
SSRG International Journal of Computer Science and Engineering Volume 11 Issue 4, 1-9, April 2024

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V11I4P101 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Principles of Fault Tolerance in IT Systems: A Review

Iehab Abduljabbar Kamil1, Mohanad A. Al-Askari2
1,2Department Of Information Systems College of Computer Sciences and Information Technology, University Of Anbar, Iraq.

1Corresponding Author : iehab.a.k@uoanbar.edu.iq

Received: 07 February 2024 Revised: 14 March 2 024 Accepted: 02 April 2024 Published: 15 April 2024

Abstract - This study aims to thoroughly analyse the fundamentals of fault tolerance systems in IT systems. This study aims to

give a general understanding of the concepts involved in fault tolerance systems. This research examines fault tolerance concepts

in IT systems regarding fault isolation and online repair. Examining fault tolerance in the context of IT systems and going over

fault tolerance strategies in fault isolation, online repair, and fault isolation are the key goals of this research topic. A variety

of fault-tolerant strategies are applied to increase fault tolerance. Among these, fault isolation is essential to creating a highly

available system with fault tolerance. Load balancing and failover techniques are also employed with fault isolation approaches

for high availability.

Keywords - Fault Tolerance, Availability, Reliability, Scalability, IT Systems.

1. Introduction
The capacity of a system to function commonly, even if

one or more of its elements fails, is known as Fault Tolerance.

Fault Tolerance indicates the capability of a system such as a

Cloud Cluster, Computer, or Network. Fault Tolerance uses

effective techniques to confirm its steady operational activities

even in the case of partial failure. Fault Tolerance is based on

an effective design strategy that enables systems to function

even if components fail to function correctly. Fault Tolerance

aids in enhancing the reliability and availability of a system

[1]. System downtime and failures are less likely to occur with

Fault Tolerance. It can lessen the effects of unforeseen

interruptions, software bugs, and hardware malfunctions.

Systems featuring Fault Tolerance, for instance, can

completely prevent data loss, performance drops and system

breakdowns. The ability to withstand mistakes or defects

guarantees continuous functioning. By lowering the chance of

data loss or corruption, it can aid in the protection of sensitive

information. The scope of the research is to explore various

factors of Fault Tolerance. Challenges, practical applications,

theoretical foundations, and future directions are multiple

factors.

2. Fundamentals of Fault Tolerance
2.1. Basic Concepts and Principles

Modern systems design must consider Fault Tolerance,

which is especially important for applications where

downtime must be kept to a minimum. It is the process of a

system functioning correctly even when system faults occur.

Six basic concepts and principles enable Fault Tolerance in

highly available systems. The six basic concepts and

principles of Fault Tolerance are redundancy, fault isolation,

fault detection and annunciation, online repair, durability, and

dependability. Redundancy is the basic technique in Fault

Tolerance systems. It focuses on duplicating crucial resources

or elements in the system. Fault isolation is critical to making

Fault Tolerance a highly available system [2]. Fault detection

and online repair both require inspecting highly available

Fault Tolerance systems. Durability is one of the main

fundamental concepts of the Fault Tolerance system while

maintaining the continuity of the database system.

Dependability is a crucial component of trustworthy

computing, which entails analysing a system’s hostile

conditions and creating a plan to keep the system strong

despite them.

2.2. Types of Faults in IT Systems (Network, Hardware and

Software)

Faults often occur in IT systems, including network,

hardware and software. Understanding these kinds of faults in

IT systems is necessary for designing a highly effective fault

system.

2.2.1. Network Faults

Three different types of faults exist that come under

network faults. Link failures, packet loss, latency, and jitter

are examples of network faults. When a connection fails, it

usually manifests as a sequence of packet losses that might last

for several seconds, interspersed with a shift in latency until

the link is restored. When a device starts malfunctioning and

software issues occur, link failure happens. Router reboots and

short maintenance of network equipment can also cause link

failure. Packet loss occurs when data packets cannot reach

their location on a network [3]. Network congestion is the

http://www.internationaljournalssrg.org/
https://www.uoanbar.edu.iq/ComputerCollege/English/index.php
https://www.uoanbar.edu.iq/ComputerCollege/English/index.php

Iehab Abduljabbar Kamil & Mohanad A. Al-Askari / IJCSE, 11(4), 1-9, 2024

2

main reason for packet loss. Overloaded network devices and

discarded packets come under network congestion. User

experience and network performance problems can be brought

on by packet loss. A packet loss rate of less than 1% or 0.1%

is deemed appropriate for many applications.

