
 SSRG International Journal of Computer Science and Engineering Volume 11 Issue 8, 17-25, August 2024

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V11I8P103 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Session Management Techniques and Options for Micro-

frontend Web Development

 Tanmaya Gaur

Principal Architect, Customer Support, T-Mobile US, Washington, USA.

Corresponding Author : tanmay.gaur@gmail.com

Received: 20 June 2024 Revised: 29 July 2024 Accepted: 17 August 2024 Published: 31 August 2024

Abstract - Micro-frontends extend the concept of micro-services to the world of UI. The idea behind Micro Frontends is to

develop applications as a composition of features which are owned and developed completely isolated and by independent teams.

These experiences are strung together either at run-time or build-time to deliver a single cohesive application experience to the

end user. Session management, which is a crucial aspect of traditional web development, is also a requisite for micro-frontend

applications as it enables the application to maintain the state of a user’s session. This could mean things like preferences,

actions, and authentication status across different types of applications and user types. Without session management, the

backends would treat each request as a new one, and the user would have to re-enter their credentials, preferences, and data

every time they interact with the web application. Traditional application development has some well-defined options to enable

session management. For applications implemented as micro-frontends, there are implications specific to that architecture which

need to be accounted for. This paper will attempt to review traditional session management methodologies and provide an

overview of considerations when using them in micro-frontend style applications.

Keywords - Session management, CRM, Web development, Micro-frontend.

1. Introduction
HTTP follows a classical client-server model, with a

client opening a connection to make a request and then waiting

until it receives a response. HTTP is traditionally a stateless

protocol, meaning that the server does not keep any data

(state) between two requests. A web session could be thought

of as the sequence of network HTTP request and response

transactions associated with a user session (refer to Figure 1).

The onus is on the client application to maintain a sessionID

(or token), often created after verifying the user in a way that

the sessionID can be used to back up that claim. Sessions

should be unique per user and difficult for a bad actor to

impersonate.

Modern and complex web applications require retaining

information or status about the user across the duration of

multiple requests. Sessions provide the ability to establish

variables – such as access rights and localization settings –

which will apply to each interaction a user has with the web

application for the duration of the session.

Session management may also apply to anonymous users

depending on the application functionality, e.g. scenarios

where an anonymous user is following a purchase path

transaction and transactional activity needs to be coherent

across the commerce to order capture flow (refer to figure 2).

While there are multiple options available to implement

micro-frontend style apps, in most cases, it generally makes

sense to optimize developing global concerns like session

management within a container app so that these are always

available to all other micro-frontends. It is recommended that

the session management responsibility be placed within the

common omnipresent container app in such a way that the

sessionID is available to micro-frontends as they get appended

and removed from the browser Document object model.

There are multiple techniques for implementing session

management in web development, each with its own

advantages and disadvantages. While significant

documentation and guides on the internet talk about session

management for traditional web apps, there is a lack of similar

insights that are specific to the micro frontend style of web

development. This paper will go through the common

techniques one by one and discuss the unique specificities of

using them in a micro-frontend. This paper will compare these

techniques and discuss the implications for security,

performance, scalability, and usability of a micro-frontend

web application.

http://www.internationaljournalssrg.org/
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Stateless_protocol
https://en.wikipedia.org/wiki/Stateless_protocol

Tanmaya Gaur / IJCSE, 11(8), 17-25, 2024

18

Fig. 1 Session across a sequence of HTTP invocations

Fig. 2 Session management extends across anonymous and authenticated session

User Client application Identity Server Data

Servers

Application Access & Browse

Get AuthN credentials

GET Anonymous Session Token

Retrieve data with Anonymous

Token

GET Authenticated Session Token

Retrieve data with Anonymous

Token

Access Control

ensures user

sensetive

Data is not

available for

requests with

Anonymous

Token

Access and

authorization

Controls before

user data made

available for

authenticated

token

(User initiated or Application

Enforced)

Anonymous Browsing Authentication Authenticated Browsing

 Session Management

Updated from

Anonymous to

Authenticated

Tanmaya Gaur / IJCSE, 11(8), 17-25, 2024

19

2. Implementation Concerns
There are multiple options available to implement session

Management. This section lists some of the architectural

considerations for deciding which one works best for you. It

is always important to understand the development use-case

and determine the best option that meets specific needs.

