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Abstract - This paper focuses on the problem of improving initial guesses provided to solvers of nonlinear systems in terms of 

enhancing both convergence efficiency and reliability. A novel approach for constructing confidence models of initial guesses 

is proposed based on a Logistic Regression, Support Vector Machines (SVM), Random Forests, and K-Nearest Neighbors 

(KNN) classification schemes. Experimental evaluation across diverse nonlinear systems highlights Random Forests as the 

most effective model with an average accuracy of 81.69%, average precision – of 83.23%, average recall – of 82.16%, average 

F1 score of 82.69% and the highest AUC score equal to 0.90. Backed up by broad evaluation metrics, the above research 

inquiries mark the ideal potential of machine learning to revolutionize data processing by increasing solver adaptability, 

enhancing convergence patterns and economizing computations in scientific and engineering modalities. 

Keywords - Machine Learning algorithms, Nonlinear system solvers, Data pre-processing, Model Evaluation, Predictive 

modeling.

1. Introduction  
The resolution of nonlinear systems of equations is a 

fundamental problem encountered across a broad spectrum of 

scientific and engineering disciplines, including physics, 

economics, biology, and control systems [1][2]. Nonlinear 

systems often lack closed-form solutions, necessitating the 

use of iterative numerical methods. The efficiency and 

success of these iterative methods, such as Newton-Raphson 

or Levenberg-Marquardt, heavily depend on the quality of the 

initial guesses provided [3]. Poor initial guesses can lead to 

slow convergence, convergence to incorrect solutions, or 

even divergence of the algorithm [4]. 

For instance, in power grid stability analysis, poorly 

chosen initial guesses in power flow equations can lead to 

extended computation times or complete failure to converge, 

potentially causing delays in real-time system monitoring [5]. 

Similarly, in large-scale chemical equilibrium calculations, 

inappropriate starting points may result in convergence to 

metastable states, undermining the reliability of the 

simulations [6]. These examples highlight that despite 

significant advances in numerical methods, the process of 

selecting effective initial guesses remains largely heuristic, 

highly problem-specific, and prone to inefficiencies. 

Traditional approaches for selecting initial guesses rely 

on heuristic methods, domain-specific knowledge, or random 

sampling within predefined ranges [7]. While these methods 

may perform adequately for simple systems, they often fail in 

complex, high-dimensional, or highly nonlinear systems 

where multiple solution branches exist [8]. Furthermore, 

these approaches lack adaptability across different problem 

domains, limiting their effectiveness and scalability. As a 

result, poorly initialized solvers may require excessive 

computational resources or fail to produce a valid solution. 

This ongoing challenge highlights a significant research gap: 

there is no universally reliable, data-driven method for 

efficiently predicting high-quality initial guesses across 

diverse nonlinear systems. 

Recent advances in machine learning have opened new 

avenues for addressing this challenge [9]. By leveraging large 

datasets and powerful algorithms, machine learning models 

can identify complex patterns and relationships that are not 
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immediately apparent through traditional methods [10][11]. 

For example, a trained model can efficiently classify whether 

a given initial guess is likely to lead to convergence, reducing 

computational costs associated with repeated trial-and-error 

attempts [12]. This potential suggests that machine learning 

could revolutionize the initialization phase of nonlinear 

system solvers by predicting high-quality initial guesses with 

greater accuracy and efficiency. 

Logistic Regression, Support Vector Machines (SVM), 

Random Forests and K-Nearest Neighbors (KNN). Each 

model is fitted with data created from the random set of 

dissimilar nonlinear systems and used as a classifier to 

evaluate the success or failure of the starting guesses.  

These models are assessed based on their performance in 

improving convergence rate and cost in terms of time, thus 

solving the problems associated with the conventional 

initialization schemes of algorithms. 

The main contributions of this research can be 

summarized in three points. First, it presents a new 

methodology for the use of machine learning in the pre-

solving period of nonlinear solvers, which has been shown to 

be beneficial for the improvement of solvers’ performance. 

Second, it presents a comparative evaluation of various 

machine learning models and discusses their merits and 

demerits in this application.  

Lastly, it demonstrates how the ideas and techniques 

proposed can be implemented in real life by performing many 

experiments on different types of nonlinear systems, showing 

improvement in the efficiency of the solver used and 

reduction in the number of computations needed. 