Nevertheless, reduced packet loss rates could be

necessary for specific apps such as VoIP, real-time

communication, and online gaming. The time a data packet

takes from one location in a network to another is known as

latency. Delays that happen while data travels from a

computer device’s RAM to its CPU can also be referred to by

this term [4]. The difference in latency between data packets

sent over a network is known as jitter. It also represents the

degree to which delay varies between packets.

2.2.2. Hardware Faults

Various hardware components malfunction in the case of

component failure. Different hardware components include

memory, hard disk drives, CPU, and power supply systems.

These components fail to function correctly due to

overheating, manufacturing defects, software failure, physical

damage, unregulated power supply, viruses, and malware. A

hardware malfunction known as a bus error transpires when a

process attempts to access memory that the CPU cannot access

[5]. The address needs to be corrected for the address bus,

which explains this. Programming mistakes and corrupted

devices can also cause bus faults in the system: compiler bugs,

invalid file descriptors, misaligned data structure, and

inadequate memory allocation cause bus errors. Overlocking

issues come under hardware faults, which happen when

hardware cannot address extra stress. Overlocking issues can

cause hardware damage and data corruption. Overlocking

problems are responsible for heating issues and corrupted Bios

as well.

2.2.3. Software Faults

Errors in software might be more conceptual or logical,

and they are blunders committed during development. Bugs

are discrete instances of improper behaviour inside a program

and express faults in the software’s operation [6]. Logical

errors occur if the software does not provide any desired

output or error message compelling and running a program

while responding to the input. A memory leak is a program

error and comes under the software faults. When a program

fails to release its allocated memory to serve its purpose, it is

known as a memory leak. Managing memory allocation

inappropriately is the reason for memory leaks.

2.3. Objectives of Fault Tolerance

The objective of fault tolerance is to restrict disruptions

from a single point of failure. It confirms business continuity

and the high availability of systems. Redundant components,

mainly memory disks, are used to accomplish fault tolerance.

Potential service outages brought on by software or logical

problems are also resolved by fault tolerance.

3. Fault Tolerance Techniques
3.1. Redundancy-based Techniques (Network, Hardware

and Software)
Redundancy-based techniques enhance the fault tolerance

of applications or software systems. Redundancy comprises

replicating essential software systems. If one element fails

within the system, other components can continue their

functions. Fault Tolerance can be accomplished using

redundancy-based techniques for hardware, network, and

software systems.

Fig. 1 Three kinds of redundancy-based techniques

3.1.1. Network Redundancy

Installing backup network resources is the network

redundancy process, which helps avoid downtime. It entails

creating duplicate network infrastructure and executing

different instances of essential network services. Several

routes for traffic are provided by network redundancy,

ensuring that data may continue to flow even in the case of a

breakdown [7]. The idea is that devices should be able to

switch over if one fails immediately.

3.1.2. Hardware Redundancy

Hardware redundancy adds an identical device or element

to a system [8]. When an immediate segment or an appliance

dies, this is accomplished to guarantee nil downtime. This

sample employs two or more processors instead of a single

processor to achieve the identical procedure.

3.1.3. Software Redundancy

One method that can aid in achieving software fault

tolerance is Software Redundancy. Replication of software

elements, data, or calculations is known as redundancy, and it

serves as a backup or alternate option in the event of failures.

Redundancy offers system-wide fault tolerance, assisting in

making sure that calls are handled by the CSP, even in the

event of a software malfunction [9]. An operating system’s

ability to react to a software malfunction is known as Fault

Tolerance. Fault Tolerant systems make use of backup parts

that substitute malfunctioning parts automatically.

3.2. Error Detection and Correction Mechanisms (ECC,

Checksums and Parity)

Error detection and correction are crucial activities that

are effective for exception handling. Writing code to uncover

mistakes is known as error detection. The process of

controlling and responding to the incidence of specific faults

is known as error correction.

Redundancy base techniques

Network

redundancy

Hardware

redundancy

Software

redundancy

Iehab Abduljabbar Kamil & Mohanad A. Al-Askari / IJCSE, 11(4), 1-9, 2024

3

Fig. 2 Error correction code

Fig. 3 Evaluation of multiple factors of failure and repair

 (Source: [4])

3.2.1. ECC

Error correction code is a strategy for encoding data to

define and rectify errors [10]. Adding redundancy to the data

enables ECC to serve its work. It helps the decoder discover

the message the transmitter has encoded. It is utilized in

almost every message transmission scenario, particularly in

data storage, where ECCs prevent data corruption.