Irrespective of the option you choose, it makes sense to

separate the session management concerns of retrieving,

persisting, and exposing the session ID into its own app or

within the container app. This paper will touch on this in the

next section of the post by going over the various options.

2.1. Choice of Micro-Frontend

The choice of micro-frontend technology may limit the

options for session management. Most monolith apps run in

the same execution context of the browser and hence share

Cookies, HTML5 Storage, Windows objects etc. With micro-

frontend, depending on the implementation, this may not

always be the case. For example, a micro-frontend built using

Iframe will not have access to the Windows JS object of the

parent container. Even access to cookies is often restricted

based on the user agent.

Another impact is the need to build clean interfaces. Since

a micro-frontend implementation needs to build stand-alone

and independent micro-frontends, developers must create

clean API abstractions (refer to Figure 3) in front of methods

made available to retrieve the session token and data. Other

aspects of session management, like requesting a session

refresh, authentication step-up, etc., need to be handled either

by a common layer or exposed via clean interfaces.

An aspect specific to micro-frontend is the sharing of

tokens across all the micro-frontend apps. Assuming

traditional OIDC, the scopes of the session tokens determine

what API and backend data these tokens provide access to.

Assuming a micro-frontend may span multiple different

functions and needs, it is easy to stuff all required scopes into

a single token and run into “super” access tokens. There are

ways to avoid this scenario by providing some ways of token

binding or exchange mechanism. This is a significant topic on

its own.

Fig. 3 Session Management within a micro-frontend on the browser

SESSION

MANAGEMENT

Session Token

retrieval Methods

Common

Components

1. Retrieve

Session Token

Post User

Authentication

Identity

Provider

3.Retrieve

session

token

Micro-frontend
4. API Invocation w/

Session Token
API

Gateway

2. write session token

Local Session

Token Storage

2. read token

Manages related

concerns of

Authentication,

Authorization, Session

Generation,

Tokenization and

Maintenance (refresh,

revocation)

CONTAINER APP

Tanmaya Gaur / IJCSE, 11(8), 17-25, 2024

20

Fig. 4 Session Management a subset of state management

2.2. Session v/s State Management

While sometimes being used in overlapping contexts,

there exists a difference between state and session

management. The difference often depends on the application

being developed and the specific use case.

• Session management refers to the approaches to keep

sessions consistent between client and server by

persisting a secure token on the client app, which is sent

with all HTTP traffic and is well understood by the server.

• In certain scenarios, applications may want to store more

data on the client than just the session tokens. This allows

the application to reduce network traffic and, at times,

simplify the client application. This may avoid code

duplication and assist performance at times by avoiding

http roundtrips. There are security considerations

regarding what data is suitable to be stored on the client

side and for how long. This state is confined to the client

device.

For example, for an amazon.com commerce flow, the

session management token encapsulates the trusted user

identity based on authentication credentials. State

management, in this case, may include all the items that the

user has in their cart, their click and navigation history during

the session, etc.

So, what is the overlap? If state management is client-

side, then session management may use the state management

approach to store and persist the session tokens.

Think of state management as the larger data bucket (refer

to figure 4) and session tokens as one of the data elements

being stored amongst that data. You do, however, want to

consider the other implementation concerns called out in this

paper before deciding to reuse the pattern.

2.3. JWT v/s Opaque Tokens

With the understanding that the session tokens are

representative of secure session information between the

client and server and play a role in the authentication and

authorization of the user. Let us dive deeper into the two types

of session tokens.