2. Related Works 
2.1. Existing Methods for Predicting Initial Guesses 

Initial guesses for solving nonlinear systems of equations 

are key to efficient and successful convergence of solvers. 

Traditional methods are based on empirical rules, heuristic 

methods and optimization-based methods. 

2.2. Empirical and Heuristic Methods 

The foundation of initial guess prediction has been built 

on empirical and heuristic approaches. Domain experts often 

rely on empirical rules derived from past experiences and a 

deep understanding of the problem domain to generate initial 

guesses [13][14].  
 

Common heuristic methods are trial and error, 

perturbation techniques and simple function approximations, 

which are quick and easy to implement [15]. However, these 

methods typically lack the precision and adaptability 

necessary for handling complex, high-dimensional nonlinear 

systems. 

2.3. Optimization-Based Methods 

Optimization techniques provide a more structured 

approach to generating initial guesses. Gradient-based 

methods, which iteratively refine initial guesses using the 

gradient of the objective function, are commonly used but can 

be computationally expensive and require close-to-optimal 

initial estimates to avoid converging to local minima 

[16][17]. Methods of global optimization, such as genetic 

algorithms, simulated annealing, and particle swarm 

optimization, are more resilient due to their comprehensive 

exploration of the solution space. Nevertheless, these 

techniques are often slower and demand significant 

computational resources compared to heuristic methods 

[18][19]. 

2.4. Machine Learning Approaches 

The integration of machine learning into nonlinear 

system solving has created new opportunities to enhance the 

accuracy and efficiency of initial guess predictions. Various 

machine learning methods have been investigated, each 

offering distinct advantages and challenges. 

2.4.1. Supervised Learning 

Supervised learning has been highly encouraged when 

predicting initial guesses. For example, the regression models 

that include linear and support vector regression make some 

initial guesses using historical data. These models can be of 

great help, but since they make some linear assumptions, their 

utility may be limited when tackling highly nonlinear systems 

[16]. However, as already mentioned, neural networks, and 

specifically deep learning models, have demonstrated 

remarkable effectiveness in capturing the complex links 

between the input parameters and the optimal starting point. 

The ability of deep learning models to be trained on vast 

amounts of data and to adapt to new unseen problems makes 

them great for initial guess predictions [20][21]. Some 

traditional techniques have been used. 

On the other hand, random initialization, grid search, and 

genetic algorithms have been used in the past to estimate 

initial guesses. Random selection is easy to perform, but for 

high-dimensional or complicated systems, it is not very 

reliable. There are sets of parameter guesses that grids 

systematically search through a vast array of possibilities, but 

they have scaling troubles. More complex techniques, such 

as genetic algorithms, are very computationally intensive and 

generally slow to reach an optimum. All these drawbacks 

have led to a movement towards machine learning techniques 

that are more efficient and adaptable. 

2.4.2. Reinforcement Learning 

This paper considers reinforcement learning, which is 

also a relatively new video game. In this approach, an agent 

using policy-based methods is trained through many trials 

and errors to attempt and maximize an initial guess strategy 

by making it optimize according to the rewards expected 
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from the performance of the solver. Even though these 

algorithms are able to progressively better their guesses, they 

still have a very long learning curve and high computing 

costs. The most appealing capability of reinforcement 

learning, in comparison with pre-specified strategies (or 

genetic algorithms) that make use of grid search and many 

other methods, is that it allows for the incorporation of 

feedback from the solver into its guessing procedures. Still, 

issues such as the need for considerable computation and 

uncertainty of convergence are serious problems. [22][23]. 

2.4.3. Hybrid Approaches 

It has been done in previous studies to improve the 

prediction performance of prediction engines via hybrid 

methods, which utilize computational intelligence 

approaches augmented with relevant domain knowledge. 

These techniques, by including physical intuition or 

simplified models in the learning phase, can direct machine 

learning models to more appropriate starting points [24]. The 

integration of past experience with advanced algorithms is 

expected to significantly enhance the accuracy and reliability 

of algorithms designed to improve initial guesses. From the 

statistical tests, we conclude that hybrid strategies usually 

outperform normal heuristics and single stand alone machine 

learning models by balancing computational cost with 

prediction accuracy [25]. 

2.5. Key Research Gaps and Challenges 

There are still further issues and gaps in research, such 

as challenges, as machine learning is still working on adding 

more value to estimating first guesses. 