3.2.2. Checksums

It is known as a unique fingerprint of a file. Checksums

are crucial for verifying two identical files. With checksums,

the integrity of data files before and after file transfers or

backups is easily calculated [11]. The string will alter even if

just one erroneous or changed data byte exists.

3.2.3. Parity

Parity is a fundamental error detection method for

network communications [12]. A parity bit is an extra 0 or 1

bit attached to the primary original signal. Parity is used to

detect errors in the systems. The even and odd parity

approaches are available. When using the even parity

approach, the bit value is selected to ensure that the

transmitted signal’s entire amount of 1s, comprising the parity

bit, is even.

3.2.4. Mean Time between Failures (MTBF)

This time evaluation provides the investigation details of

the expected time to investigate the time differences between

two faults. The calculation process introduces two faulty

systems which provide or produce faults in the system. The

calculation of the MTBF is expressed as follows: MTBF =

(NH)/(NF), where NH defines the number of total operational

hours, and NF defines the failure numbers.

3.2.5. Mean Time to Failure (MTTF)

This failure evaluation time is calculated with respect to

the occurring of the fault in the system. This provides the

evaluation between the total operating time, and the use of the

total asset values. The calculation of the MTTF is expressed

as follows,

MTTF = (TOT)/(TS), where TOT is the total operational time,

and TS is the total usable assets.

3.2.6. Mean Time to Repair (MTTR)

This time evaluation is based on the repair value of the

overall system. This involves the time for repair and the count

of the total number of faults in the system. The calculation of

MTTR is expressed as follows,

110010 EDC

C

110010A

BC

011010A

BC

EDC

C

110010

Data Producer
Communication Channels

EMI

Data Consumer

Correct behavior Repair Diagnose Correct behavior

MTTF MTTD MTTR MTTF

MTBF

First Failure Begin Repair End Repair Second Failure

Iehab Abduljabbar Kamil & Mohanad A. Al-Askari / IJCSE, 11(4), 1-9, 2024

4

MTTR = (TTSR)/(NF), where TTSR defines the total time for

the repairing of the system, and NF is the failure number.

3.2.7. Availability

The actual time of a machine for evaluating a program is

evaluated by calculation the availability of the overall system.

This provides the details of the necessary factors which are

involved in the calculation of the overall actual time or
evaluation. This introduces the evaluation of the failure times

of the machine. As per the evaluation, the expression of the

availability is as follows,

Availability = (MTBF)/(MTBF+MTTR), this means it

involves both mean time between and to failures.

3.3. Failover and Balancing Strategies

Techniques of addressing servers to accomplish high

availability are load balancing and failover. Load balancing

distributes the burden among several servers to avoid

overloading a single one [13]. It enables individuals to run

web servers on another server similar to a database server.

Switchover: If the primary system fails, transfer the burden to

a backup system. One server can take over another server if it

fails to perform. Some failover strategies are active-passive

failover and hot and cold standby. By using load balancing,

request processing is split up across several servers. If the first

server contacted is unavailable or operating too slowly,

failover routes requests to other servers.

3.4. Recovery Mechanisms (Rollback Recovery,

Checkpointing)

Executing the recovery mechanism is quite vital for Fault

Tolerance. This enables systems to recover by reducing

failures to prevent them from malfunctioning. Rollback

recovery and checkpointing are the two most common

recovery mechanisms.

3.4.1. Rollback Recovery

A distributed system can be brought back to a consistent

state through rollback recovery in the event of a failure [14].

It’s only one method among several used to improve

distributed systems’ availability and dependability. A two-

phase commit technique is comparable to the rollback

recovery algorithm.

3.4.2. Checkpointing

A method called checkpointing makes a copy of an

application’s current state so that, if it malfunctions, it may be

restored and run again later. Checkpointing is vital when

managing protracted agendas on computer approaches that

tend to oversight [15].

Furthermore, it operates in ingrained procedures to

expand steadfastness by occasionally reserving the system’s

circumstances.

3.5. Diversity Techniques (Algorithmic Diversity & Data

Diversity)

Diversity techniques are used in Fault Tolerance to

increase the system’s resilience while introducing variations

in the system. The two most helpful diversity techniques are

algorithmic diversity and data diversity.

3.5.1. Algorithmic Diversity

The main aim of algorithmic diversity is to utilize two or

multiple algorithms to fulfil the same function. Algorithmic

diversity helps improve Fault Tolerance by minimizing the

impact level of different kinds of system failures [16].

3.5.2. Data Diversity

Data Diversity emphasizes introducing variation in input

parameters to diversify variation in output [17]. This approach

to data diversity enhances Fault Tolerance by making it

capable of detecting and dealing with fault sequences.