• Opaque tokens have a longer history with web

development and are usually an alphanumeric string that

identifies some information in the issuer’s database.

• JWT Tokens, on the other hand, are JSON strings that

contain all the claims and information they represent and

are certified by a signature from the issuer. By default, it

is unencrypted, but it can be encrypted via the JSON Web

Encryption (JWE) standard.

Given the different nature of these tokens, there are

nuances which developers must consider. Opaque tokens are

essentially unique random strings and, hence, useful for

transmitting sensitive information that should not be available

to the client. They also have significant advantages when it

comes to revoking the tokens and payload size since the data

is all stored on the server side.

JWT Tokens, on the other hand, have advantages for

highly distributed systems. An application does not have to

repeatedly query the authorization server to retrieve token

details, as JWT tokens are signed and can be validated locally.

This could be crucial when you are building applications for

performance and scale. This makes JWT a shiny alternative in

case the session data does not contain sensitive information

and tokens do not need to be revoked.

2.4. Types of Tokens

Now that the paper has discussed the intent of the session

tokens, let us talk about the various types of tokens needed in

enterprise applications.

• Access tokens are the most common and are generally

issued by an authorization server. These can be opaque of

JWT even though there is widespread misconception

assuming Access tokens are always Opaque. These are

traditionally issued for small durations to prevent

State Managemnet

Session Token

Tanmaya Gaur / IJCSE, 11(8), 17-25, 2024

21

hijacking, a topic that will come up later in this paper.

Access tokens are often used as bearer tokens, where the

bearer of the token is granted access to specific API(s)

and data.

• ID Tokens are part of the OIDC spec and represent the

user identity and authentication metadata. These are

always JWT and may contain multiple properties and

claims standardized for the enterprise, like the issuer (who

issued the tokens), actor (who is using the tokens), and

subject (identity of the user token is being used for. Often

the same but in certain cases, like a CRM, the subject and

actor may be different. The actor could be a customer

service agent, and the subject is the subscriber account the

agent is working on) and the expiry associated with the

token.

• Refresh Tokens are tokens that allow a client to invoke a

refresh flow for the access tokens. The access token is

purposefully given short lifetimes. The refresh tokens

allow for ways to obtain a new Access token securely

without having the user re-authenticate.

• Access tokens and bearer tokens can be vulnerable to

being stolen and are often bound to the

client/device/machine to which it was issued. This kind of

token binding the Access token or requests to the

client/device/machine is often known as the Proof-of-

Possession token. MTLS is another strategy used to create

sender-constrained tokens.

While the tokens do retain the same functions, how they

are shared securely is where micro-frontends may start

differing from traditional applications.

2.5. Functionality and User Agent Restrictions

The use cases and browser support may also influence

token strategy. For example, suppose an application needs the

tokens to be available across multiple windows and domains

under the same sub-domain. In that case, cookies may be a

better-suited option than using the Windows object and

HTML5 session storage methods. In the next section, the

paper will list these considerations where applicable to the

various methods.

An example of a recent issue was with iframe-style micro-

frontends. Chrome 85 came with an update where. Since

Chrome 85, a web page inside an iframe on a different domain

than the parent cannot read its own cookies unless they have

explicitly been set using SameSite=None and Secure. This is

another example of the kind of impact choice of session

management pattern can have on micro-frontend

implementation.

2.6. Security Concerns

Multiple security considerations drive various aspects of

session management, including token generation, session ID

persistence, transmission to the server, and expiration and

refresh.

• Session Hijacking: This can be caused by malicious users

capturing and replaying the session ID and can happen

with unintentional disclosure, prediction, brute force, or

fixation. This allows an attacker to impersonate a victim.

There are various mitigation and prevention techniques

ranging from simple hardening techniques around naming

and storing session variables to complex proof of

possession implementations where the session ID is

cryptographically bound to the client until it is issued.

• In addition to hardening storage and token binding, it is

important to ensure the session ID is unpredictable and

large enough to prevent guessing attacks and brute force.