2.5.1. Generalizability 

One of the biggest problems in developing machine 

learning algorithms is their transferability, particularly 

generalizing across parameters such as different nonlinear 

systems or varying problem scales.  

This is very limiting; being able to build models that can 

fit different types of problems is a major challenge in this 

area. It is essential to highlight that comparison to classical 

approaches has shown that machine learning techniques 

stand out in some areas of application but struggle when 

applied to new and unfamiliar problems [26][27]. 
 

2.5.2. Adaptive Methods 

Adaptive techniques require less integration and can 

improve an initial guess without human intervention based on 

the solver’s feedback and the specific features of the problem 

at hand. Such algorithms are critical in the efficient and 

robust solution of nonlinear systems.  

Within reinforcement algorithms, this has been more 

prominent, especially due to the capabilities that allow 

several plans to be modified according to what the solver 

returns, unlike heuristics that are almost always constant [28]. 

2.5.3. Uncertainty Quantification 

Controlling the uncertainty in first guesses is a 

fundamental practice that should also guarantee robust solver 

performance, especially in unresolved or uncertain cases. 

Thus, the creation of methods that can adequately estimate 

uncertainty and treat it improves the quality of the predicted 

first guess [29]. One of the reasons why traditional heuristic 

methods are successful is the lack of applied techniques to 

methodologically cope with uncertainty. In contrast, state-of-

the-art machine learning techniques, especially hybrid 

models, provide a better approach to measuring and 

mitigating these uncertainties. 

2.5.4. Visualization Tools 

The number of tools for visualization in high-

dimensional space is rather small, which affects the 

comprehension and further improvement of the machine 

learning models. There is a need for better tools that visualize 

the relationship between initial guesses and the solution of 

the problems in high-dimensional spheres [30] in order to 

optimize and make the relationship clearer. This deficiency is 

not only a machine learning feature. Conventional methods 

also have difficulties with high-dimensional visualization. 

2.6. Summary  

The application of machine learning techniques for the 

prediction of initial guesses for nonlinear systems is new to 

computational numerical analysis. This promises to increase 

sophisticated future developments because it is well known 

that the limitations in this area have much space to be 

exploited by researchers and further enhance the efficiency 

and reliability of the solutions of nonlinear systems in a 

variety of scientific and engineering applications. A number 

of comparative studies with classical heuristic methods have 

shown that a key benefit of utilizing machine learning is the 

very high accuracy, speed of computation, and reliability of 

the results that are obtained. It can be confidently stated that 

as machine learning models and techniques continue to 

evolve, the field of nonlinear system solving will undergo 

significant transformation, providing solutions that were 

once difficult to envision yet are now precise and highly 

effective. 

3. Methodology 
3.1. Overview 

This paper examines the effectiveness and precision of 

various machine learning algorithms in generating initial 

guesses for nonlinear solvers. The process comprises various 

phases, including data generation, data pre-processing, data 

splitting into training and test sets, model training, and model 

evaluation. It aims to find the most accurate and reliable 

algorithm that classifies the data, allowing the solver to 

converge more often. Furthermore, other classical heuristic 

methods, such as grid search and genetic algorithms, have 

also been implemented. 
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Fig. 1 Phases of the Model Development Cycle [31] 

 

3.2. Data Generation 

3.2.1. Nonlinear Systems of Equations 

Three distinct systems of nonlinear equations, denoted as 

Problems 1, 2, and 3, were employed to generate training 

data. These problems represent varied mathematical 

structures designed to test the robustness of the machine 

learning models [32]. The systems are defined as follows: 

Problem 1: 

𝑒𝑥1  +  𝑠𝑖𝑛 (𝑥2)  −  𝑥3
2 + 𝑐𝑜𝑠 (𝑥4)  + 𝑥5 =  2      (1) 

𝑥1 +  𝑙𝑛 (𝑥2)  +  𝑥3 +  𝑡𝑎𝑛 (𝑥4)  −  𝑥5
2  =  1      (2) 

𝑥1
2 − 𝑒𝑥2  +  𝑥3  +  𝑠𝑖𝑛 (𝑥4)  +  𝑐𝑜𝑠 (𝑥5)  =  3      (3)   

