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Abstract - With the advent of the mobile network era, the number of images has increased explosively. In the context of mobile 

internet, image retrieval plays an irreplaceable role in our lives. Due to the continuous development of deep learning algorithms, 

researchers have introduced deep learning technology into the field of image retrieval for the generation of image hashes. 

However, most image hash algorithms only consider sample category loss and treat the category distance between different 

labels equally, thus ignoring the distance information between categories. To address the above issues, this paper proposes an 

image retrieval algorithm based on the path distance between categories in the sample category hierarchical structure. The 

Swin Transformer network is used to extract image features, and a similarity distance matrix is generated through the tree-like 

structure of image categories. The distance between the generated hash codes in the hash layer is consistent with the similarity 

distance matrix. In the Hamming space, similar images are relatively close, and completely dissimilar images have the greatest 

difference in hash codes. The distance between the hash centers of each category achieves a quantization effect. Experimental 

results on public datasets show that the introduction of sample category hierarchical structure and similarity distance loss 

significantly improves the accuracy of image retrieval. 

Keywords - Image retrieval, Swin Transomfer, Similarity distance, Image hashing, Hamming space. 

1. Introduction 
With the rapid development of computer technology and 

mobile internet, the importance of images in people's daily 

lives has been increasing. In various fields such as medical 

imaging, digital libraries, industrial production, security 

systems, transportation systems, and remote sensing systems, 

a large amount of image and video data is widely used. 

Therefore, fast retrieval of image and video data has become 

a challenging task. Image retrieval [1] is a method based on 

computer vision technology that aims to search and retrieve 

images by analyzing and comparing their features. The core of 

image retrieval is to extract the feature information of images, 

such as color, texture, shape, etc., and convert it into 

computationally processable data. Then, various similarity 

measurement methods are used to calculate the similarity 

between the query image and the images in the database, 

enabling image search and ranking. 

 

In the 1970s, text-based image retrieval (TBIR) 

technology was proposed, which uses textual descriptions to 

search and retrieve images. TBIR utilizes textual semantic 

information for matching and provides semantically 

meaningful image search results. Although TBIR has the 

advantage of being fast and accurate, it also has some 

drawbacks. Firstly, text annotations of images cannot fully 

reflect the important information of the images themselves, 

resulting in insufficient richness of textual descriptions. 

Secondly, with the advent of the big data era, annotating 

massive images requires a significant amount of human effort 

and time. In the 1990s, content-based image retrieval (CBIR) 

technology emerged, which analyzes and queries images 

based on their content, such as color, texture, shape, and other 

low-level features. By mathematically describing the visual 

content of images using these low-level features, CBIR can 

reflect the visual content of the images themselves. The 

similarity measurement of image features is based on the 

extraction of image features and is calculated using a certain 

similarity calculation method (such as Euclidean distance). By 

sorting the similarity results, the desired images can be 

retrieved. The development of content-based image retrieval 

can be divided into two stages based on the emergence of deep 

learning: feature-based retrieval and deep feature-based 

retrieval. Traditional hashing methods use handcrafted 

features such as SIFT [2] (scale-invariant feature transform) 

and local feature descriptors [3] to solve the problem of poor 

invariance of global descriptors to brightness, transformations, 

occlusions, etc. However, the hash codes generated based on 

local feature descriptors do not consider the high-level 

semantic information of images, resulting in low retrieval 

accuracy. 

http://www.internationaljournalssrg.org/
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When it comes to large-scale image retrieval, the 

combination of feature hashing and deep learning has become 

a trend. Deep hashing methods can be categorized into 

unsupervised, semi-supervised, and supervised deep hashing 

methods based on whether label information is used. 

Unsupervised and semi-supervised deep hashing methods 

further divide into those based on convolutional neural 

networks [4] (CNN), neural networks composed of self-

attention mechanisms similar to Transformers, and 

unsupervised/semi-supervised deep hashing methods based on 

generative adversarial networks [5] (GAN). Supervised deep 

hashing methods can be further divided into triplet-based and 

pairwise-supervised deep hashing methods based on 

differences in data label information. Supervised deep hashing 

methods have achieved higher retrieval accuracy. Using deep 

hashing techniques for image retrieval is an effective method 

for the efficient retrieval of large-scale image data. 