• Security at rest and in transit is crucial to protect against

sessionID Hijacking. At rest, this would mean making

sure the sessionID is stored in a way that it is not available

outside the application’s scope. At transit, the mechanism

generally involves implementing HTTP Strict Transport

Security (HSTS) to enforce HTTPS connections.

• Session Exchange Mechanisms: An application must only

trust specific means to transmit and receive sessionID(s).

For example, if a session is only available via cookies, the

web application should ensure it does not accept it as a

URL parameter to stop session fixation-like issues.

Session Exchange Mechanism is a tricky question when

micro-frontend applications need to share data between them.

Should a token exchange be treated as inter or intra-app?

Another complexity is the lack of suitable oAuth methods at

times (depending on the identity provider) when trying to

exchange tokens inter-app.

2.7. Token Data Requirements

The size of the session-sensitive data may drive the choice

of tokens as well as storage. If you want to store large amounts

of session data, transmitting it roundtrip as a cookie with every

request may have significant performance impacts. Specific to

micro-frontends, this becomes a crucial discussion when

scaling across multiple different functional concerns. Another

aspect of the token data is governance around ensuring the

absolute necessary session data is introduced into the token

irrespective of whether it being client side or server. There are

better and more suitable mechanisms available for broader

state and cache management solutions to support performance

and load optimization needs.

3. Implementation Options
Now that we understand some of the key session

management considerations for web development in general

and how they are impacted by micro-frontends, let’s work our

way through the different session implementation options.

3.1. Cookies

Cookies or HTTP Cookies are small files of information

sent by web servers to web browsers over the HTTP protocol.

Web Browsers store the cookies they receive for a specific

Tanmaya Gaur / IJCSE, 11(8), 17-25, 2024

22

period, as specified in the cookie metadata returned by the

server. There are other properties associated with cookies that

help manage data security. In micro-frontends, cookies can be

used to communicate between different micro-frontends, but

data can only be shared if the micro-frontends are under the

same sub-domain.

Fig. 5 Session tokens in cookies

Cookies can be used to store session tokens (Refer to

Figure 5) and are automatically transmitted as part of the

headers unless the request is to a cross-domain server. For

sites of the same domain, this makes cookies one of the easier

implementation options. They are also widely supported

across all browser types.

The downside of cookies is that they are more vulnerable

to theft and tampering as well as to cross-site scripting attacks.

Another major downside is the impact on performance,

especially if large session data is stored in the cookie. One

recent issue is cookies often being used to track users and

hence are now associated with privacy issues. This, at times,

leads to cookies being blocked by some users or user agents,

rendering the web application unstable or broken.

Some key flags to be aware of if using cookies.

• Secure: Instructs web browsers to only send the cookie

through an encrypted HTTPS (SSL/TLS) connection.

This is highly recommended to avoid man in the middle

attacks.

• HttpOnly : Instructs web browsers not to allow scripts like

JavaScript access to cookies. This is a recommended

protection against XSS attacks.

• SameSite : Prevents browsers from sending a SameSite

flagged cookie with cross-site requests. The main goal is

to mitigate the risk of cross-site request forgery attacks.

The paper did already discuss some of the recent

implications of this attribute to iFrames.

• Domain : Instructs web browsers to only send the cookie

to the specified domain and all subdomains. If the

attribute is not set, by default the cookie will only be sent

to the origin server.

• Path : Instructs web browsers to only send the cookie to

the specified directory (or specific resource) within the

web application. Just like Domain attribute, it is best to

restrictively scope this attribute as needed.

• Expire & Max-Age : One of the most important aspects

for session management, these attributes allow

applications to set an expiry of the cookie. The cookie will

be persisted till the specified expiry time (Max-age has

preference over expires if both are specified)

3.2. Session or Local Storage

Session storage and local storage (Refer Figure 6) provide

application developers capability for storing name-value pairs

client-side.