4. Design Considerations for Fault Tolerance
4.1. Reliability Modelling and Analysis

Reliability metrics estimate the capacity and efficiency of

a system for performing its functions without any

malfunctions over a certain period.

Fig. 4 Three analyses of reliability modelling

Reliability modelling and analysis

FMEA

(Failure mode and effects

analysis)

FMECA

(Failure Mode, Effects, and,

Criticality, Analysis)

FTA

(Fault tree analysis)

Iehab Abduljabbar Kamil & Mohanad A. Al-Askari / IJCSE, 11(4), 1-9, 2024

5

4.1.1. FMEA (Failure Mode and Effects Analysis)

A systematic, inductive, bottom-up approach to failure

mode identification and prioritisation, FMEA can be carried

out at the piece-part or functional levels.

4.1.2. FMECA (Failure Mode, Effects, and Criticality

Analysis)

An expansion of FMEA with a criticality analysis

included. FMECA takes into account all potential system

failure modes before providing a metrics-based method for

estimating the likelihood of each failure [18]. Organizations

may prioritize which topics to focus on with the aid of

FMECA.

4.1.3. FTA (Fault Tree Analysis)

Employs a top-down logical method to determine the

probability that an undesirable event will occur.

Fig. 5 Block diagram of fault tolerance technique

 (Source: Self-developed)

Fig. 6 Fault-tolerance system plot

 (Source: [10])

The design process of the fault-tolerance technique of the

computer system is demonstrated by the above block diagram.

This provides the details of the fault tolerance facility in a

computer. The process involves an input section which is

connected with the ALU units of the computer. This also

provides two different outcomes in which one produces the

faulty ALU, whereas another one produces a proper outcome.

The proper outcome is collected from the logical circuit block

of the computer.

4.1.4. Fault Tolerance Architecture (Replication-based, N-

Version Programming)

Fault Tolerance architecture indicates designing the

architecture for the systems to ensure its reliability and

availability before failure.

4.1.5. Replication-based Architecture

 Based on a centralized architecture, this design ensures

that duplicate servers are integrated into the system to provide

an alternative for a faulty component or system. This

Disagreement Block

ALU1

ALU1

Logic Circuit Block

 Faulty ALU

Output

Iehab Abduljabbar Kamil & Mohanad A. Al-Askari / IJCSE, 11(4), 1-9, 2024

6

architecture enhances the resiliency of the system in case of

Fault Tolerance.

4.1.6. N-version Programming

The NVP structure approach aims at Software Fault

Tolerance. According to this concept, the software can still run

and give correct results even if there are errors. To improve

systems that are essential for safety reasons, NVP is used to

increase software quality [19]. Therefore, any single scar does

not certify the malfunctioning of any module’s functionality

because, instead, the defects may have been localized to a

singular interpretation among several arrangements of the

NVP software module.

The fault-tolerance system plot provides two types of

plots which one provides the size of the main section and the

number of remaining nodes, and the other one defines the

percentage of reachable node pairs. This provides the

evaluation of the data functionality, which assists in finding

out the 0 and 1 fault-tolerance plots.

Fig. 7 Fault tolerance by edge importance

(Source: [12])

The fault tolerance process provides the graphical

representation of the edge importance process. This process

introduces mean random FT, which is highlighted in the main

plot. The plot defines the relation between removed edges and

the connected nodes. The plot also provides various functional

factors such as neutral, adverse, and nutritive.

4.2. Scalability and Performance Implications

These factors are vital to consider when designing an

efficient fault tolerance system. These two elements allow

designers to enhance dependability and effectiveness in IT

systems. Replication expands the system’s capacity by

creating more clones. It can also lead to scalability if data is

spread among various nodes. Since replicated data is available

across numerous places, it may be retrieved more rapidly. It

can enhance query performance and lower network latency.

N-version programming is a helpful technique to raise

software quality, particularly for safety-critical systems [20].

It is anticipated that this would improve software availability.

5. Challenges in Fault Tolerance
5.1. The Complexity of the Modern IT System

IT systems constantly change over time, and various

organizations have taken the initiative to adopt necessary IT

systems. Developing fault tolerance to detect and mitigate the

failure impact over any system requires complex algorithms,

architecture, and protocols.

5.2. Trade-offs between Fault Tolerance and Other System

Attributes

The capacity of a system to function continuously, even

if many components fail, is known as fault tolerance. The

additional hardware required for embedded Fault Tolerance

drives up the system’s expense. Redundancy, or the

availability of backup parts or different paths to take over in

the case of a breakdown, is a feature that fault-tolerant

networks frequently incorporate. The network’s overall

performance and stability are the main concerns of reliability.