 

The earliest deep hashing methods used CNN as the 

backbone network for feature extraction, such as AlexNet [6], 

VGG [7], and ResNet [8], then mapped the continuous 

features of images to binary codes using sigmoid or ReLU 

nonlinear activation functions. Recently, Transformers have 

emerged as a new architecture that utilizes non-convolutional 

self-attention mechanisms. Transformers [9] have also been 

extended to computer vision tasks, and VIT [10] (Vision 

Transformer) is a hashing method based on Transformers for 

image retrieval. In 2014, CNNH [11] was proposed as the first 

deep neural network-based method for image retrieval. It can 

simultaneously learn feature representations and hash 

functions for images. The first stage of CNNH decomposes 

the similarity matrix into a low-dimensional hash matrix to 

obtain hash codes for each sample. The second stage trains 

hash functions using the obtained hash codes and class labels 

of each sample. NINH [12] network uses triplets of three 

images for training. In each triplet, the first two images are 

similar, while the first image and the third image are dissimilar. 

The objective of the triplet-based loss function is to ensure that 

the distance between similar samples in the obtained 

Hamming space is smaller than the distance between 

dissimilar samples. CSQ [13] image hashing algorithm 

introduces center similarity quantization, which encourages 

similar images to approximate a common hash center while 

different images converge to different hash centers. Hash 

centers are constructed using Hadamard matrices or Bernoulli 

distributions. 

 

However, in the learning process of the above-mentioned 

deep supervised hashing methods, the general frameworks 

only utilize limited label information. It is generally assumed 

that images with the same label tend to converge to a hash 

center, and the distances between hash centers of different 

categories are equal. CSQ constructs a maximum hash center 

with mutually Hamming distances using label information 

directly. The Hamming distance between each class and other 

classes is the same. However, this approach ignores the 

similarity between image categories themselves. For data with 

hierarchical labels such as IAPRTC-12 and CIFAR-100 

datasets, where the proximity between one category and 

another indicates their similarity level, and the farther the 

distance between categories, the lower their similarity. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Schematic diagram of retrieval results on a tree-structured data set  
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This hierarchical structure can be represented as a tree 

structure, with each category as a leaf node. By defining the 

distance between hash centers generated by the hash network 

based on the distance between leaf nodes, optimal 

performance can be achieved. Existing algorithms have not 

considered the hierarchical structure between categories. See 

Fig. 1, for example, for a query image labeled "rose," the 

retrieval results are ranked as "Ia, Ib, Ie, Id, and Ic" in descending 

order. In this ranking, it is unreasonable for Ie and Id to rank 

ahead of Ic because although Ic is not a "rose," it shares a 

common parent class with Iq and belongs to flowers. In terms 

of similarity, Ic should be ranked higher than Ie and Id. 

2. Our Approach 
2.1. Network Architecture 

To address the above-mentioned problem, we propose a 

new supervised learning-based image hashing algorithm. In 

this paper, we utilize the Swin-Transformer [14] deep neural 

network for extracting image features.  

We incorporate the path distance of the image category's 

hierarchical structure  into the generation of hash codes, 

ensuring that the generated codes preserve the similarity. 

 

 
Fig. 2 The network structure diagram of this article

Figure 2 illustrates the structural model of the deep-

supervised image retrieval method based on Swin 

Transformer. The model consists of three parts: the feature 

extraction network, the hash layer [15], and the loss function. 

The feature extraction part is based on the Swin Transformer 

architecture, which includes 1 patch partition and 4 stages. 

Each stage is composed of multiple stacked Swin Transformer 

blocks. 

First, the input image is fed into the PatchPartition for a 

block operation, and then it is sent into the LinearEmbedding 

module to adjust the number of channels. Finally, through 

feature extraction and downsampling in stages 1, 2, 3, and 4, 

the final prediction result is obtained. It is worth noting that 

with each stage, the image size is reduced by half while the 

channel dimensions are doubled, similar to the ResNet 

network. 

Each Swin Transformer Block in each stage consists of 

two connected Transformer Blocks based on W-MSA and 

SW-MSA (window-based multi-head self-attention) 

mechanisms, which improve computational performance. For 

the hashing task, a hash layer is added after Stage 4 to 

construct a hash feature extraction network. This network 

maps the output feature vectors to hash codes of different bit 

sizes. For a query image xi with a size of H×W, the feature 

extraction network can obtain the image's features. 

