document databases

offer improved query performance compared to traditional

key-value stores.

Document databases are considered advancements over

schema-less key-value stores because they introduce a self-

described document format. This format enables the

databases to perform more validations and checks, offering

increased flexibility and reduced restrictions compared to

relational database management systems (RDBMSs) with

rigid schemas.

Below is an example of a sample of Sammy's contact

card document.[6]

{

 "_id": "sammyshark",

 "firstName": "Sammy",

 "lastName": "Shark",

 "email": "sammy.shark@digitalocean.com",

 "department": "Finance"

}

Pankaj Gupta & Prakashkumar Patel / IJCSE, 10(6), 43-53, 2023

51

The following is another sample document representing a

colleague of Sammy’s named Tom, who works in multiple

departments and also uses a middle name:

{

 "_id": "tomjohnson",

 "firstName": "Tom",

 "middleName": "William",

 "lastName": "Johnson",

 "email": "tom.johnson@digitalocean.com",

 "department": ["Finance", "Accounting"]

}

This second document has a few differences from the

first example. For instance, it adds a new field called

middleName. Also, this document’s department field stores

not a single value but an array of two values: "Finance" and

"Accounting".

Documents in document databases contain various data

fields, implying that they possess distinct schemas. In the

context of a database, a schema refers to its formal structure,

specifying the types of data it can accommodate. In the case

of documents, their schemas are manifested through the

names of their fields and the corresponding values that these

fields represent.

3.8.1 Benefits of Document Databases

Flexibility and Adaptability

[6] Document databases provide a high level of control

over the data structure, allowing for easy experimentation and

adaptation to emerging requirements. This flexibility is due

to the ability to add new fields instantly and modify existing

ones at any time. Developers have the autonomy to determine

whether changes should be applied retroactively to old

documents or if they will only affect future data. This

empowers developers to swiftly respond to evolving needs

and make adjustments to the data structure as necessary.

Ability to Manage Structured and Unstructured Data

[6] Relational databases excel at storing data that adhere

to a strict structure. However, document databases offer

versatility by effectively handling both structured and

unstructured data. While structured data can be easily

represented in a tabular format, similar to a spreadsheet with

rows and columns, unstructured data is more complex to

categorize. Unstructured data encompasses various forms,

such as social media posts containing textual content and

multimedia elements, server logs with diverse formats, or

data streams from diverse sensors in smart homes. Document

databases provide a suitable solution for efficiently managing

and organizing this unstructured data, allowing for greater

flexibility and adaptability in handling diverse data types.

Scalability by Design

[6] Relational databases are often write-constrained, and

increasing their performance requires you to scale vertically

(meaning you must migrate their data to more powerful and

performant database servers). Conversely, document

databases are designed as distributed systems that instead

allow you to scale horizontally (meaning that you split a

single database up across multiple servers). Because

documents are independent units containing both data and

schema, it’s relatively trivial to distribute them across server

nodes. This makes it possible to store large amounts of data

with less operational complexity.

Some popular document databases include:

1. MongoDB

2. Couchbase

3. Apache Cassandra

4. Amazon DocumentDB

5. Elasticsearch

Content Management Systems (CMS) benefit greatly

from using document databases due to their ability to

efficiently store and manage unstructured content. Document

databases provide a flexible and scalable solution for

handling various types of content, including articles, blog

posts, and multimedia files.

User Profiles and Personalization benefit greatly from

the use of document databases. Document databases provide

a flexible and efficient solution for storing user profiles,

including diverse data fields, preferences, and personalized

settings.

3.9. NewSQL and Hybrid Databases

NewSQL databases are modern SQL databases that

address key challenges associated with traditional online

transaction processing (OLTP) relational database

management systems (RDBMS). They aim to achieve the

scalability and improved performance typically associated

with NoSQL databases while retaining the advantages of

traditional DBMS.

In essence, NewSQL databases combine the benefits of

both worlds by providing the scalability and performance of

NoSQL databases while preserving the ACID (Atomicity,

Consistency, Isolation, and Durability) guarantees of

traditional RDBMS. ACID transactions ensure the integrity

of business processes, concurrency control for multiple

transactions, data durability in the event of system failures or

errors, and consistency before and after a transaction.

In-memory storage and data processing are indeed key

features of many NewSQL databases. NewSQL databases

store data in the servers' main memory (RAM) rather than on

traditional disk storage by utilising in-memory technology.

Pankaj Gupta & Prakashkumar Patel / IJCSE, 10(6), 43-53, 2023

52

 SQL No SQL

 New SQL

3.9.1 Benefits of NewSQL Databases

Faster Query Performance

Storing data in memory allows for significantly faster

data access and retrieval. With no disk I/O delays, queries can

be processed much more quickly, resulting in faster response

times and improved overall query performance.

Reduced Latency

With data residing in memory, NewSQL databases can

significantly reduce latency compared to disk-based systems.

This is particularly beneficial for use cases that require low-

latency access, such as real-time data processing, online

transaction processing, and interactive applications.