From a security perspective, a reliable system must be able to

ward against evil attempts. According to the Fault Tolerance

perspective, a reliable system cannot rely on any one part

performing as intended [21]. The capacity of a system to

function continuously with little chance of failure is known as

high availability. A plan for continuity of operations will

incorporate high availability and fault tolerance.

5.3. Dynamic Environments and Changing System

Requirements

Dynamic environments and changing system

requirements constantly challenge building Fault Tolerance in

an IT system. These factors bring complexities and

uncertainties in designing Fault Tolerance for the systems to

deal with failure.

5.4. Integration with Emerging Technologies (Cloud

Computing and IoT)

Embracing these technologies requires addressing

challenges from the end of modern businesses to acquire

benefits. Integration with IoT and Cloud Computing is helpful

in the case of Fault Tolerance. These technologies improve the

performance and reliability of the systems. Various businesses

face security, data storage, and interoperability challenges in

integrating emerging technologies with their systems [22].

Data privacy, performance, cost management, scalability, data

loss, and recovery are other challenges.

6. Case Studies & Applications
6.1. Real-world Examples of Fault Tolerance

Implementation in IT Systems

The capacity of a system to withstand mistakes and

disruptions without losing functioning is known as fault

Iehab Abduljabbar Kamil & Mohanad A. Al-Askari / IJCSE, 11(4), 1-9, 2024

7

tolerance. Here are a few instances of IT systems that exhibit

fault tolerance:

6.1.1. Servers for Backups

Another server with the same configuration can take over

in the event of a failure.

6.1.2. Supplementary CPUs

Redundant processors in a fault-tolerant computer system

can carry out the same commands at the same time.

6.1.3. RAID

A redundant array of cheap discs (RAID) improves

performance by combining the physical components of discs

[23].

6.1.4. Identification and Reversal of Course

Every time a calculation is made, the system is tested

using this method. When there is data corruption or processing

breakdown, it is helpful.

6.1.5. Self-Healing

Devices are capable of self-healing features, which not

only continue when a mistake happens but also eventually

automatically fix the issue.

7. Future Direction
7.1. Emerging Trends and Technologies in Fault Tolerance

Some emerging technologies in the context of fault

tolerance are Artificial Intelligence (AI), Blockchain,

Machine Learning, and Quantum Computing. These

technologies heavily impact Fault Tolerance [24]. Other

technologies in the case of Fault Tolerance are genomics,

sustainable energy, large-scale scientific information, and

quantum information science.

7.2. Research Challenges and Opportunities

7.2.1. Fault Tolerance in Distributed Systems

Researching Fault Tolerance in simultaneous and

distributed grid settings is a challenging problem [25]. This

results from the lengthy processing times associated with

computer-intensive grid applications.

7.2.2. Load Balancing

Researchers find load balancing to be a challenging

endeavour. Multiple path-based routing and load-balancing

techniques are used in WSNs to evenly divide traffic among

several CHs or accessible links/paths.

7.2.3. Data Replication

Big IoT-generated data presents several processing

issues. Replicating data to increase Fault Tolerance,

dependability, and accessibility is one of the trickiest issues.

7.2.4. Fault Recovery

An irregular execution time results from a single task

failure, which hurts all the other data processing jobs that are

operating normally [26].

The concept of the structural formation of the fault

tolerance system is demonstrated in the above portion. This

provides the introduction of the web application with the load

balancer. This load balancer is used to control various

datacentres which are used to store the data. The failover

section is used to connect with the standby server, which is

introduced when a fault has appeared in the system.

Fig. 8 Fault-tolerance system design structure

Application

Datacenter

1

Datacenter

2

Datacenter

3
Standby center

Load balancer
failover

Iehab Abduljabbar Kamil & Mohanad A. Al-Askari / IJCSE, 11(4), 1-9, 2024

8

7.3. Potential Areas for Innovation and Improvement

Businesses must focus on improving the quality of their

offerings while embracing necessary changes to drive

innovation. Adopting emerging technologies to meet market

demands and clients’ perspectives is another area for

improvement in the case of fault tolerance [27].

Improvement of products, processes, and services would

allow businesses to drive product, process, and service

innovation.

8. Conclusion
A system’s ability to continue operating normally if one

or more of its components fail is known as fault tolerance. It

reduces the impact of errors and disruptions, improving

system availability and dependability. Fault Tolerance is

achieved by employing redundancy-based approaches, error

detection and correction systems, failover and balancing

strategies, recovery mechanisms, and diversity techniques.