Unlike HTTP cookies, the contents of localStorage and

sessionStorage are not automatically shared in the request

headers. The key aspects of this storage are

• Scope : This defines who can access the stored data. Data

stored using the localStorage API is accessible across tabs

if the webpages which are loaded on these tabs are from

the same origin. sessionStorage API stores data within the

window context from which it was called, meaning that

Tab cannot access data which was stored from Tab 2.

• Duration : localStorage persists across browsing sessions

whereas sessionStorage stores data for the duration of the

current browsing session only.

So why use localStorage instead of sessionStorage.

localStorage is best if data is needed to be accessed across

windows or tabs, across multiple sessions.

SessionStorage on the other hand allows you to store data

scoped to the tab, allowing you to run multiple simultaneous

tabs.

Tab 1/Domain 1
Read*/Write

*based on http only

Tab 2 / Domain 2

Browser API/Domain 1

Cookies

(Domain1)
NO

ACCESS

•Only HTTPS, Based on

secure setting

•Could be further limited

by Domain and Path

Cookies automatically

sent to same Domain

API Calls

Tanmaya Gaur / IJCSE, 11(8), 17-25, 2024

23

Fig. 6 Session Tokens in Web Storage (Session or Local Storage)

3.3. Global Variable

A custom variable created by the application under

window.variableName means that the variable is being

declared at the global scope. This means any JS code running

in that tab will have access to this variable. How does this

compare to sessionStorage (Refer Figure 7), let’s find out?

• Scope : Window variables have global scope, while

session storage variables have session scope. This

means that window variables can be accessed by any

function or script on the page.

• Duration : Window variables do not persist, which

means that they are lost when page is unloaded.

Fig. 7 Session Tokens in Global Variables

Global variables are useful if you want to store a value

that needs to be accessed by multiple functions or scripts on

the page. If that aligns with the needs of the application being

developed. These work for all micro-frontend styles except

Iframe based approaches.

3.4. Closure Variables

One of the critical security issues with approaches storing

the token in local or session storage session hijacking. All

Java-script running on the page has access to the token. With

micro-frontends especially, this allows even one compromised

micro-frontend to be able to hijack the token. Closure provides

us add a layer of security in such a scenario. How this works

is by developing a closure (Refer Figure 8) which exposes two

methods, a set method, and a fetch method. The set method

allows the caller to set a session token, often invoked by the

applications auth module.

The fetch function appends the token value as

authorization headers to outbound API calls, if being made to

pre-configured whitelist of domains. The tokens are

traditionally only needed when calling API layer which is pre-

configured.

Tab 1/Domain 1

Read/Write

Tab 2 / Domain 1

Browser API/Domain 1

Web

Storage

NO

ACCESS

Not sent Automatically with

API Requests

fetch(header: token)

Tab 3 / Domain 2

Read*/Write
*if local Storage

Tab 1/Domain 1

Read/Write

Tab 2 / Domain 1

Browser API/Domain 1

Global

Variable

(window.*) NO

ACCESS

Needs to be explicitly added

(header or body)

fetch(token)

Tab 3 / Domain 2

Tanmaya Gaur / IJCSE, 11(8), 17-25, 2024

24

Fig. 8 Session management using Closures

Any time a UI module or a micro-frontend wants to send

an API request with the token, it can use the closure’s fetch

instead of using its own implementation. This approach

minimizes XSS impacts but does not completely remediate it.

3.5. Service Worker

While more complex to implement than the other

methods discussed so far, service workers bring some cool

capabilities to the mix including their ability to proxy http

requests. Service Workers can behave like a browser proxy

server (Refer Figure 9) that execute in an impendent context

that persists even if a web app refreshes or reloads. Developers

of web applications can use service worker to store the session

token and send the session token for any network resources as

required.

The security logic discussed in the earlier section about

closure can apply to service worker as well. The service

worker can be configured to never return code back to the

calling application. There is also the ability to only send out

tokens to a pre-configured whitelist of API domains. Service

workers do have additional benefits of running in its own

context and hence may be more secure than a closure.