 
 𝑧𝑖 = 𝑓(𝑥𝑖, 𝜃𝑓) (1) 

 

The hash layer outputs: 
 Ci = ℎ(𝑧𝑖, 𝜃ℎ) (2) 

In equations (1) and (2), f represents the feature extraction 

network, h represents the hash network, 𝜃f represents the 

parameters of the Swin Transformer feature extraction 

network, and 𝜃ℎ represents the parameters of the hash layer. 

2.2. Loss function 

2.2.1. Hamming Distance Matrix 

In a tree-like structure, the algorithm for calculating the 

path distance between two leaf nodes is as follows: Let root 

be the root node of the binary tree, n1 and n2 be two nodes in 

the given tree. lca is the lowest common ancestor of n1 and n2; 

Dist(n1,n2) represents the distance between n1 and n2. 

𝐷𝑖𝑠𝑡(𝑛1, 𝑛2) = 𝐷𝑖𝑠𝑡(𝑟𝑜𝑜𝑡, 𝑛1) + 𝐷𝑖𝑠𝑡(𝑟𝑜𝑜𝑡, 𝑛2) − 
2 × 𝐷𝑖𝑠𝑡(𝑟𝑜𝑜𝑡, 𝑙𝑐𝑎)      (3) 

 

In Figure 1, the distance calculation for each category is 

as follows:Dist(Rose, Glory) = 2; Dist (Rose, Pine) = 4; 

Dist(Rose, Ant) = 6; Dist (Rose, Bee) = 6; If there are m 

categories in the samples, the size of the generated distance 

matrix is m×m. The elements of this matrix are: 

𝑀(𝑖, 𝑗) = {
0, (𝑖 = 𝑗)

𝐷𝑖𝑠𝑡(𝑖, 𝑗), (𝑖 ≠ 𝑗)
                  (4) 

 

According to the given formula, for a dataset with m 

categories, we can obtain an m×m distance matrix M. Since 

the similarity of each category with itself is 100%, the 

diagonal of the matrix is all zeros. Taking K-bit hash codes as 

an example, to ensure a balanced hash distribution in the 

Hamming space, we set the maximum Hamming distance 

between hash centers of different categories as α×K. α is a 

hyperparameter, and experimental results show that when 
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α=0.5, the network converges fastest and achieves the highest 

accuracy in image retrieval. We can scale the category 

distance matrix accordingly. 

 

                                    𝐷 (𝑖, 𝑗) =
𝑀(𝑖,𝑗)

𝑚𝑎𝑥(𝑀)
× 𝛼 × 𝐾               (5) 

 

Where max(M) is the maximum value in the distance 

matrix, the following loss function is used when generating 

hash codes. 

{
𝐿𝑜𝑠𝑠1(𝑏1, 𝑏2, 𝑑) = (𝑑 − 𝐻(𝑏1, 𝑏2))2

𝑠. 𝑡. 𝑏𝑗 ∈ {+1,−1}𝑘 , 𝑗 ∈ {1,2}
      (6) 

 

𝐻(𝑏1, 𝑏2) =
|𝑏1−𝑏2|

2
, 𝑑 = 𝐷(𝑖, 𝑗) , where i and j are 

indices representing categories. The relaxation constraint 

operation for hash codes is as follows. 

 
𝐿𝑜𝑠𝑠2 = 𝛽(||𝑏1| − 1| + ||𝑏2| − 1|)              (7) 

 
The final loss function is: 

 
𝐿𝑜𝑠𝑠 = (𝑑 − 𝐻(𝑏1, 𝑏2))2 + 𝛽(||𝑏1| − 1| + ||𝑏2| − 1|)  (8) 

 

2.2.2. The Training Steps  

For a dataset with a hierarchical structure, we can 

calculate the Euclidean distance between each category and 

other categories to obtain a similarity Euclidean distance 

matrix.  

Then, by scaling the Euclidean distances, we can convert 

them into a similarity Hamming distance matrix. By 

constraining the loss function, the model can effectively 

encode the semantic information of images into hash codes. 

Input: Training set X = {xi}, N, parameter α,β and the 

length K of hash codes. 

 

Output: Parameters of the neural network and image 

feature codes Z. 

 

Step 1: Calculate the similarity Hamming distance matrix 

based on the labels of the dataset using formula (4). 

Step 2: Initialize the parameters of the Swin Transformer 

network and load pre-trained parameters. Add a hash 

layer on top of the Swin Transformer, consisting of 

two fully connected layers, with an output of K-bit 

binary codes C. 