Reliability modelling and analysis, such as FMEA and

FMECA, are crucial when building Fault Tolerant systems.

References
[1] Shadi Attarha et al., “Virtualization Management Concept for Flexible and Fault-Tolerant Smart Grid Service Provision,” Energies, vol.

13, no. 9, pp. 1-16, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[2] Han Bao, Tate Shorthill, and Hongbin Zhang, “Hazard Analysis for Identifying Common Cause Failures of Digital Safety Systems Using

a Redundancy-Guided Systems-Theoretic Approach,” Annals of Nuclear Energy, vol. 148, pp. 1-22, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[3] Tobias Distler, “Byzantine Fault-Tolerant State-Machine Replication from a Systems Perspective,” ACM Computing Surveys, vol. 54, no.

1, pp. 1-38, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[4] Maria Bonaventura Forleo et al., “Analysing the Efficiency of Diversified Farms: Evidences From Italian FADN Data,” Journal of Rural

Studies, vol. 82, pp. 262-270, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] Ionel Gog, Michael Isard, and Martín Abadi, “Falkirk Wheel: Rollback Recovery for Dataflow Systems,” Proceedings of the ACM

Symposium on Cloud Computing, pp. 373-387, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[6] Geddam Kiran Kumar, and Devaraj Elangovan, “Review on Fault-Diagnosis and Fault-Tolerance for DC–DC Converters,” IET Power

Electronics, vol. 13, no. 1, pp. 1-13, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[7] Rakesh Kumar et al., “The Mystery of the Failing Jobs: Insights from Operational Data from Two University-Wide Computing Systems,”

50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Valencia, Spain, pp. 158-171, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

[8] Priti Kumari, and Parmeet Kaur, “A Survey of Fault Tolerance in Cloud Computing,” Journal of King Saud University-Computer and

Information Sciences, vol. 33, no. 10, pp. 1159-1176, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[9] P. Dhivya Lakshmi, “Constructing Low-Density Parity-Check Codes in Digital Communication System,” ICTACT Journal on

Communication Technology, vol. 11, no. 2, pp. 2198-2202, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[10] Bastien Lecoeur, Hasan Mohsin, and Alastair F. Donaldson, “Program Reconditioning: Avoiding Undefined Behaviour When Finding

and Reducing Compiler Bugs,” Proceedings of the ACM on Programming Languages, vol. 7, pp. 1801-1825, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

[11] Richard Li, Kiran Makhijani, and Lijun Dong, “New IP: A Data Packet Framework to Evolve the Internet,” IEEE 21st International

Conference on High Performance Switching and Routing, pp. 1-8, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[12] Ján Mach, Lukáš Kohútka, and Pavel Čičák, “On-Chip Bus Protection against Soft Errors,” Electronics, vol. 12, no. 22, pp. 1-16, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[13] Omid Maghazei, Michael A. Lewis, and Torbjørn H. Netland, “Emerging Technologies and the Use Case: A Multi-Year Study of Drone

Adoption,” Journal of Operations Management, vol. 68, no. 6-7, pp. 560-591, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[14] Mohammad Mahdavi, and Ziawasch Abedjan, “Baran: Effective Error Correction via a Unified Context Representation and Transfer

Learning,” Proceedings of the VLDB Endowment, vol. 13, no. 12, pp. 1948-1961, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[15] Júlio Mendonça, Fumio Machida, and Marcus Völp, “Enhancing the Reliability of Perception Systems using N-version Programming and

Rejuvenation,” 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), Porto,

Portugal, pp. 149-156, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[16] Tayyab Muhammad et al., “AOptimizing Network Paths: In-Depth Analysis and Insights on Segment Routing,” Journal of Data

Acquisition and Processing, vol. 38, no. 4, pp. 1942-1963, 2023. [Google Scholar] [Publisher Link]

[17] Prakai Nadee, and Preecha Somwang, “Efficient Incremental Data Backup of Unison Synchronize Approach,” Bulletin of Electrical

Engineering and Informatics, vol. 10, no. 5, pp. 2707-2715, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[18] S. Sai Haree Ram, S. Uppala Durga Samrith, and V. Pandimurugan, “Decentralized Cloud Disaster Recovery using Consensus