Polyglot Persistence

Hybrid databases offer support for polyglot persistence,

enabling them to store and manage data using multiple

storage technologies simultaneously. This capability allows

developers to choose the most appropriate data storage

solution for each specific data type, resulting in optimized

performance and cost efficiency.

Here are a few NewSQL Databases:

1. CockroachDB

2. TiDB

3. NuoDB

4. MemSQL

Some famous Hybrid Databases:

1. Apache Cassandra (wide column store)

2. Apache HBase (wide column store)

3. MongoDB (document store)

4. Couchbase (document store)

4. Conclusion
The realm of databases presents a wide array of choices

to meet the diverse needs of data management. It is essential

to have a comprehensive understanding of the various

database types and their specific applications to make

informed decisions regarding the efficient storage and

management of data.

Relational databases excel in situations requiring

efficient, structured data management, ensuring data integrity

and facilitating complex queries. These databases are widely

employed in enterprise applications, e-commerce platforms,

financial systems, and other contexts where the meticulous

handling of organized data and high-performance operations

is of utmost importance. Object-oriented databases provide a

seamless way to store and retrieve objects while preserving

their inherent structure and relationships. By eliminating the

need to map objects to relational tables, these databases

enhance performance and reduce complexity.

Graph databases excel in representing and navigating

intricate relationships between data elements. They prove

invaluable in applications involving social networks,

recommendation systems, fraud detection, and knowledge

graphs.

Blockchain databases provide a secure, transparent, and

tamper-proof means of storing and transferring data. Their

applications span across cryptocurrency transactions, supply

chain management, voting systems, and other contexts where

data integrity and transparency are paramount.

NoSQL databases are highly proficient in managing

unstructured, semi-structured, and evolving data. Their

flexible data models and schema-less designs enable

developers to swiftly adapt to evolving data requirements.

NoSQL databases are well-suited for use cases such as social

media platforms, content management systems, real-time

analytics, and IoT applications.

Organizations and developers can choose the best

database technology for their specific requirements by

knowing the advantages and suitable purposes of different

database types. The important thing is to match the

characteristics and abilities of the database with the needs of

the application, ensuring it performs well, can handle larger

workloads, and effectively manages data.

References
[1] Java point. [Online]. Available: https://www.javatpoint.com/what-is-databaseavailable [online]

[2] Mark Whitehorn and Bill Marklyn, Inside Relational Databases with Examples in Access. [Online]. Available:

https://www.google.com/books/edition/Inside_Relational_Databases_with_Example/XVrqkyceJQUC?hl=en&gbpv=1&dq=who+invent

ed+databases&printsec=frontcover

Pankaj Gupta & Prakashkumar Patel / IJCSE, 10(6), 43-53, 2023

53

[3] Kaiti Norton, File-Based Data Management System, 1996. [Online]. Available: https://www.webopedia.com/definitions/file-

management-system/

[4] Difference between Hierarchical and Relational Data Model [Online]. Available: https://www.geeksforgeeks.org/difference-between-

hierarchical-and-relational-data-model/

[5] Peng Yue, and Zhenyu Tan, GIS Methods and Techniques [Online]. Available: https://www.sciencedirect.com/topics/computer-

science/document-database

[6] Mateusz Papiernik, An Introduction to Document-Oriented Databases, 2021. [Online]. Available:

https://www.digitalocean.com/community/conceptual-articles/an-introduction-to-document-oriented-databases

[7] Blockchain database [Online]. Available: https://intellipaat.com/blog/tutorial/blockchain-tutorial/blockchain-database/?US

[8] What is a Cloud Database?. [Online]. Available: https://cloud.google.com/learn/what-is-a-cloud-database

[9] What is a Relational Database (RDBMS)?. [Online]. Available: https://www.oracle.com/database/what-is-a-relational-database/

[10] Nishtha Jatana et al., "A Survey and Comparison of Relational and Non-Relational Database," International Journal of Engineering

Research & Technology, vol. 1, no. 6, pp. 1-5, 2012. [Google Scholar] [Publisher Link]

[11] AkshitaKumawat, Definition and Overview of ODBMS. [Online]. Available: https://www.geeksforgeeks.org/definition-and-overview-

of-odbms/#

[12] What Are Object-Oriented Databases And Their Advantages, 2019. [Online]. Available: https://www.c-sharpcorner.com/article/what-are-

object-oriented-databases-and-their-advantages2/

[13] What are NoSQL databases?, IBM [Online]. Available: https://www.ibm.com/topics/nosql-databases

[14] Advantages of NoSQL Databases, MongoDB. [Online]. Available: https://www.mongodb.com/nosql-explained/advantages

[15] Amazon [Online]. Available: https://aws.amazon.com/nosql/graph/

[16] Time Series Database (TSDB) Explained, Influxdat. [Online]. Available: https://w2.influxdata.com/time-series-database/

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+and+Comparison+of+Relational+and+Non-Relational+Database&btnG=
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=14897e1d7a48840ac77809966376a29fe9a09d2b