Step 3: Randomly select a batch and compute the continuous 

codes Z. 

Step 4: Add a relaxation constraint Loss2 to the loss function 

Loss1 in the first training batch. 

Step 5: Update the parameters of the hash layer in Step 2 

using the backpropagation algorithm. 

Step 6: Repeat Steps 2-5 until the network's output stabilizes 

and achieves the desired effect. 

 

3. Results and Discussion 
3.1. Experiment Parameter 

All experiments were conducted using the PyTorch1.7 

deep learning framework and a Geforce RTX 3060 graphics 

card. For data processing, the size of all images was first 

adjusted to 256×256. Then, for training images, standard 

image augmentation techniques, including random horizontal 

flipping and random cropping, were applied, with a random 

cropping size of 224. For test images, only center cropping 

with a cropping size of 224 was applied. In terms of parameter 

settings, BatchSize was set to 64, Adam optimizer was used, 

the learning rate was 0.0001, the weight decay value was 

0.0001, and the number of training iterations was set to 150. 

3.2. Datasets 

This paper conducts experiments on CIFAR-100 and 

IAPR TC-12, two commonly used image retrieval datasets. 

CIFAR-100 contains 60,000 images in 100 categories, 

with 600 images per category. There are 50,000 training sets, 

500 for each category. Test set 10000, 100 for each category. 

The 100 categories of CIFAR-100 can be divided into 20 

categories, and each image contains the exact category to 

which it belongs (that is, the category of the 100 categories), 

as well as the category of the category to which it belongs. 

IAPRTC-12 contains a total of 20,000 images. Each 

image is manually segmented, and the resulting areas are 

annotated according to a predefined label vocabulary. The 

vocabulary is organized in a conceptual hierarchy. Visual 

features were extracted from each area. The annotation 

vocabulary has been organized on a conceptual level so that 

the IAPR TC-12 directory tree with root nodes has a total of 

seven levels. The dataset contains a total of six broad 

categories. This paper randomly selects 80% as the training 

set and the remaining 20% as the test set. 

3.3. Evaluation Criterion 

In this experiment, Normalized Discounted Cumulative 

Gain [16] (NDCG) is used as an evaluation index. Compared 

with mAP, NDCG has a feature that supports similarity 

measurement, while mAP [17] can only make binary 

judgments, i.e. similar or not similar. This feature is more 

reasonable when retrieving similar data. For the query sample 

q and the retrieval sequence V, the DCG formula is used for 

calculation. 

𝐷𝐶𝐺@𝑘(𝑞, 𝑉) = ∑ 𝐺𝑘
𝑖=1 [𝑟𝑒𝑙( 𝑞, 𝑖)] × 𝐷(𝑖)           (9) 

 
Where rel(q,i) represents the similarity between the i-th 

retrieved data and the query data, and the value ranges from 0 

to 1. G(x) is the gain function, generally taken as G(x)=2x-

1,D(x) is the discount function, related to the position, 

generally taken as D(i)=log2(1+i). DCG@k(q,V) is: 
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k

i=1
2

rel(q,i)
2 - 1

DCG@k(q,V) =
log (1+ i)

                        (10) 

If the optimal retrieval sequence for q is I, then NDCG@k 

is: 

DCG@K(q,V)
NDGG@K(q) =

DCG@K(q, I)

                            (11) 

It can be derived that the value range of NDCG is between 

0 and 1. This article proposes a weighted recall rate to measure 

the recall rate in tree-structured data scenarios, defined as: 

     𝑊𝑒𝑖𝑔ℎ𝑡𝑅𝑒𝑐𝑎𝑙𝑙(𝑞)@𝑛 =
∑ 𝑟𝑒𝑙𝑛
𝑖=1 (𝑞,𝑖)

∑ 𝑟𝑒𝑙𝑁
𝑖=1 (𝑞,𝑖)

         (12) 

Where n is the number of top data points returned, and N  

is the length of the ranking list. 

3.4. Experimental Results 

The retrieval performance of different methods is shown 

in Table 1. By comparing the 32-bit, 48-bit, and 64-bit hash 

sizes with other methods, it can be seen that TSHH achieves 

higher NDCG@100 values on both CIFAR-100 and IAPRTC-

12 datasets than other methods. On the CIFAR-100 dataset, as 

the encoding length increases from 32 bits to 64 bits, the 

NDCG@100 score calculated by TSHH increases from 

0.6221 to 0.6586, significantly outperforming traditional hash 

methods based on deep learning features, especially on the 

IAPRTC-12 dataset. Compared to the highest value in the 

table for IAPRTC-12, VTS16-CSQ, TSHH shows an 

improvement of 6.39% at 32 bits, 4.05% at 48 bits, and 2.96% 

at 64 bits. 