Algorithm,” 2nd International Conference on Automation, Computing and Renewable Systems, Pudukkottai, India, pp. 923-930, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.3390/en13092196
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Virtualization+management+concept+for+flexible+and+fault-tolerant+smart+grid+service+provision&btnG=
https://www.mdpi.com/1996-1073/13/9/2196
https://doi.org/10.1016/j.anucene.2020.107686
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hazard+analysis+for+identifying+common+cause+failures+of+digital+safety+systems+using+a+redundancy-guided+systems-theoretic+approach&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0306454920303844
https://doi.org/10.1145/3436728
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Byzantine+Fault-Tolerant+State-Machine+Replication+from+a+Systems+Perspective&btnG=
https://dl.acm.org/doi/10.1145/3436728
https://doi.org/10.1016/j.jrurstud.2021.01.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysing+the+efficiency+of+diversified+farms%3A+Evidences+from+Italian+FADN+data&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0743016721000097
https://doi.org/10.1145/3472883.3487011
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Falkirk+wheel%3A+Rollback+recovery+for+dataflow+systems&btnG=
https://dl.acm.org/doi/10.1145/3472883.3487011
https://doi.org/10.1049/iet-pel.2019.0672
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Review+on+fault%E2%80%90diagnosis+and+fault%E2%80%90tolerance+for+DC%E2%80%93DC+converters&btnG=
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-pel.2019.0672
https://doi.org/10.1109/dsn48063.2020.00034
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+mystery+of+the+failing+jobs%3A+Insights+from+operational+data+from+two+university-wide+computing+systems&btnG=
https://ieeexplore.ieee.org/document/9153410
https://doi.org/10.1016/j.jksuci.2018.09.021
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+of+fault+tolerance+in+cloud+computing&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157818306438
https://doi.org/10.21917/ijct.2020.0325
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Constructing+Low-Density+Parity-Check+Codes+in+Digital+Communication+System&btnG=
https://ictactjournals.in/paper/IJCT_Vol_11_Iss_2_Paper_7_2198_2202.pdf
https://ictactjournals.in/paper/IJCT_Vol_11_Iss_2_Paper_7_2198_2202.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lecoeur%2C+B.%2C+Mohsin%2C+H.+and+Donaldson%2C+A.F.%2C+2023.++Program+Reconditioning%3A+Avoiding+Undefined+Behaviour+When+Finding+and+Reducing+Compiler+Bugs.+Proceedings+of+the+ACM+on+Programming+Languages%2C+7%28PLDI%29%2C+pp.1801-1825.&btnG=
https://doi.org/10.1145/3591294
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Program+Reconditioning%3A+Avoiding+Undefined+Behaviour+When+Finding+and+Reducing+Compiler+Bugs&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Program+Reconditioning%3A+Avoiding+Undefined+Behaviour+When+Finding+and+Reducing+Compiler+Bugs&btnG=
https://dl.acm.org/doi/10.1145/3591294
https://doi.org/10.1109/hpsr48589.2020.9098996
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=New+ip%3A+A+data+packet+framework+to+evolve+the+internet&btnG=
https://ieeexplore.ieee.org/document/9098996
https://doi.org/10.3390/electronics12224706
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On-Chip+Bus+Protection+against+Soft+Errors&btnG=
https://www.mdpi.com/2079-9292/12/22/4706
https://doi.org/10.1002/joom.1196
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Emerging+technologies+and+the+use+case%3A+A+multi%E2%80%90year+study+of+drone+adoption&btnG=
https://onlinelibrary.wiley.com/doi/10.1002/joom.1196
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Baran%3A+Effective+error+correction+via+a+unified+context+representation+and+transfer+learning&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Baran%3A+Effective+error+correction+via+a+unified+context+representation+and+transfer+learning&btnG=
https://dl.acm.org/doi/abs/10.14778/3407790.3407801
https://doi.org/10.1109/dsn-w58399.2023.00044
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+the+Reliability+of+Perception+Systems+using+N-version+Programming+and+Rejuvenation&btnG=
https://ieeexplore.ieee.org/document/10207130
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AOPTIMIZING+NETWORK+PATHS%3A+IN-DEPTH+ANALYSIS+AND+INSIGHTS+ON+SEGMENT+ROUTING&btnG=
https://sjcjycl.cn/article/view-2023/04-1942.php
https://doi.org/10.11591/eei.v10i5.2212
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+incremental+data+backup+of+unison+synchronize+approach&btnG=
https://beei.org/index.php/EEI/article/view/2212
https://doi.org/10.1109/icacrs58579.2023.10405292
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Decentralized+Cloud+Disaster+Recovery+using+Consensus+Algorithm&btnG=
https://ieeexplore.ieee.org/document/10405292

Iehab Abduljabbar Kamil & Mohanad A. Al-Askari / IJCSE, 11(4), 1-9, 2024

9

[19] Sepideh Safari et al., “A Survey of Fault-Tolerance Techniques for Embedded Systems from the Perspective of Power, Energy, and