Fig. 9 Session management using service worker

3.6. IndexedDB

IndexedDB (Refer Figure 10) is a powerful client-side

storage mechanism that allows web developers to store

structured data including files/Blob. The key difference from

web storage API is the ability to store large amounts of data

as well as it being asynchronous API and its ability to survive

tab and even a browser crash. While indexedDB makes a lot

of sense for state management and is also accessible from , it

does not add significant value as a session token solution for

most web applications.

Tab 1/Domain 1

writeSession()

Tab 2 / Domain 1

Browser API/Domain 1

Closure

Variable

NO

ACCESS

Needs to be explicitly added

(header or body)

fetch(token)

Tab 3 / Domain 2

Session Module

API
fetch(no token)

Closure

fetch

Tab 1/Domain 1

Tab 2 / Domain 1

Browser API/Domain 1

NO

ACCESS

Needs to be explicitly added

(header or body)

fetch(token)

Tab 3 / Domain 2

fetch

Service

Worker

NO

ACCESS

Tanmaya Gaur / IJCSE, 11(8), 17-25, 2024

25

Fig. 10 Session Tokens in IndexedDB

4. Conclusion
Session management remains vital to web development

irrespective of the architecture being a monolith or a micro-

frontend. While it is entirely possible to follow traditional

session management approaches when using micro-frontends,

there are key architectural differences to consider as detailed

in this paper. There are some obvious shortcomings of certain

approaches that were discussed. Beyond these micro-frontend

nuances, the choice of the best technique or option depends on

various other factors, such as the security, performance,

scalability, and usability requirements of the web application

being developed, and the preferences and capabilities of the

web developer.

References
[1] The Session Management Cheat Sheet, OWASP Cheat Sheet Series. [Online]. Available:

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html

[2] The Web Storge API, Mozilla. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API/Using_the_Web_Storage_API

[3] The Indexed DB API, Mozilla. [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

[4] The Session Token Blog, Ropnop. [Online]. Available: https://blog.ropnop.com/storing-tokens-in-browser/#global-variable

[5] Browser Storage: A Comparative Analysis of IndexDB, Local Storage, and Session Storage, Browsee. [Online]. Available:

https://browsee.io/blog/unleashing-the-power-a-comparative-analysis-of-indexdb-local-storage-and-session-storage/

[6] State Management in Micro-frontends, Medium. [Online]. Available: https://medium.com/sysco-labs/state-management-in-micro-

frontends-ee273830f95f

[7] Navdeep Singh Gill, Micro-frontend Architecture and best Practices, Xenonstack, 2023. [Online]. Available:

https://www.xenonstack.com/insights/micro-frontend-architecture

[8] Nathan Sharma, Session Management 101: A Beginner’s Guide for Web Developers, MojoAuth, 2024. [Online]. Available:

https://mojoauth.com/blog/session-management-a-beginners-guide-for-web-developers/

[9] Ashan Fernando, React MicroFrontend Authentication: Step by Step Guide, Medium, 2024. [Online]. Available:

https://blog.bitsrc.io/react-microfrontend-authentication-step-by-step-guide-ca4f3947996f

read/write

Tab 1/Domain 1

Tab 2 / Domain 1

Browser API/Domain 1

NO

ACCESS

Needs to be explicitly added

(header or body)

fetch(token)

Tab 3 / Domain 2 IndexedDB

read/write

https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://blog.ropnop.com/storing-tokens-in-browser/#global-variable
https://browsee.io/blog/unleashing-the-power-a-comparative-analysis-of-indexdb-local-storage-and-session-storage/
https://medium.com/sysco-labs/state-management-in-micro-frontends-ee273830f95f
https://medium.com/sysco-labs/state-management-in-micro-frontends-ee273830f95f
https://mojoauth.com/blog/session-management-a-beginners-guide-for-web-developers/