 

The reason for the more significant improvement in the 

IAPRTC-12 dataset compared to the CIFAR-100 dataset is 

mainly that the IAPRTC-12 dataset contains a more 

hierarchical structure of images than the CIFAR-100 dataset. 

The loss function utilizes the path distance information in the 

tree hierarchy of labels, allowing the hash code to have the 

distance semantic information of the tree hierarchy of labels, 

which further improves the retrieval performance in practical 

applications. Therefore, the TSHH method proposed in this 

paper is more effective on datasets with a deeper tree 

hierarchy. 

In Figure 3, from (a) to (f), it can be observed that on the 

CIFAR-100 and IAPRTC-12 datasets, as the length of the hash 

code increases, the weighted recall score for images becomes 

higher. This indicates that the hash network proposed in this 

paper is capable of learning more semantic information within 

the tree-like structure of image categories. The enhanced 

recall curve shown in Figure (a) demonstrates that the TSHH 

model performs better than the baseline across all values of n 

from 0 to 5000. 

3.5. Ablation experiment 

This paper conducted ablation studies on the CIFAR-100 

and IAPRTC-12 datasets to demonstrate the effectiveness of 

various components of the proposed deep hash model. The 

studies compared the retrieval metric (NDCG@100) using 

four different image hashing methods (CNNH, DCH, CSQ, 

and the hashing method proposed in this paper) with different 

feature extraction networks (AlexNet, VGGNet, ResNet50, 

VTS16, Our Backone). 

Vertical comparisons (as shown in columns of Tables 2 

and 3) proved that the feature extraction network used in this 

paper outperforms other backbone networks in retrieval 

performance across different hashing functions. On the 

CIFAR-100 dataset with 32-bit and 64-bit codes, it was 

observed that on CNNH, the NDCG increased by 8.0% and 

3.5%, respectively, compared to AlexNet; 7.2% and 7.5%, 

respectively, compared to VGGNet; 1.1% and 0.8% 

respectively compared to ResNet50; and 0.4% and 0.7% 

respectively compared to VTS16. The backbone network 

proposed in this paper achieved the best retrieval results in 

vertical comparisons with DCH and CSQ. The effectiveness 

of the proposed backbone network on the IAPRTC-12 dataset 

is also proven in Table 3. 

 

Table 1. Different NDCG@100 on two datasets 

Method 
CIFAR-100(NDCG@100) IAPRTC-12(NDCG@100) 

32bit 48bit 64bit 32bit 48bit 64bit 

ITQ[18] 0.4197 0.4243 0.4272 0.6626 0.6633 0.6652 

CNNH[11] 0.4413 0.4853 0.4921 0.6714 0.6822 0.6927 

NINH[12] 0.5321 0.5559 0.5685 0.6881 0.6959 0.6985 

DPSH[19] 0.5657 0.5693 0.5751 0.6853 0.6919 0.7034 

DCH[20]  0.5872 0.5931 0.6117 0.6824 0.6962 0.7103 

VTS16-CSQ[10]  0.5912 0.6066 0.6187 0.6932 0.7166 0.7287 

TSHH 0.6221 0.6387 0.6586 0.7401 0.7571 0.7583 

mailto:NDCG@100
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Fig. 3 Comparison of Weighted Recall@n values for different hash digits on CIFAR-100 and IAPRTC-12 

Table 2. Comparison of retrieval metrics of different backbone networks on the CIFAR100 dataset 

Backbone 
CNNH DCH CSQ Our loss 

32bit 64bit 32bit 64bit 32bit 64bit 32bit 64bit 

AlexNet[3] 0.441 0.492 0.547 0.553 0.523 0.535 0.590 0.598 

VGGNet[7]  0.449 0.452 0.550 0.568 0.543 0.557 0.596 0.611 

ResNet50[8]  0.510 0.519 0.587 0.591 0.582 0.588 0.603 0.614 

VTS16[10]  0.517 0.520 0.580 0.588 0.591 0.607 0.614 0.630 

Our backbone 0.521 0.527 0.592 0.695 0.610 0.615 0.622 0.659 

Table 3. Comparison of retrieval metrics of different backbone 

networks on the IAPRTC-12 dataset 

Backbon

e 

CNNH DCH CSQ Our loss 

32

bit 

64

bit 

32

bit 

64

bit 

32

bit 

64

bit 

32

bit 

64

bit 

AlexNet[

6]  