Thermal Issues,” IEEE Access, vol. 10, pp. 12229-12251, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[20] Zhibing Sha et al., “Proactive Stripe Reconstruction to Improve Cache Use Efficiency of SSD-Based RAID Systems,” ACM Transactions

on Embedded Computing Systems, vol. 22, no. 5s, pp. 1-18, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[21] Nadir Subasi, Ufuk Guner, and Ilker Ustoglu, “N-Version Programming Approach with Implicit Safety Guarantee for Complex Dynamic

System Stabilization Applications,” Measurement and Control, vol. 54, no. 3-4, pp. 269-278, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[22] Ola Hani Fathi Sultan, and Turkan Ahmed Khaleel, “Challenges of Load Balancing Techniques in Cloud Environment: A Review,” Al-

Rafidain Engineering Journal, vol. 27, no. 2, pp. 227-235, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[23] Pejman Memar, “Simulation Setup for Investigating the Error Detection and Correction Codes Effectiveness Under Harsh Electromagnetic

Interference,” Pan European Training Research and Education Network on Electromagnetic Risk Management, 2020. [Publisher Link]

[24] Rongxi Wang et al., “Reliability Analysis of Complex Electromechanical Systems: State of the Art, Challenges, and Prospects,” Quality

and Reliability Engineering International, vol. 38, no. 7, pp. 3935-3969, 2020. [Cross Ref] [Google Scholar] [Publisher Link]

[25] Zhenyu Xu et al., “A Bus Authentication and Anti-Probing Architecture Extending Hardware Trusted Computing Base Off CPU Chips

and Beyond,” ACM/IEEE 47th Annual International Symposium on Computer Architecture, Valencia, Spain, pp. 749-761, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

[26] Guojie Yang et al., “Interoperability and Data Storage in Internet of Multimedia Things: Investigating Current Trends, Research

Challenges and Future Directions,” IEEE Access, vol. 8, pp.124382-124401, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[27] Yi Zhang et al., “Dynamic Job Shop Scheduling Based on Deep Reinforcement Learning for Multi-Agent Manufacturing Systems,”

Robotics and Computer-Integrated Manufacturing, vol. 78, 2022. [CrossRef] [Google Scholar] [Publisher Link]

http://doi.org/10.1109/ACCESS.2022.3144217
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+of+Fault-Tolerance+Techniques+for+Embedded+Systems+from+the+Perspective+of+Power%2C+Energy%2C+and+Thermal+Issues&btnG=
https://ieeexplore.ieee.org/abstract/document/9684471
https://doi.org/10.1145/3609099
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Proactive+Stripe+Reconstruction+to+Improve+Cache+Use+Efficiency+of+SSD-Based+RAID+Systems&btnG=
https://dl.acm.org/doi/10.1145/3609099
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=N-version+programming+approach+with+implicit+safety+guarantee+for+complex+dynamic+system+stabilization+applications&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=N-version+programming+approach+with+implicit+safety+guarantee+for+complex+dynamic+system+stabilization+applications&btnG=
https://journals.sagepub.com/doi/10.1177/0020294019887473
https://doi.org/10.33899/rengj.2022.134056.1179
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Challenges+of+Load+Balancing+Techniques+in+Cloud+Environment%3A+A+Review&btnG=
https://rengj.mosuljournals.com/article_175369.html
https://etn-peter.eu/2020/05/18/simulation-setup-for-investigating-the-error-detection-and-correction-codes-effectiveness-under-harsh-electromagnetic-interference/
https://doi.org/10.1002/qre.3175
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reliability+analysis+of+complex+electromechanical+systems%3A+State+of+the+art%2C+challenges%2C+and+prospects&btnG=
https://onlinelibrary.wiley.com/doi/10.1002/qre.3175
https://doi.org/10.1109/isca45697.2020.00067
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+bus+authentication+and+anti-probing+architecture+extending+hardware+trusted+computing+base+off+CPU+chips+and+beyond&btnG=
https://ieeexplore.ieee.org/document/9138947
https://doi.org/10.1109/access.2020.3006036
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Interoperability+and+data+storage+in+internet+of+multimedia+things%3A+investigating+current+trends%2C+research+challenges+and+future+directions&btnG=
https://ieeexplore.ieee.org/document/9130065
https://doi.org/10.1016/j.rcim.2022.102412
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+job+shop+scheduling+based+on+deep+reinforcement+learning+for+multi-agent+manufacturing+systems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0736584522000977?via%3Dihub