𝑐𝑜𝑠 (𝑥1)  − 𝑥2  +  𝑥3
2  +  𝑙𝑛 (𝑥4)  +  𝑡𝑎𝑛 (𝑥5)  =  0    (4) 

𝑡𝑎𝑛 (𝑥1)  + 𝑥2  +  𝑠𝑖𝑛 (𝑥4)  +  𝑐𝑜𝑠 (𝑥5)  −  𝑒𝑥5  =  1(5) 

 

Problem 2: 

𝑙𝑛 (𝑥1)  +  𝑠𝑖𝑛 (𝑥2)  −  𝑥3
2  +  𝑐𝑜𝑠 (𝑥4)  − 𝑥5  = 1.5 (1) 

𝑥1
2  +  𝑙𝑛 (𝑥2)  + 𝑥3 +  𝑡𝑎𝑛 (𝑥4)  −  𝑥5

2  =  2             (2) 

𝑒𝑥1  −  𝑒𝑥2  +  𝑥3  +  𝑠𝑖𝑛 (𝑥4)  +  𝑐𝑜𝑠 (𝑥5)  =  3         (3) 

𝑐𝑜𝑠 (𝑥1)  −  𝑥2  +  𝑥3
2  + 𝑙𝑛 (𝑥4)  +  𝑡𝑎𝑛 (𝑥5)  =  0    (4) 

𝑡𝑎𝑛 (𝑥1)  − 𝑥2  +  𝑠𝑖𝑛 (𝑥3)  +  𝑐𝑜𝑠 (𝑥4)  +  𝑒𝑥5  =  1 (5) 

 

Problem 3: 

𝑒𝑥1  +  𝑠𝑖𝑛 (𝑥2)  − 𝑥3
2  +  𝑐𝑜𝑠 (𝑥4)  − 𝑥5  =  2      (1) 

𝑥1 +  𝑥2
2  +  𝑥3 + 𝑡𝑎𝑛 (𝑥4)  −  𝑙𝑛 (𝑥5)  =  1      (2) 

𝑥1
2  −  𝑒𝑥2  +  𝑥3 +  𝑠𝑖𝑛 (𝑥4)  +  𝑐𝑜𝑠 (𝑥5)  =  3      (3) 

𝑐𝑜𝑠 (𝑥1)  −  𝑥2  +  𝑥3
2  +  𝑙𝑛 (𝑥4)  +  𝑡𝑎𝑛 (𝑥5)  =  0   (4) 

𝑡𝑎𝑛 (𝑥1)  − 𝑥2  +  𝑠𝑖𝑛 (𝑥3)  +  𝑐𝑜𝑠 (𝑥4)  +  𝑒𝑥5  =  1 (5)        

3.2.2. Data Generation Process 

The dataset used in this study comprises initial guesses 

and corresponding convergence outcomes from simulations 

across multiple nonlinear systems, including power systems, 

chemical equilibria, and biological networks. The dataset 

includes over 10,000 samples, ensuring a diverse 

representation of initial guess scenarios. Each sample 

consists of input features representing key parameters of the 

system and labels indicating convergence success or failure. 

Dataset diversity was ensured by incorporating scenarios 

from varied system dynamics, including cases with strong 

nonlinearity, multiple equilibrium points, and differing 

parameter sensitivities. 

● Sample Generation: Random samples for  through  

were drawn from the range [−10, 10]. 

● Solver Application: A numerical solver, such as Newton-

Raphson, was employed to determine convergence 

outcomes. 

● Labeling: Data was labeled as 1 for successful 

convergence and 0 for failure, based on solver results. 

 

3.3. Data Pre-processing 

Data pre-processing ensured the dataset’s suitability for 

machine learning: 

1. Cleaning: Missing values were either imputed or 

removed. 

2. Normalization: All variables were scaled to the [0, 1] 

range to enhance model performance. 

3. Feature and Target Variables: 

• Features (X): , , , ,   (independent 

variables). 

• Target (y): Binary labels indicating solver success 

(1) or failure (0). 