0.6

71 

0.6

93 

0.6

77 

0.6

90 

0.6

62 

0.6

78 

0.6

83 

0.6

90 

VGGNet
[7]  

0.6

80 

0.6

92 

0.6

81 

0.6

89 

0.6

83 

0.6

92 

0.6

93 

0.6

97 

ResNet5

0[8]  

0.6

88 

0.6

92 

0.6

82 

0.7

10 

0.6

82 

0.7

10 

0.7

11 

0.7

23 

VTS16[1

0] 

0.6

91 

0.6

94 

0.6

88 

0.7

15 

0.6

93 

0.7

17 

0.7

45 

0.7

53 

Our 

backbon

e 

0.6

94 

0.6

99 

0.6

95 

0.7

17 

0.7

01 

0.7

18 

0.7

57 

0.7

58 
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Horizontal comparisons (as shown in rows of Tables 2 

and 3) demonstrated that the retrieval performance using the 

same backbone network but with the loss function designed in 

this paper surpasses that of other loss functions. The 

experiments indicated that on the CIFAR-100 dataset with 32-

bit and 64-bit codes using the AlexNet network, the loss 

function designed in this paper improved NDCG by 14.9% 

and 10.6%, respectively, compared to CNNH; 4.3% and 4.5% 

respectively compared to DCH; and 6.7% and 6.3% 

respectively compared to CSQ. The loss function proposed in 

this paper achieved the best retrieval results when compared 

with other feature networks. The effectiveness of the proposed 

loss function on the IAPRTC-12 dataset is also confirmed in 

Table 3. 

Subsequent experiments were conducted to compare the 

effects of different values of parameters α and β on the 

retrieval results. These experiments were carried out on the 

IAPRTC-12 dataset with a hash size of 64 bits. The 

experiments concluded that the best results were achieved 

when the value of α was set to 0.5, and β was set to 0.01. 

Different values of α represent the maximum hash distance 

between different categories. For a K-bit hash encoding, when 

α is set to 0.5, the model converges the fastest and achieves 

the best performance. 
 

Table 4. The impact of different α on the model 

α 32bit-NDGG 64bit-NDGG 

0.1 0.446 0.475 

0.3 0.632 0.641 

0.5 0.757 0.758 

0.7 0.653 0.669 

0.9 0.408 0.413 
 

Table 5. The impact of different  β on the model 

β 32bit-NDGG 64bit-NDGG 

0 0.382 0.411 

0.001 0.532 0.558 

0.01 0.754 0.761 

0.1 0.723 0.756 

1 0.458 0.503 

Different values of β represent the proportion of 

quantization loss in the total loss. As β increases, the 

discrepancy between the network's discrete output values and 

the Hamming space can be reduced. However, an increase in 

β also leads to a decrease in the model's sensitivity to the 

distance loss among sample categories. Therefore, setting a 

reasonable value for β (such as 0.01) can significantly enhance 

the retrieval performance. (Tables IV and V). 

4. Conclusion 
To address the issue of consistent hash center distances in 

supervised image retrieval models, this paper introduces an 

image hashing model based on the hierarchical tree structure 

of samples. The model utilizes Swin Transformer as the 

network for extracting image features, combined with a 

custom hash module to generate hash codes. Experimental 

results show that on datasets where categories can form a 

hierarchical tree structure, the retrieval performance of the 

TSHH model is significantly improved. Particularly when the 

database lacks sufficient data of the same category as the 

queried image, images of similar categories are ranked higher, 

indicating that the model effectively leverages the hierarchical 

relationships between categories to enhance retrieval 

accuracy. 

To further improve the model's applicability, future work 

will explore image similarity mining in datasets without a 

clear tree-structured relationship. The goal is to maintain the 

corresponding distance effect in the generated hash codes 

based on the degree of similarity between image categories, 

thereby improving image retrieval performance regardless of 

the dataset's structure. This will be challenging, as it requires 

the model to capture and utilize more subtle and implicit 

similarities between categories, potentially necessitating the 

development of new techniques or the improvement of 

existing ones to accommodate a wider range of application 

scenarios. 
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