 

3.4. Model Training and Evaluation 

3.4.1. Model Selection and Training 

 The following models were selected for this study: 

Logistic Regression (LR), Support Vector Machine  (SVM), 

Random Forest Classifier (RFC), and K-Nearest Neighbors 

(KNN). These models were easily selected to interpret; on 

SVM, the following excellent properties: in LR, high is 

dimensions and the baseline can linear handle model more 

that complex can decision produce boundaries; results from 

RFC which reduces with overfitting well-separated by data 

ensemble sets. Learning: Due to KNN is a suitable fact for 

Data Acquisition and 

Understanding 
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Engineering 

Feature 
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that nonlinear, each decision of boundary the and models 

works has well its strengths and weaknesses. The following 

hyperparameters for each algorithm were tuned using Grid 

Search with 5-fold cross-validation in order to enhance 

performance. In the case of LR, the changes have been made 

in the cost coefficient (C) and solver, namely liblinear or 

lbfgs. For SVM, the kernel function chosen was linear, and 

RBF with parameter C was tuned.  

The tree parameters for the RFC forest included the is 

number of n_estimators of the maximum depth of a tree that 

is max_depth and the splitting criterion, which can either be 

gini or entropy. For KNN, the optimization was done on the 

number of neighbors (n_neighbors) and the distance metric, 

which could either be Euclidean or Manhattan. The data set 

was split into a training set containing 80% of the data and a 

testing set with 20% of the data. To enhance result reliability, 

prevent overfitting, and obtain a more accurate performance 

estimate on various data partitions, 5-fold cross-validation 

was utilized. 

3.4.2. Evaluation Metrics 

Model performance was assessed using: 

• Accuracy: Proportion of correct predictions. 

 

• Confusion Matrix: Provides insight into performance in 

terms of true positives (TP), false positives (FP), true 

negatives (TN), and false negatives (FN). 

• F1 Score: Harmonic mean of precision and recall. 

 

• Confusion Matrix: To evaluate true/false positives and 

negatives. 

• ROC-AUC: Area under the Receiver Operating 

Characteristic curve to measure class distinction. 

 

3.5. Visualization and Comparative Analysis 

• Visualization: Confusion matrices (heatmaps) and ROC 

curves were plotted for all models to provide a visual 

performance comparison. 

• Comparative Analysis: Models were compared based on 

accuracy, F1 score, and ROC-AUC. The results were 

interpreted to determine the algorithm yielding the most 

reliable initial guesses. 

 

3.6. Discussion 

The findings were discussed with a focus on their 

implications for improving the efficiency of nonlinear system 

solvers, including practical recommendations for integrating 

predictive models into solver workflows. 

 

4. Experimental Results 
4.1. Overview 

The experiments demonstrated the capability of machine 

learning algorithms to predict successful initial guesses for 

solving nonlinear systems of equations. Three nonlinear 

problems were used to generate labeled datasets. The 

performance of four machine-learning models was assessed 

using accuracy, precision, recall, F1 score, and ROC-AUC 

metrics. 

 

4.2. Data Generation and Pre-processing 

4.2.1. Data Generation Results 

Data was generated by sampling variables ( , , , 

, ) randomly within the range [-10, 10]. Using the 

Newton-Raphson solver: 

• Total samples (N): 1,471 (741 successes, 730 failures). 

• Success rate (convergence): 50.37%. 

• Failure rate (non-convergence): 49.63%. 

4.2.2. Pre-processing Outcomes 

• Missing Values: Negligible (<3%), resolved through 

imputation. 

• Normalization: Features scaled to [0, 1] to ensure 

uniformity.  

• Data Split: The dataset is divided into training (80%) and 

testing (20%) subsets. 

 
 

Table 1. Summarizes the evaluation metrics for all models 

Model Accuracy Precision Recall F1 Score ROC-AUC 

Logistic Regression 0.789831 0.784431 0.834395 0.808642 0.87 

Support Vector Machine 0.813559 0.807229 0.853503 0.829721 0.89 

Random Forest 0.816949 0.832258 0.821656 0.826923 0.90 

K-Nearest Neighbors 0.793220 0.789157 0.834395 0.811146 0.87 
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4.3. Model Training and Evaluation 

Table 1 presents a comprehensive overview of the 

performance of each machine-learning model, utilizing 

essential evaluation metrics such as accuracy, precision, 

recall, F1 score, and ROC-AUC.  

 

These metrics serve as benchmarks for assessing and 

comparing the models, offering valuable insights into their 

effectiveness in predicting solver convergence within 

nonlinear systems of equations. 

 
4.4. Visualization and Confusion Matrix Analysis 

Confusion matrices for each model are shown in the 

Figures below. These matrices illustrate the distribution of: 

• True Positives (TP): Instances where the model 

accurately predicted successful solver convergence. 

• True Negatives (TN): Cases where failures were 

correctly identified. 

• False Positives (FP): Situations where the model 

incorrectly predicted success despite solver failure. 

• False Negatives (FN): Incorrectly predicted failure when 

the solver succeeded. 

 

 
Fig. 2 Logistic regression confusion matrix 

 

Figure 2 reveals that the model successfully classified 

74.4% of non-convergence cases as True Negatives and 

83.5% of convergence cases as True Positives. However, it 

also misclassified 25.6% of non-convergence cases as 

convergence (False Positives) and 6.5% of convergence cases 

as non-convergence (False Negatives). 

 

Figure 3 shows that it correctly predicted 76.8% of non-

convergence cases (True Negatives) and 85.4% of 

convergence cases (True Positives). However, 23.2% of non-

convergence cases were misclassified as convergence (False 

Positives), while 14.6% of convergence cases were 

incorrectly predicted as non-convergence (False Negatives). 
 

 
Fig. 3 Support vector confusion matrix 

 

 
Fig. 4 Random forest confusion matrix 

 
Figure 4 illustrates that the model accurately identified 

82.6% of non-convergence cases (True Negatives) and 

77.7% of convergence cases (True Positives). However, it 

misclassified 17.4% of non-convergence cases as 

convergence (False Positives) and 22.3% of convergence 

cases as non-convergence (False Negatives). 

  
Fig. 5 K-Nearest Neighbor Confusion Matrix 



Japheth Kodua Wiredu et al. / IJCSE, 11(12), 7-15, 2024 

 

13 

Figure 5 shows the following results in percentages: 

74.6% of the actual negatives were correctly predicted as 

negatives and 83.5% of the actual positives were correctly 

predicted as positives. The classifier, however, showed errors 

in classification: 25.4% of true negative cases were 

mistakenly classified as positives, and 16.5% of true positive 

cases were mislabeled as negatives. The confusion matrix 

provides a visual summary of the classifier’s performance, 

illustrating the percentages of correct and incorrect 

predictions. 

 

4.4.1. ROC Curves 

In their research [33], they describe the results obtained 

from four classifiers, i.e., LR, SVM, RFC, and KNN, based 

on Receiver Operating Characteristic (ROC) curves, as 

shown in Figure 6. The area under the curve (AUC) values 

for these classifiers are as follows: logistic regression 

estimates curves’ area of AUC=0.87, for SVM AUC=0.89, 

for random forest AUC=0.90 and KNN 0.87, respectively. 

The horizontal axis of the Figures presents various threshold 

values, while the vertical axes show the sensitivity (TPR) and 

(1-specificity) of the respective curves as plotted on the ROC 

Curve. The higher the value of the AUC, the greater the 

capability of the model in distinguishing, classifying and 

identifying positive cases from negative cases. In this case, it 

can be said that the Random Forest classifier is the most 

competent since it has the greatest AUC compared to the 

other three models.

 
Fig. 6 Receiver Operating Characteristic (ROU) Curves 

 

4.5. Comparative Analysis 

Performance comparisons revealed: 

• Random Forest Classifier: It is the best model, for it was 

used to get the best accuracy, F1 score, and AUC. 

• Logistic Regression: it is an interesting and interpretable 

model with good performance in both precision and 

recall. 

• Logistic Regression: it is an interesting and interpretable 

model with good performance in both precision and 

recall. 
 

4.6. Discussion 

The experimental results indicate that Random Forest 

yields the most accurate result in predicting the successful 

first guesses in applications of the nonlinear solver. With that 

said, there are other more interpretable models, such as the 

logistic regression, which yield decent results. Future work 

may involve the investigation of ensemble methods or tuning 

of hyper-parameters to improve the results further. 

5. Conclusion 
This paper demonstrated the potential of machine 

learning techniques in improving the efficiency of nonlinear 

system solvers concerning initial guesses. Among all the 

models tested, Random Forest emerged as the most accurate 

and effective, making it the recommended choice for 

practical applications. Other models, including ensemble 

models and hybrid models that integrate knowledge from 

some domain, could be future research directions. These 

advancements could further enhance solver efficiency and 

broaden the applicability of machine learning in 

computational science. 
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